1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ash/fast_ink/fast_ink_points.h"
#include <algorithm>
#include <array>
#include <functional>
#include <limits>
#include "base/containers/adapters.h"
#include "base/containers/circular_deque.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/rect_conversions.h"
namespace ash {
namespace {
constexpr SkColor kDefaultPointColor = SkColorSetRGB(0x42, 0x85, 0xF4);
constexpr int kDefaultOpacity = 0xCC;
} // namespace
const SkColor FastInkPoints::kDefaultColor =
SkColorSetA(kDefaultPointColor, kDefaultOpacity);
FastInkPoints::FastInkPoints(base::TimeDelta life_duration)
: life_duration_(life_duration) {}
FastInkPoints::~FastInkPoints() = default;
void FastInkPoints::AddPoint(const gfx::PointF& point,
const base::TimeTicks& time) {
FastInkPoint new_point;
new_point.location = point;
new_point.time = time;
points_.push_back(new_point);
}
void FastInkPoints::AddPoint(const gfx::PointF& point,
const base::TimeTicks& time,
SkColor color) {
FastInkPoint new_point;
new_point.location = point;
new_point.time = time;
new_point.color = color;
points_.push_back(new_point);
}
void FastInkPoints::AddGap() {
// Not doing anything special regarding prediction, as in real usage there
// will be a gap in timestamps, and the prediction algorithm will reject the
// points that are too old.
points_.back().gap_after = true;
}
void FastInkPoints::MoveForwardToTime(const base::TimeTicks& latest_time) {
DCHECK_GE(latest_time, collection_latest_time_);
collection_latest_time_ = latest_time;
if (!points_.empty() && !life_duration_.is_zero()) {
// Remove obsolete points.
const base::TimeTicks expiration = latest_time - life_duration_;
auto first_alive_point = std::ranges::lower_bound(
points_, expiration, std::ranges::less_equal(), &FastInkPoint::time);
points_.erase(points_.begin(), first_alive_point);
}
}
gfx::Rect FastInkPoints::UndoLastStroke() {
if (points_.empty())
return gfx::Rect();
gfx::PointF min_point = GetNewest().location;
gfx::PointF max_point = min_point;
// Skip the last gap to delete until the penultimate gap.
if (points_.back().gap_after)
points_.pop_back();
while (!points_.empty() && !points_.back().gap_after) {
const gfx::PointF& location = points_.back().location;
min_point.SetToMin(location);
max_point.SetToMax(location);
points_.pop_back();
}
return gfx::ToEnclosingRect(gfx::BoundingRect(min_point, max_point));
}
void FastInkPoints::Clear() {
points_.clear();
}
gfx::Rect FastInkPoints::GetBoundingBox() const {
return gfx::ToEnclosingRect(GetBoundingBoxF());
}
gfx::RectF FastInkPoints::GetBoundingBoxF() const {
if (IsEmpty())
return gfx::RectF();
gfx::PointF min_point = GetOldest().location;
gfx::PointF max_point = min_point;
for (const FastInkPoint& point : points_) {
min_point.SetToMin(point.location);
max_point.SetToMax(point.location);
}
return gfx::BoundingRect(min_point, max_point);
}
FastInkPoints::FastInkPoint FastInkPoints::GetOldest() const {
DCHECK(!IsEmpty());
return points_.front();
}
FastInkPoints::FastInkPoint FastInkPoints::GetNewest() const {
DCHECK(!IsEmpty());
return points_.back();
}
bool FastInkPoints::IsEmpty() const {
return points_.empty();
}
int FastInkPoints::GetNumberOfPoints() const {
return points_.size();
}
const base::circular_deque<FastInkPoints::FastInkPoint>& FastInkPoints::points()
const {
return points_;
}
float FastInkPoints::GetFadeoutFactor(int index) const {
DCHECK(!life_duration_.is_zero());
DCHECK_GE(index, 0);
DCHECK_LT(index, GetNumberOfPoints());
const base::TimeDelta age = collection_latest_time_ - points_[index].time;
return std::min(age / life_duration_, 1.0);
}
void FastInkPoints::Predict(const FastInkPoints& real_points,
const base::TimeTicks& current_time,
base::TimeDelta prediction_duration,
const gfx::Size& screen_size) {
Clear();
if (real_points.IsEmpty() || prediction_duration.is_zero())
return;
gfx::Vector2dF scale(1.0f / screen_size.width(), 1.0f / screen_size.height());
// Create a new set of predicted points based on the last four points added.
