1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_COMPILER_SPECIFIC_H_
#define BASE_COMPILER_SPECIFIC_H_
#include "build/build_config.h"
#if defined(COMPILER_MSVC) && !defined(__clang__)
#error "Only clang-cl is supported on Windows, see https://crbug.com/988071"
#endif
// A wrapper around `__has_attribute()`, which is similar to the C++20-standard
// `__has_cpp_attribute()`, but tests for support for `__attribute__(())`s.
// Compilers that do not support this (e.g. MSVC) are also assumed not to
// support `__attribute__`, so this is simply mapped to `0` there.
//
// See also:
// https://clang.llvm.org/docs/LanguageExtensions.html#has-attribute
#if defined(__has_attribute)
#define HAS_ATTRIBUTE(x) __has_attribute(x)
#else
#define HAS_ATTRIBUTE(x) 0
#endif
// A wrapper around `__has_builtin`, similar to `HAS_ATTRIBUTE()`.
//
// See also:
// https://clang.llvm.org/docs/LanguageExtensions.html#has-builtin
#if defined(__has_builtin)
#define HAS_BUILTIN(x) __has_builtin(x)
#else
#define HAS_BUILTIN(x) 0
#endif
// A wrapper around `__has_feature`, similar to `HAS_ATTRIBUTE()`.
//
// See also:
// https://clang.llvm.org/docs/LanguageExtensions.html#has-feature-and-has-extension
#if defined(__has_feature)
#define HAS_FEATURE(FEATURE) __has_feature(FEATURE)
#else
#define HAS_FEATURE(FEATURE) 0
#endif
// Annotates a function indicating it should not be inlined.
//
// You may also want `NOOPT` if your goal is to preserve a function call even
// for the most trivial cases; see
// https://stackoverflow.com/questions/54481855/clang-ignoring-attribute-noinline/54482070#54482070.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#noinline
//
// Usage:
// ```
// NOINLINE void Func() {
// // This body will not be inlined into callers.
// }
// ```
#if __has_cpp_attribute(clang::noinline)
#define NOINLINE [[clang::noinline]]
#elif __has_cpp_attribute(gnu::noinline)
#define NOINLINE [[gnu::noinline]]
#elif __has_cpp_attribute(msvc::noinline)
#define NOINLINE [[msvc::noinline]]
#else
#define NOINLINE
#endif
// Annotates a call site indicating that the callee should not be inlined.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#noinline
//
// Usage:
// ```
// void Func() {
// // This specific call to `DoSomething` should not be inlined.
// NOINLINE_CALL DoSomething();
// }
// ```
#if __has_cpp_attribute(clang::noinline)
#define NOINLINE_CALL [[clang::noinline]]
#else
#define NOINLINE_CALL
#endif
// Annotates a function indicating it should not be optimized.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#optnone
// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-optimize-function-attribute
//
// Usage:
// ```
// NOOPT void Func() {
// // This body will not be optimized.
// }
// ```
#if __has_cpp_attribute(clang::optnone)
#define NOOPT [[clang::optnone]]
#elif __has_cpp_attribute(gnu::optimize)
#define NOOPT [[gnu::optimize(0)]]
#else
#define NOOPT
#endif
// Annotates a function indicating it should always be inlined.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#always-inline-force-inline
//
// Usage:
// ```
// ALWAYS_INLINE void Func() {
// // This body will be inlined into callers whenever possible.
// }
// ```
//
// Since `ALWAYS_INLINE` is performance-oriented but can hamper debugging,
// ignore it in debug mode.
#if defined(NDEBUG)
#if __has_cpp_attribute(clang::always_inline)
#define ALWAYS_INLINE [[clang::always_inline]] inline
#elif __has_cpp_attribute(gnu::always_inline)
#define ALWAYS_INLINE [[gnu::always_inline]] inline
#elif defined(COMPILER_MSVC)
#define ALWAYS_INLINE __forceinline
#endif
#endif
#if !defined(ALWAYS_INLINE)
#define ALWAYS_INLINE inline
#endif
// Annotates a call site indicating the calee should always be inlined.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#always-inline-force-inline
//
// Usage:
// ```
// void Func() {
// // This specific call will be inlined if possible.
// ALWAYS_INLINE_CALL DoSomething();
// }
// ```
//
// Since `ALWAYS_INLINE_CALL` is performance-oriented but can hamper debugging,
// ignore it in debug mode.
#if defined(NDEBUG)
#if __has_cpp_attribute(clang::always_inline)
#define ALWAYS_INLINE_CALL [[clang::always_inline]]
#endif
#endif
#if !defined(ALWAYS_INLINE_CALL)
#define ALWAYS_INLINE_CALL
#endif
// Annotates a function indicating it should never be tail called. Useful to
// make sure callers of the annotated function are never omitted from call
// stacks. Often useful with `NOINLINE` to make sure the function itself is also
// not omitted from call stacks. Note: this does not prevent code folding of
// multiple identical callers into a single signature; to do that, see
// `NO_CODE_FOLDING()` in base/debug/alias.h.
//
// For a caller-side version of this, see `DISABLE_TAIL_CALLS`.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#not-tail-called
//
// Usage:
// ```
// // Calls to this function will not be tail calls.
