1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "ash/quick_pair/fast_pair_handshake/fast_pair_encryption.h"
#include <algorithm>
#include <array>
#include <cstring>
#include <iterator>
#include <optional>
#include "ash/quick_pair/fast_pair_handshake/fast_pair_key_pair.h"
#include "base/check.h"
#include "base/types/fixed_array.h"
#include "chromeos/ash/services/quick_pair/public/cpp/fast_pair_message_type.h"
#include "components/cross_device/logging/logging.h"
#include "third_party/boringssl/src/include/openssl/aes.h"
#include "third_party/boringssl/src/include/openssl/base.h"
#include "third_party/boringssl/src/include/openssl/ec.h"
#include "third_party/boringssl/src/include/openssl/ec_key.h"
#include "third_party/boringssl/src/include/openssl/ecdh.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
#include "third_party/boringssl/src/include/openssl/hmac.h"
#include "third_party/boringssl/src/include/openssl/nid.h"
#include "third_party/boringssl/src/include/openssl/sha.h"
namespace {
using ash::quick_pair::fast_pair_encryption::kBlockSizeBytes;
// Converts the public anti-spoofing key into an EC_Point.
bssl::UniquePtr<EC_POINT> GetEcPointFromPublicAntiSpoofingKey(
const bssl::UniquePtr<EC_GROUP>& ec_group,
const std::string& decoded_public_anti_spoofing) {
std::array<uint8_t, kPublicKeyByteSize + 1> buffer;
buffer[0] = POINT_CONVERSION_UNCOMPRESSED;
std::ranges::copy(decoded_public_anti_spoofing, buffer.begin() + 1);
bssl::UniquePtr<EC_POINT> new_ec_point(EC_POINT_new(ec_group.get()));
if (!EC_POINT_oct2point(ec_group.get(), new_ec_point.get(), buffer.data(),
buffer.size(), nullptr)) {
return nullptr;
}
return new_ec_point;
}
// Key derivation function to be used in hashing the generated secret key.
void* KDF(const void* in, size_t inlen, void* out, size_t* outlen) {
// Set this to 16 since that's the amount of bytes we want to use
// for the key, even though more will be written by SHA256 below.
*outlen = kPrivateKeyByteSize;
return SHA256(static_cast<const uint8_t*>(in), inlen,
static_cast<uint8_t*>(out));
}
} // namespace
namespace ash {
namespace quick_pair {
namespace fast_pair_encryption {
std::optional<KeyPair> GenerateKeysWithEcdhKeyAgreement(
const std::string& decoded_public_anti_spoofing) {
if (decoded_public_anti_spoofing.size() != kPublicKeyByteSize) {
CD_LOG(WARNING, Feature::FP) << "Expected " << kPublicKeyByteSize
<< " byte value for anti-spoofing key. Got:"
<< decoded_public_anti_spoofing.size();
return std::nullopt;
}
// Generate the secp256r1 key-pair.
bssl::UniquePtr<EC_GROUP> ec_group(
EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1));
bssl::UniquePtr<EC_KEY> ec_key(
EC_KEY_new_by_curve_name(NID_X9_62_prime256v1));
if (!EC_KEY_generate_key(ec_key.get())) {
CD_LOG(WARNING, Feature::FP) << __func__ << ": Failed to generate ec key";
return std::nullopt;
}
// The ultimate goal here is to get a 64-byte public key. We accomplish this
// by converting the generated public key into the uncompressed X9.62 format,
// which is 0x04 followed by padded x and y coordinates.
std::array<uint8_t, kPublicKeyByteSize + 1> uncompressed_private_key;
int point_bytes_written = EC_POINT_point2oct(
ec_group.get(), EC_KEY_get0_public_key(ec_key.get()),
POINT_CONVERSION_UNCOMPRESSED, uncompressed_private_key.data(),
uncompressed_private_key.size(), nullptr);
if (point_bytes_written != uncompressed_private_key.size()) {
CD_LOG(WARNING, Feature::FP)
<< __func__
<< ": EC_POINT_point2oct failed to convert public key to "
"uncompressed x9.62 format.";
return std::nullopt;
}
bssl::UniquePtr<EC_POINT> public_anti_spoofing_point =
GetEcPointFromPublicAntiSpoofingKey(ec_group,
decoded_public_anti_spoofing);
if (!public_anti_spoofing_point) {
CD_LOG(WARNING, Feature::FP)
<< __func__
<< ": Failed to convert Public Anti-Spoofing key to EC_POINT";
return std::nullopt;
}
uint8_t secret[SHA256_DIGEST_LENGTH];
int computed_key_size =
ECDH_compute_key(secret, SHA256_DIGEST_LENGTH,
public_anti_spoofing_point.get(), ec_key.get(), &KDF);
if (computed_key_size != kPrivateKeyByteSize) {
CD_LOG(WARNING, Feature::FP) << __func__ << ": ECDH_compute_key failed.";
return std::nullopt;
}
// Take first 16 bytes from secret as the private key.