// We add enough predicted points to fill the time between the new point and
// the expected presentation time. Note that estimated presentation time is
// based on current time and inefficient rendering of points can result in an
// actual presentation time that is later.
// TODO(reveman): Determine interval based on history when event time stamps
// are accurate. b/36137953
const float kPredictionIntervalMs = 5.0f;
const float kMaxPointIntervalMs = 10.0f;
base::TimeDelta prediction_interval =
base::Milliseconds(kPredictionIntervalMs);
base::TimeDelta max_point_interval = base::Milliseconds(kMaxPointIntervalMs);
const FastInkPoint newest_real_point = real_points.GetNewest();
base::TimeTicks last_point_time = newest_real_point.time;
gfx::PointF last_point_location =
gfx::ScalePoint(newest_real_point.location, scale.x(), scale.y());
// Use the last four points for prediction.
using PositionArray = std::array<gfx::PointF, 4>;
PositionArray position;
PositionArray::iterator it = position.begin();
for (const auto& point : base::Reversed(real_points.points())) {
// Stop adding positions if interval between points is too large to provide
// an accurate history for prediction.
if ((last_point_time - point.time) > max_point_interval)
break;
last_point_time = point.time;
last_point_location = gfx::ScalePoint(point.location, scale.x(), scale.y());
*it++ = last_point_location;
// Stop when no more positions are needed.
if (it == position.end())
break;
}
const size_t valid_positions = it - position.begin();
if (valid_positions < 2) // Not enough reliable data, bail out.
return;
// Note: Currently there's no need to divide by the time delta between
// points as we assume a constant delta between points that matches the
// prediction point interval.
std::array<gfx::Vector2dF, 3> velocity = {};
for (size_t i = 0; i < valid_positions - 1; ++i)
velocity[i] = position[i] - position[i + 1];
// velocity[0] is always valid, since |valid_positions| >=2
std::array<gfx::Vector2dF, 2> acceleration = {};
for (size_t i = 0; i < valid_positions - 2; ++i)
acceleration[i] = velocity[i] - velocity[i + 1];
// acceleration[0] is always valid (zero if |valid_positions| < 3).
gfx::Vector2dF jerk;
if (valid_positions > 3)
jerk = acceleration[0] - acceleration[1];
// |jerk| is aways valid (zero if |valid_positions| < 4).
// Adjust max prediction time based on speed as prediction data is not great
// at lower speeds.
const float kMaxPredictionScaleSpeed = 1e-5;
double speed = velocity[0].LengthSquared();
base::TimeTicks max_prediction_time =
current_time +
std::min(prediction_duration * (speed / kMaxPredictionScaleSpeed),
prediction_duration);
// Add predicted points until we reach the max prediction time.
gfx::PointF location = position[0];
for (base::TimeTicks time = newest_real_point.time + prediction_interval;
time < max_prediction_time; time += prediction_interval) {
// Note: Currently there's no need to multiply by the prediction interval
// as the velocity is calculated based on a time delta between points that
// is the same as the prediction interval.
velocity[0] += acceleration[0];
acceleration[0] += jerk;
location += velocity[0];
AddPoint(gfx::ScalePoint(location, 1 / scale.x(), 1 / scale.y()), time,
newest_real_point.color);
// Always stop at three predicted points as a four point history doesn't
// provide accurate prediction of more points.
if (GetNumberOfPoints() == 3)
break;
}
}
} // namespace ash
|