// NOT_TAIL_CALLED void Func();
// ```
#if __has_cpp_attribute(clang::not_tail_called)
#define NOT_TAIL_CALLED [[clang::not_tail_called]]
#else
#define NOT_TAIL_CALLED
#endif
// Annotates a return statement indicating the compiler must convert it to a
// tail call. Can be used only on return statements, even for functions
// returning void. Caller and callee must have the same number of arguments and
// the argument types must be "similar". While the compiler may automatically
// convert compatible calls to tail calls when optimizing, this annotation
// requires it to occur if doing so is valid, and will not compile otherwise.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#musttail
//
// Usage:
// ```
// int Func1(double);
// int Func2(double d) {
// MUSTTAIL return Func1(d + 1); // `Func1()` will be tail-called.
// }
// ```
#if __has_cpp_attribute(clang::musttail) && !defined(__powerpc64__)
#define MUSTTAIL [[clang::musttail]]
#else
#define MUSTTAIL
#endif
// Annotates a data member indicating it need not have an address distinct from
// all other non-static data members of the class, and its tail padding may be
// used for other objects' storage. This can have subtle and dangerous effects,
// including on containing objects; use with caution.
//
// See also:
// https://en.cppreference.com/w/cpp/language/attributes/no_unique_address
// https://wg21.link/dcl.attr.nouniqueaddr
// Usage:
// ```
// // In the following struct, `t` might not have a unique address from `i`,
// // and `t`'s tail padding (if any) may be reused by subsequent objects.
// struct S {
// int i;
// NO_UNIQUE_ADDRESS T t;
// };
// ```
//
// Unfortunately MSVC ignores [[no_unique_address]] (see
// https://devblogs.microsoft.com/cppblog/msvc-cpp20-and-the-std-cpp20-switch/#msvc-extensions-and-abi),
// and clang-cl matches it for ABI compatibility reasons. We need to prefer
// [[msvc::no_unique_address]] when available if we actually want any effect.
#if __has_cpp_attribute(msvc::no_unique_address)
#define NO_UNIQUE_ADDRESS [[msvc::no_unique_address]]
#elif __has_cpp_attribute(no_unique_address)
#define NO_UNIQUE_ADDRESS [[no_unique_address]]
#else
#define NO_UNIQUE_ADDRESS
#endif
// Annotates a function indicating it takes a `printf()`-style format string.
// The compiler will check that the provided arguments match the type specifiers
// in the format string. Useful to detect mismatched format strings/args.
//
// `format_param` is the one-based index of the format string parameter;
// `dots_param` is the one-based index of the "..." parameter.
// For `v*printf()` functions (which take a `va_list`), `dots_param` should be
// 0. For member functions, the implicit `this` parameter is at index 1.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#format
// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-format-function-attribute
//
// Usage:
// ```
// PRINTF_FORMAT(1, 2)
// void Print(const char* format, ...);
// void Func() {
// // The following call will not compile; diagnosed as format and argument
// // types mismatching.
// Print("%s", 1);
// }
// ```
#if __has_cpp_attribute(gnu::format)
#define PRINTF_FORMAT(format_param, dots_param) \
[[gnu::format(printf, format_param, dots_param)]]
#else
#define PRINTF_FORMAT(format_param, dots_param)
#endif
// Annotates a function disabling the named sanitizer within its body.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#no-sanitize
// https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
//
// Usage:
// ```
// NO_SANITIZE("cfi-icall") void Func() {
// // CFI indirect call checks will not be performed in this body.
// }
// ```
#if __has_cpp_attribute(clang::no_sanitize)
#define NO_SANITIZE(sanitizer) [[clang::no_sanitize(sanitizer)]]
#else
#define NO_SANITIZE(sanitizer)
#endif
// Annotates a pointer and size directing MSAN to treat that memory region as
// fully initialized. Useful for e.g. code that deliberately reads uninitialized
// data, such as a GC scavenging root set pointers from the stack.
//
// See also:
// https://github.com/google/sanitizers/wiki/MemorySanitizer
//
// Usage:
// ```
// T* ptr = ...;
// // After the next statement, MSAN will assume `ptr` points to an
// // initialized `T`.
// MSAN_UNPOISON(ptr, sizeof(T));
// ```
#if defined(MEMORY_SANITIZER) && !BUILDFLAG(IS_NACL)
#include <sanitizer/msan_interface.h>
#define MSAN_UNPOISON(p, size) __msan_unpoison(p, size)
#else
#define MSAN_UNPOISON(p, size)
#endif
// Annotates a pointer and size directing MSAN to check whether that memory
// region is initialized, as if it was being read from. If any bits are
// uninitialized, crashes with an MSAN report. Useful for e.g. sanitizing data
// MSAN won't be able to track, such as data that is about to be passed to
// another process via shared memory.
//
// See also:
// https://www.chromium.org/developers/testing/memorysanitizer/#debugging-msan-reports
//
// Usage:
// ```
// T* ptr = ...;
// // The following line will crash at runtime in MSAN builds if `ptr` does
// // not point to an initialized `T`.