std::array<uint8_t, kPrivateKeyByteSize> private_key;
std::copy(secret, secret + kPrivateKeyByteSize, std::begin(private_key));
// Ignore the first byte since it is 0x04, from the above uncompressed X9 .62
// format.
std::array<uint8_t, kPublicKeyByteSize> public_key;
std::copy(uncompressed_private_key.begin() + 1,
uncompressed_private_key.end(), public_key.begin());
return KeyPair(private_key, public_key);
}
const std::array<uint8_t, kHmacSizeBytes> GenerateHmacSha256(
const std::array<uint8_t, kSecretKeySizeBytes>& secret_key,
std::array<uint8_t, kNonceSizeBytes> nonce,
const std::vector<uint8_t>& data) {
int nonce_data_concat_size = kNonceSizeBytes + data.size();
base::FixedArray<uint8_t> nonce_data_concat(nonce_data_concat_size);
std::memcpy(nonce_data_concat.data(), nonce.data(), kNonceSizeBytes);
std::memcpy(nonce_data_concat.data() + kNonceSizeBytes, data.data(),
data.size());
std::array<uint8_t, kHmacKeySizeBytes> K = {};
std::memcpy(K.data(), secret_key.data(), kSecretKeySizeBytes);
std::array<uint8_t, kHmacSizeBytes> output;
unsigned int output_size;
HMAC(/*evp_md=*/EVP_sha256(), /*key=*/&K,
/*key_len=*/kHmacKeySizeBytes, /*data=*/nonce_data_concat.data(),
/*data_len=*/nonce_data_concat.size(),
/*out=*/output.data(), /*out_len*/ &output_size);
return output;
}
const std::array<uint8_t, kBlockSizeBytes> EncryptBytes(
const std::array<uint8_t, kBlockSizeBytes>& aes_key_bytes,
const std::array<uint8_t, kBlockSizeBytes>& bytes_to_encrypt) {
AES_KEY aes_key;
int aes_key_was_set = AES_set_encrypt_key(aes_key_bytes.data(),
aes_key_bytes.size() * 8, &aes_key);
DCHECK(aes_key_was_set == 0) << "Invalid AES key size.";
std::array<uint8_t, kBlockSizeBytes> encrypted_bytes;
AES_encrypt(bytes_to_encrypt.data(), encrypted_bytes.data(), &aes_key);
return encrypted_bytes;
}
const std::vector<uint8_t> EncryptAdditionalData(
const std::array<uint8_t, kSecretKeySizeBytes>& secret_key,
std::array<uint8_t, kNonceSizeBytes> nonce,
const std::vector<uint8_t>& data) {
if (data.empty()) {
return {};
}
AES_KEY aes_key;
int aes_key_was_set =
AES_set_encrypt_key(secret_key.data(), secret_key.size() * 8, &aes_key);
DCHECK(aes_key_was_set == 0) << "Invalid AES key size.";
uint bytes_read = 0;
unsigned char ivec[AES_BLOCK_SIZE] = {};
unsigned char ecount[AES_BLOCK_SIZE] = {};
base::FixedArray<uint8_t> encrypted_data(data.size());
// The Fast Pair Spec AES-CTR version increments the first byte of the
// initialization vector; the typical AES-CTR algorithm increments the
// last byte. So, instead of calling AES_ctr128_encrypt() once on all of
// `data`, it is called on each 128-bit block of `data` and the counter is
// incremented manually.
int bytes_to_encrypt = data.size();
int i = 0;
while (bytes_to_encrypt > 0) {
int block_size =
bytes_to_encrypt >= AES_BLOCK_SIZE ? AES_BLOCK_SIZE : bytes_to_encrypt;
std::memset(ivec, 0, AES_BLOCK_SIZE);
std::memcpy(ivec + 8, nonce.data(), kNonceSizeBytes);
ivec[0] = i;
uint offset = data.size() - bytes_to_encrypt;
AES_ctr128_encrypt(/*in=*/data.data() + offset,
/*out=*/encrypted_data.data() + offset,
/*len=*/block_size, &aes_key, /*ivec=*/ivec,
/*ecount_buf=*/ecount, &bytes_read);
bytes_to_encrypt -= block_size;
i++;
}
CHECK(!bytes_to_encrypt);
return std::vector<uint8_t>(encrypted_data.begin(), encrypted_data.end());
}
} // namespace fast_pair_encryption
} // namespace quick_pair
} // namespace ash
|