// MSAN_CHECK_MEM_IS_INITIALIZED(ptr, sizeof(T));
// ```
#if defined(MEMORY_SANITIZER) && !BUILDFLAG(IS_NACL)
#define MSAN_CHECK_MEM_IS_INITIALIZED(p, size) \
__msan_check_mem_is_initialized(p, size)
#else
#define MSAN_CHECK_MEM_IS_INITIALIZED(p, size)
#endif
// Annotates a function disabling Control Flow Integrity checks due to perf
// impact.
//
// See also:
// https://clang.llvm.org/docs/ControlFlowIntegrity.html#performance
// https://www.chromium.org/developers/testing/control-flow-integrity/#overhead-only-tested-on-x64
//
// Usage:
// ```
// DISABLE_CFI_PERF void Func() {
// // CFI checks will not be performed in this body, due to perf reasons.
// }
// ```
#if !defined(DISABLE_CFI_PERF)
#if defined(__clang__) && defined(OFFICIAL_BUILD)
#define DISABLE_CFI_PERF NO_SANITIZE("cfi")
#else
#define DISABLE_CFI_PERF
#endif
#endif
// Annotates a function disabling Control Flow Integrity indirect call checks.
// NOTE: Prefer `DISABLE_CFI_DLSYM()` if you just need to allow calling of dlsym
// functions.
//
// See also:
// https://clang.llvm.org/docs/ControlFlowIntegrity.html#available-schemes
// https://www.chromium.org/developers/testing/control-flow-integrity/#indirect-call-failures
//
// Usage:
// ```
// DISABLE_CFI_ICALL void Func() {
// // CFI indirect call checks will not be performed in this body.
// }
// ```
#if !defined(DISABLE_CFI_ICALL)
#if BUILDFLAG(IS_WIN)
#define DISABLE_CFI_ICALL NO_SANITIZE("cfi-icall") __declspec(guard(nocf))
#else
#define DISABLE_CFI_ICALL NO_SANITIZE("cfi-icall")
#endif
#endif
// Annotates a function disabling Control Flow Integrity indirect call checks if
// doing so is necessary to call dlsym functions. The checks are retained on
// platforms where loaded modules participate in CFI (viz. Windows).
//
// See also:
// https://www.chromium.org/developers/testing/control-flow-integrity/#indirect-call-failures
//
// Usage:
// ```
// DISABLE_CFI_DLSYM void Func() {
// // On non-Windows platforms, CFI indirect call checks will not be
// // performed in this body.
// }
// ```
#if !defined(DISABLE_CFI_DLSYM)
#if BUILDFLAG(IS_WIN)
#define DISABLE_CFI_DLSYM
#else
#define DISABLE_CFI_DLSYM DISABLE_CFI_ICALL
#endif
#endif
// Evaluates to a string constant containing the function signature.
//
// See also:
// https://clang.llvm.org/docs/LanguageExtensions.html#source-location-builtins
// https://en.cppreference.com/w/c/language/function_definition#func
//
// Usage:
// ```
// void Func(int arg) {
// std::cout << PRETTY_FUNCTION; // Prints `void Func(int)` or similar.
// }
// ```
#if defined(COMPILER_GCC)
#define PRETTY_FUNCTION __PRETTY_FUNCTION__
#elif defined(COMPILER_MSVC)
#define PRETTY_FUNCTION __FUNCSIG__
#else
#define PRETTY_FUNCTION __func__
#endif
// Annotates a variable indicating that its storage should not be filled with a
// fixed pattern when uninitialized.
//
// The `init_stack_vars` gn arg (enabled on most build configs) causes the
// compiler to generate code that writes a fixed pattern into uninitialized
// parts of all local variables, to mitigate security risks. In most cases, e.g.
// when such memory is either never accessed or will be initialized later before
// reading, the compiler is able to remove the additional stores, and any
// remaining stores are unlikely to affect program performance.
//
// If hot code suffers unavoidable perf penalties, this can disable the
// pattern-filling there. This should only be done when necessary, since reads
// from uninitialized variables are not only UB, they can in practice allow
// attackers to control logic by pre-filling the variable's memory with a
// desirable value.
//
// NOTE: This behavior also increases the likelihood the compiler will generate
// `memcpy()`/`memset()` calls to init variables. If this causes link errors for
// targets that don't link against the CRT, this macro can help; you may instead
// want 'configs -= [ "//build/config/compiler:default_init_stack_vars" ]' in
// the relevant .gn file to disable this on the whole target.
//
// See also:
// https://source.chromium.org/chromium/chromium/src/+/main:build/config/compiler/BUILD.gn;l=3088;drc=24ccaf63ff5b1883be1ebe5f979d917ce28b0131
// https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-ftrivial-auto-var-init
// https://clang.llvm.org/docs/AttributeReference.html#uninitialized
//
// Usage:
// ```
// // The following line declares `i` without ensuring it initially contains
// // any particular pattern.
// STACK_UNINITIALIZED int i;
// ```
#if __has_cpp_attribute(clang::uninitialized)
#define STACK_UNINITIALIZED [[clang::uninitialized]]
#elif __has_cpp_attribute(gnu::uninitialized)
#define STACK_UNINITIALIZED [[gnu::uninitialized]]
#else
#define STACK_UNINITIALIZED
#endif
// Annotates a function disabling stack canary checks.
//
// The `-fstack-protector` compiler flag (passed on most non-Windows builds)
// causes the compiler to extend some function prologues and epilogues to set
// and check a canary value, to detect stack buffer overflows and crash in
// response. If hot code suffers unavoidable perf penalties, or intentionally
// modifies the canary value, this can disable the behavior there.
//
// See also:
// https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fstack-protector
// https://clang.llvm.org/docs/AttributeReference.html#no-stack-protector-safebuffers
//
// Usage:
// ```
// NO_STACK_PROTECTOR void Func() {
// // Stack canary checks will not be performed in this body.
// }
// ```
#if __has_cpp_attribute(gnu::no_stack_protector)
#define NO_STACK_PROTECTOR [[gnu::no_stack_protector]]
#elif __has_cpp_attribute(gnu::optimize)
#define NO_STACK_PROTECTOR [[gnu::optimize("-fno-stack-protector")]]
#else
#define NO_STACK_PROTECTOR
#endif
// Annotates a codepath suppressing static analysis along that path. Useful when
// code is safe in practice for reasons the analyzer can't detect, e.g. because
// the condition leading to that path guarantees a param is non-null.
//
// Usage:
// ```
// if (cond) {
// ANALYZER_SKIP_THIS_PATH();
// // Static analysis will be disabled for the remainder of this block.
// delete ptr;
// }
// ```
#if defined(__clang_analyzer__)
inline constexpr bool AnalyzerNoReturn()
#if HAS_ATTRIBUTE(analyzer_noreturn)
__attribute__((analyzer_noreturn))
#endif
{
return false;
}
#define ANALYZER_SKIP_THIS_PATH() static_cast<void>(::AnalyzerNoReturn())
#else
// The above definition would be safe even outside the analyzer, but defining
// the macro away entirely avoids the need for the optimizer to eliminate it.
#define ANALYZER_SKIP_THIS_PATH()
#endif
// Annotates a condition directing static analysis to assume it is always true.
// Evaluates to the provided `arg` as a `bool`.
//
// Usage:
// ```
// // Static analysis will assume the following condition always holds.
// if (ANALYZER_ASSUME_TRUE(cond)) ...
// ```
#if defined(__clang_analyzer__)
inline constexpr bool AnalyzerAssumeTrue(bool arg) {
return arg || AnalyzerNoReturn();
}
#define ANALYZER_ASSUME_TRUE(arg) ::AnalyzerAssumeTrue(!!(arg))
#else
// Again, the above definition is safe, this is just simpler for the optimizer.
#define ANALYZER_ASSUME_TRUE(arg) (arg)
#endif
// Annotates a function, function pointer, or statement to disallow
// optimizations that merge calls. Useful to ensure the source locations of such
// calls are not obscured.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#nomerge
//
// Usage:
// ```
// NOMERGE void Func(); // No direct calls to `Func()` will be merged.
//
// using Ptr = decltype(&Func);
// NOMERGE Ptr ptr = &Func; // No calls through `ptr` will be merged.
//
// NOMERGE if (cond) {
// // No calls in this block will be merged.
// }
// ```
#if __has_cpp_attribute(clang::nomerge)
#define NOMERGE [[clang::nomerge]]
#else
#define NOMERGE
#endif
// Annotates a type as being suitable for passing in registers despite having a
// non-trivial copy or move constructor or destructor. This requires the type
// not be concerned about its address remaining constant, be safely usable after
// copying its memory, and have a destructor that may be safely omitted on
// moved-from instances; an example is `std::unique_ptr`. Unnecessary if the
// copy/move constructor(s) and destructor are unconditionally trivial; likely
// ineffective if the type is too large to be passed in one or two registers
// with the target ABI. However, annotating a type this way will also cause
// `IS_TRIVIALLY_RELOCATABLE()` to return true for that type, and so may be
// desirable even for large types, if they are placed in containers that
// optimize based on that check.
//
// NOTE: Use with caution; this has subtle effects on constructor/destructor
// ordering. When used with types passed or returned by value, values may be
// constructed in the source stack frame, passed in a register, and then used
// and destroyed in the target stack frame.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#trivial-abi
// https://libcxx.llvm.org/docs/DesignDocs/UniquePtrTrivialAbi.html
//
// Usage:
// ```
// // Instances of type `S` will be eligible to be passed in registers despite
// // `S`'s nontrivial destructor.
// struct TRIVIAL_ABI S { ~S(); }
// ```
#if __has_cpp_attribute(clang::trivial_abi)
#define TRIVIAL_ABI [[clang::trivial_abi]]
#else
#define TRIVIAL_ABI
#endif
// Determines whether a type is trivially relocatable, i.e. a move-and-destroy
// sequence can safely be replaced with `memcpy()`. This is true of types with
// trivial copy or move construction plus trivial destruction, as well as types
// marked `TRIVIAL_ABI`. Useful to optimize container implementations.
//
// See also:
// https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p1144r8.html
// https://clang.llvm.org/docs/LanguageExtensions.html#:~:text=__builtin_is_cpp_trivially_relocatable
//
// Usage:
// ```
// if constexpr (IS_TRIVIALLY_RELOCATABLE(T)) {
// // This block will only be executed if type `T` is trivially relocatable.
// }
// ```
#if HAS_BUILTIN(__builtin_is_cpp_trivially_relocatable)
#define IS_TRIVIALLY_RELOCATABLE(t) __builtin_is_cpp_trivially_relocatable(t)
#elif HAS_BUILTIN(__is_trivially_relocatable)
// TODO(crbug.com/416394845): This is deprecated. Remove once all toolchains
// have __builtin_is_cpp_trivially_relocatable.
#define IS_TRIVIALLY_RELOCATABLE(t) __is_trivially_relocatable(t)
#else
#define IS_TRIVIALLY_RELOCATABLE(t) false
#endif
// Annotates a member function as safe to call on a moved-from object, which it
// will reinitialize.
//
// See also:
// https://clang.llvm.org/extra/clang-tidy/checks/bugprone/use-after-move.html#reinitialization
//
// Usage:
// ```
// struct S {
// REINITIALIZES_AFTER_MOVE void Reset();
// };
// void Func1(const S&);
// void Func2() {
// S s1;
// S s2 = std::move(s1);
// s1.Reset();
// // clang-tidy's `bugprone-use-after-move` check will not flag the
// // following call as a use-after-move, due to the intervening `Reset()`.
// Func1(s1);
// }
// ```
#if __has_cpp_attribute(clang::reinitializes)
#define REINITIALIZES_AFTER_MOVE [[clang::reinitializes]]
#else
#define REINITIALIZES_AFTER_MOVE
#endif
// Annotates a type as owning an object or memory region whose address may be
// vended to or stored by other objects. For example, `std::unique_ptr<T>` owns
// a `T` and vends its address via `.get()`, and `std::string` owns a block of
// `char` and vends its address via `.data()`. Used to detect lifetime errors in
// conjunction with `GSL_POINTER`; see documentation there.
//
// See also:
// https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-ownership
// https://clang.llvm.org/docs/AttributeReference.html#owner
// https://clang.llvm.org/docs/DiagnosticsReference.html#wdangling-gsl
//
// Usage:
// ```
// // Marking `S` as `GSL_OWNER` enables `-Wdangling-gsl` to detect misuse by
// // types annotated as `GSL_POINTER`.
// struct GSL_OWNER S;
// ```
#if __has_cpp_attribute(gsl::Owner)
#define GSL_OWNER [[gsl::Owner]]
#else
#define GSL_OWNER
#endif
// Annotates a type as holding a pointer into an owner object (an appropriate
// STL or `GSL_OWNER`-annotated type). If an instance of the pointer type is
// constructed from an instance of the owner type, and the owner instance is
// destroyed, the pointer instance is considered to be dangling. Useful to
// diagnose some cases of lifetime errors.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#pointer
//
// Usage:
// ```
// struct GSL_OWNER T {};
// struct GSL_POINTER S {
// S(const T&);
// };
// S Func() {
// // The following return will not compile; diagnosed as returning address
// // of local temporary.
// return S(T());
// }
// ```
#if __has_cpp_attribute(gsl::Pointer)
#define GSL_POINTER [[gsl::Pointer]]
#else
#define GSL_POINTER
#endif
// Annotates a type or variable to add a "logically_const" ABI tag to any
// corresponding mangled symbol name(s). Useful to suppress warnings from the
// "Mutable Constants" trybot check [1] when logically const instances are named
// like `kConstants` but for some reason should not be marked `const`.
//
// [1]:
// https://chromium.googlesource.com/chromium/src/+/main/docs/speed/binary_size/android_binary_size_trybot.md#Mutable-Constants
//
// Usage:
// ```
// struct S {};
// S kConstS; // Fails on some trybots.
// LOGICALLY_CONST S kAlsoConstS; // OK
//
// struct LOGICALLY_CONST T {};
// T kConstT; // OK
// ```
#if __has_cpp_attribute(gnu::abi_tag)
#define LOGICALLY_CONST [[gnu::abi_tag("logically_const")]]
#else
#define LOGICALLY_CONST
#endif
// Annotates a function indicating it is cold, but called from hot functions.
// Useful when a performance-sensitive function is usually simple, but in edge
// cases must fall back to a more complex handler.
//
// On X86-64 and AArch64, this changes the calling convention so most registers
// are callee-saved, reducing register spills in the caller. This can improve
// caller performance in the common case, at the cost of pessimizing the callee.
// On other platforms, this attribute has no effect as of Clang 20.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#preserve-most
//
// Usage:
// ```
// // Calls to this function will not require most registers to be saved.
// PRESERVE_MOST void Func();
// ```
//
// Disable `PRESERVE_MOST` in component builds, since `_dl_runtime_resolve()`
// clobbers registers on platforms where it's used, and the component build is
// not perf-critical anyway; see
// https://github.com/llvm/llvm-project/issues/105588.
//
// Also disable for Win ARM64 due to as-yet-uninvestigated crashes.
// TODO(crbug.com/42204008): Investigate, fix, and re-enable.
#if __has_cpp_attribute(clang::preserve_most) && \
(defined(ARCH_CPU_ARM64) || defined(ARCH_CPU_X86_64)) && \
!defined(COMPONENT_BUILD) && \
!(BUILDFLAG(IS_WIN) && defined(ARCH_CPU_ARM64))
#define PRESERVE_MOST [[clang::preserve_most]]
#else
#define PRESERVE_MOST
#endif
// Annotates a pointer or reference parameter or return value for a member
// function as having lifetime intertwined with the instance on which the
// function is called. For parameters, the function is assumed to store the
// value into the called-on object, so if the referred-to object is later
// destroyed, the called-on object is also considered to be dangling. For return
// values, the value is assumed to point into the called-on object, so if that
// object is destroyed, the returned value is also considered to be dangling.
// Useful to diagnose some cases of lifetime errors.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#lifetimebound
//
// Usage:
// ```
// struct S {
// S(int* p LIFETIME_BOUND);
// int* Get() LIFETIME_BOUND;
// };
// S Func1() {
// int i = 0;
// // The following return will not compile; diagnosed as returning address
// // of a stack object.
// return S(&i);
// }
// int* Func2(int* p) {
// // The following return will not compile; diagnosed as returning address
// // of a local temporary.
// return S(p).Get();
// }
// ```
#if __has_cpp_attribute(clang::lifetimebound)
#define LIFETIME_BOUND [[clang::lifetimebound]]
#else
#define LIFETIME_BOUND
#endif
// Annotates a function or variable to indicate that it should have weak
// linkage. Useful for library code that wants code linking against it to be
// able to override its functionality; inside a single target, this is better
// accomplished via virtual methods and other more standard mechanisms.
//
// Any weak definition of a symbol will be overridden at link time by a non-weak
// definition. Marking a `const` or `constexpr` variable weak makes it no longer
// be considered a compile-time constant, since its value may be different after
// linking.
//
// Multiple weak definitions of a symbol may exist, in which case the linker is
// free to select any when there are no non-weak definitions. Like with symbols
// marked `inline`, this can lead to subtle, difficult-to-diagnose bugs if not
// all definitions are identical.
//
// A weak declaration that has no definitions at link time will be linked as if
// the corresponding address is null. Therefore library code can use weak
// declarations and conditionals to allow consumers to provide optional
// customizations.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#weak
//
// Usage:
// ```
// // The following definition defaults `x` to 10, but allows other object
// // files to override its value. Thus, despite `constexpr`, `x` is not
// // considered a compile-time constant (and cannot be used in a `constexpr`
// // context).
// extern const int x;
// WEAK_SYMBOL constexpr int x = 10;
//
// // The following declaration allows linking to occur whether a definition
// // of `Func()` is provided or not; if none is present, `&Func` will
// // evaluate to `nullptr` at runtime.
// WEAK_SYMBOL void Func();
//
// // The following definition provides a default implementation of `Func2()`,
// // but allows other object files to override.
// WEAK_SYMBOL void Func2() { ... }
// ```
#if __has_cpp_attribute(gnu::weak)
#define WEAK_SYMBOL [[gnu::weak]]
#else
#define WEAK_SYMBOL
#endif
// Annotates a function indicating that the compiler should not convert calls
// within it to tail calls.
//
// For a callee-side version of this, see `NOT_TAIL_CALLED`.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#disable-tail-calls
// Usage:
// ```
// DISABLE_TAIL_CALLS void Func() {
// // Function calls in this body will not be tail calls.
// }
// ```
#if __has_cpp_attribute(clang::disable_tail_calls)
#define DISABLE_TAIL_CALLS [[clang::disable_tail_calls]]
#else
#define DISABLE_TAIL_CALLS
#endif
// Annotates a type or member indicating the minimum possible alignment (one bit
// for bitfields, one byte otherwise) should be used. This can be used to
// eliminate padding inside objects, at the cost of potentially pessimizing
// code, or even generating invalid code (depending on platform restrictions) if
// underaligned objects have their addresses taken and passed elsewhere.
//
// This is similar to the more-broadly-supported `#pragma pack(1)`.
//
// See also:
// https://gcc.gnu.org/onlinedocs/gcc/Common-Variable-Attributes.html#index-packed-variable-attribute
//
// Usage:
// ```
// struct PACKED_OBJ S1 {
// int8_t a; // Alignment 1, offset 0, size 1
// int32_t b; // Alignment 1, offset 1 (0 bytes padding), size 4
// }; // Overall alignment 1, 0 bytes trailing padding, overall size 5
//
// struct S2 {
// int8_t a; // Alignment 1, offset 0, size 1
// int32_t b; // Alignment 4, offset 4 (3 bytes padding), size 4
// int8_t c; // Alignment 1, offset 8 (0 bytes padding), size 1
// PACKED_OBJ int32_t d; // Alignment 1, offset 9 (0 bytes padding), size 4
// }; // Overall alignment 4, 3 bytes trailing padding, overall size 16
// ```
#if __has_cpp_attribute(gnu::packed)
#define PACKED_OBJ [[gnu::packed]]
#else
#define PACKED_OBJ
#endif
// Annotates a function indicating that the returned pointer will never be null.
// This may allow the compiler to assume null checks on the caller side are
// unnecessary.
//
// In practice, this is usually better-handled by returning a value or
// reference, which enforce such guarantees at the type level.
//
// See also:
// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-returns_005fnonnull-function-attribute
// https://clang.llvm.org/docs/AttributeReference.html#nullability-attributes
//
// Usage:
// ```
// // The following function will never return `nullptr`.
// RETURNS_NONNULL int* Func();
// ```
#if __has_cpp_attribute(gnu::returns_nonnull)
#define RETURNS_NONNULL [[gnu::returns_nonnull]]
#else
#define RETURNS_NONNULL
#endif
// Annotates a function indicating it is const, meaning that it has no
// observable side effects and its return value depends only on its arguments.
// Const functions may not read external memory other than unchanging objects
// (e.g. non-volatile constants), and the compiler is free to replace calls to
// them with the return values of earlier calls with the same arguments no
// matter what other state might have changed in the meantime.
//
// This is a much stronger restriction than `const`-qualified functions, and is
// rarely appropriate outside small local helpers, which are frequently
// inlineable anyway and would not really benefit.
//
// WARNING: Misusing this attribute can lead to silent miscompilation, UB, and
// difficult-to-diagnose bugs. For this and the above reason, usage should be
// very rare.
//
// See also:
// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-const-function-attribute
//
// Usage:
// ```
// // The compiler may replace calls to this function with values returned
// // from earlier calls, assuming the args match.
// CONST_FUNCTION int Func(int);
// ```
#if __has_cpp_attribute(gnu::const)
#define CONST_FUNCTION [[gnu::const]]
#else
#define CONST_FUNCTION
#endif
// Annotates a function indicating it is pure, meaning that it has no observable
// side effects. Unlike functions annotated `CONST_FUNCTION`, pure functions may
// still read external memory, and thus their return values may change between
// calls. `strlen()` and `memcmp()` are examples of pure functions. Useful to
// allow folding/reordering calls for optimization purposes.
//
// WARNING: Misusing this attribute can lead to silent miscompilation, UB, and
// difficult-to-diagnose bugs. Because apparently-safe invocations can sometimes
// have side effects (especially when invoking "overridable" functionality like
// virtual or templated methods), such misuse is far more likely than it seems.
// Therefore, this macro should generally be used only in key vocabulary types,
// where the perf and ergonomic benefits of callers not needing to worry about
// caching results in local variables in hot code outweighs the risks.
//
// See also:
// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-pure-function-attribute
//
// Usage:
// ```
// // Calls to this function may be subject to more aggressive common
// // subexpression (CSE) optimization.
// PURE_FUNCTION int Func(int);
// ```
#if __has_cpp_attribute(gnu::pure)
#define PURE_FUNCTION [[gnu::pure]]
#else
#define PURE_FUNCTION
#endif
// Annotates a function or class data member indicating it can lead to
// out-of-bounds accesses (OOB) if given incorrect inputs.
//
// For functions, this commonly includes functions which take pointers, sizes,
// iterators, sentinels, etc. and cannot fully check their preconditions (e.g.
// that the provided pointer actually points to an allocation of at least the
// provided size). Useful to diagnose potential misuse via
// `-Wunsafe-buffer-usage`, as well as to mark functions potentially in need of
// safer alternatives.
//
// For fields, this would be used to annotate both pointer and size fields that
// have not yet been converted to a span.
//
// All functions or fields annotated with this macro should come with a
// `// PRECONDITIONS: ` comment that explains what the caller must guarantee
// to ensure safe operation. Callers can then write `// SAFETY: ` comments
// explaining why the specific preconditions have been met.
//
// Ideally, unsafe functions should also be paired with a safer version, e.g.
// one that replaces pointer parameters with `span`s; otherwise, document safer
// replacement coding patterns callers can migrate to.
//
// Annotating a function `UNSAFE_BUFFER_USAGE` means all call sites (that do not
// disable the warning) must wrap calls in `UNSAFE_BUFFERS()`; see documentation
// there. Annotating a field `UNSAFE_BUFFER_USAGE` means that `UNSAFE_BUFFERS()`
// must wrap expressions that mutate of the field.
//
// See also:
// https://chromium.googlesource.com/chromium/src/+/main/docs/unsafe_buffers.md
// https://clang.llvm.org/docs/SafeBuffers.html
// https://clang.llvm.org/docs/DiagnosticsReference.html#wunsafe-buffer-usage
//
// Usage:
// ```
// // Calls to this function must be wrapped in `UNSAFE_BUFFERS()`.
// UNSAFE_BUFFER_USAGE void Func(T* input, T* end);
//
// struct S {
// // Changing this pointer requires `UNSAFE_BUFFERS()`.
// UNSAFE_BUFFER_USAGE int* p;
// };
// ```
#if __has_cpp_attribute(clang::unsafe_buffer_usage)
#define UNSAFE_BUFFER_USAGE [[clang::unsafe_buffer_usage]]
#else
#define UNSAFE_BUFFER_USAGE
#endif
// Annotates code indicating that it should be permanently exempted from
// `-Wunsafe-buffer-usage`. For temporary cases such as migrating callers to
// safer patterns, use `UNSAFE_TODO()` instead; see documentation there.
//
// All calls to functions annotated with `UNSAFE_BUFFER_USAGE` must be marked
// with one of these two macros; they can also be used around pointer
// arithmetic, pointer subscripting, and the like.
//
// ** USE OF THIS MACRO SHOULD BE VERY RARE.** Using this macro indicates that
// the compiler cannot verify that the code avoids OOB, and manual review is
// required. Even with manual review, it's easy for assumptions to change and
// security bugs to creep in over time. Prefer safer patterns instead.
//
// Usage should wrap the minimum necessary code, and *must* include a
// `// SAFETY: ...` comment that explains how the code guarantees safety or
// meets the requirements of called `UNSAFE_BUFFER_USAGE` functions. Guarantees
// must be manually verifiable by the Chrome security team using only local
// invariants; contact security@chromium.org to schedule such a review. Valid
// invariants include:
// - Runtime conditions or `CHECK()`s nearby
// - Invariants guaranteed by types in the surrounding code
// - Invariants guaranteed by function calls in the surrounding code
// - Caller requirements, if the containing function is itself annotated with
// `UNSAFE_BUFFER_USAGE`; this is less safe and should be a last resort
//
// See also:
// https://chromium.googlesource.com/chromium/src/+/main/docs/unsafe_buffers.md
// https://clang.llvm.org/docs/SafeBuffers.html
// https://clang.llvm.org/docs/DiagnosticsReference.html#wunsafe-buffer-usage
//
// Usage:
// ```
// // The following call will not trigger a compiler warning even if `Func()`
// // is annotated `UNSAFE_BUFFER_USAGE`.
// return UNSAFE_BUFFERS(Func(input, end));
// ```
//
// Test for `__clang__` directly, as there's no `__has_pragma` or similar (see
// https://github.com/llvm/llvm-project/issues/51887).
#if defined(__clang__)
// Disabling `clang-format` allows each `_Pragma` to be on its own line, as
// recommended by https://gcc.gnu.org/onlinedocs/cpp/Pragmas.html.
// clang-format off
#define UNSAFE_BUFFERS(...) \
_Pragma("clang unsafe_buffer_usage begin") \
__VA_ARGS__ \
_Pragma("clang unsafe_buffer_usage end")
// clang-format on
#else
#define UNSAFE_BUFFERS(...) __VA_ARGS__
#endif
// Annotates code indicating that it should be temporarily exempted from
// `-Wunsafe-buffer-usage`. While this is functionally the same as
// `UNSAFE_BUFFERS()`, semantically it indicates that this is for migration
// purposes, and should be cleaned up as soon as possible.
//
// Usage:
// ```
// // The following call will not trigger a compiler warning even if `Func()`
// // is annotated `UNSAFE_BUFFER_USAGE`.
// return UNSAFE_TODO(Func(input, end));
// ```
#define UNSAFE_TODO(...) UNSAFE_BUFFERS(__VA_ARGS__)
// Annotates a function restricting its availability based on compile-time
// information in the evaluated context. Useful to convert runtime errors to
// compile-time errors if functions' arguments are always known at compile time.
//
// SFINAE and `requires` clauses can restrict function availability based on the
// unevaluated context (type information and syntactic correctness). This
// provides a similar capability based on the evaluated context (variable
// values). If the condition fails, or cannot be determined at compile time, the
// function is excluded from the overload set.
//
// Some use cases could be satisfied without this by marking the function
// `consteval` and breaking compile when the condition fails (e.g. via
// `CHECK()`/`assert()`). However, `ENABLE_IF_ATTR()` is generally superior:
// - Not all desired functions can be made `consteval`; e.g. most
// constructors.
// - The error message in the macro case is clearer and more actionable.
// - `ENABLE_IF_ATTR()` interacts better with template metaprogramming.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#enable-if
// https://github.com/chromium/subspace/issues/266
//
// Usage:
// ```
// void NotConsteval(int a) {
// assert(a > 0);
// }
// consteval void WithoutEnableIf(int a) {
// assert(a > 0);
// }
// void WithEnableIf(int a) ENABLE_IF_ATTR(a > 0, "arg must be positive") {}
// void Func(int i) {
// // Compiles; assertion fails at runtime.
// NotConsteval(-1);
//
// // Will not compile; diagnosed as not a constant expression.
// WithoutEnableIf(-1);
//
// // Will not compile; diagnosed as no matching function call with
// // "note: candidate disabled: arg must be positive".
// WithEnableIf(-1);
//
// // Will not compile (same reason). Marking `Func()` as
// // `ENABLE_IF_ATTR(i > 0, ...)` will not help; the compiler's analysis is
// // not sufficiently sophisticated to propagate this constraint.
// WithEnableIf(i);
// }
// ```
#if HAS_ATTRIBUTE(enable_if)
#define ENABLE_IF_ATTR(cond, msg) __attribute__((enable_if(cond, msg)))
#else
#define ENABLE_IF_ATTR(cond, msg)
#endif
#endif // BASE_COMPILER_SPECIFIC_H_
|