1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// This file intentionally uses the `CHECK()` macro instead of the `CHECK_op()`
// macros, as `CHECK()` generates significantly less code and is more likely to
// optimize reasonably, even in non-official release builds. Please do not
// change the `CHECK()` calls back to `CHECK_op()` calls.
#ifndef BASE_CONTAINERS_SPAN_H_
#define BASE_CONTAINERS_SPAN_H_
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <concepts>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <memory>
#include <optional>
#include <ranges>
#include <span>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/containers/checked_iterators.h"
#include "base/containers/span_forward_internal.h"
#include "base/numerics/integral_constant_like.h"
#include "base/numerics/safe_conversions.h"
#include "base/types/to_address.h"
// A span is a view of contiguous elements that can be accessed like an array,
// intended for use as a parameter or local. Unlike direct use of pointers and
// sizes, it enforces safe usage (and simplifies callers); unlike container
// refs, it is agnostic to the element container, expressing only "access to
// some sequence of elements". It is similar to `std::string_view`, but for
// arbitrary elements instead of just characters, and additionally allowing
// mutation if the element type is non-`const`.
//
// Spans can be constructed from arrays, range-like objects (generally, objects
// which expose `begin()`, `end()`, `data()`, and `size()`), and initializer
// lists. As with all view types, spans do not own the underlying memory, so
// users must ensure they do not outlive their backing stores; storing a span as
// a member object is usually incorrect. (For the rare case this is useful,
// prefer `raw_span<>` so the underlying storage pointer will be protected by
// MiraclePtr.)
//
// Since spans only consist of a pointer and (for dynamic-extent spans) a size,
// they are lightweight; constructing and copying spans is cheap and they should
// be passed by value.
//
// Scopes which only need read access to the underlying data should use
// `span<const T>`, which can be implicitly constructed from `span<T>`.
// Habitually using `span<const T>` also avoids confusing compile errors when
// trying to construct spans from compile-time constants or non-borrowed ranges,
// which won't convert to `span<T>`.
//
// Without span:
// ```
// /* Read-only usage */
//
// // Implementation must avoid OOB reads.
// std::string HexEncode(const uint8_t* data, size_t size) { ... }
//
// // Must use a separate variable to avoid repeated generation calls below.
// std::vector<uint8_t> data_buffer = GenerateData();
// // Prone to accidentally passing the wrong size.
// std::string r = HexEncode(data_buffer.data(), data_buffer.size());
//
// /* Mutable usage */
//
// // Same concerns apply in this example.
// ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...) { ... }
//
// char str_buffer[100];
// SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14);
// ```
//
// With span:
// ```
// /* Read-only usage */
//
// // Automatically `CHECK()`s on attempted OOB accesses.
// std::string HexEncode(span<const uint8_t> data) { ... }
//
// // Can pass return value directly, since it lives until the end of the full
// // expression, outlasting the function call. Can't pass wrong size.
// std::string r = HexEncode(GenerateData());
//
// /* Mutable usage */
//
// // Can write to `buf`, but only within bounds.
// ssize_t SafeSNPrintf(span<char> buf, const char* fmt, Args...) { ... }
//
// char str_buffer[100];
// // Automatically infers span size as array size (i.e. 100).
// SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14);
// ```
//
// Dynamic-extent vs. fixed-extent spans
// -------------------------------------
// By default spans have dynamic extent, which means that the size is available
// at runtime via `size()`, a la other containers and views. By using a second
// template parameter or passing a `std::integral_constant` to the second (size)
// constructor arg, a span's extent can be fixed at compile time; this can move
// some constraint checks to compile time and slightly improve codegen, at the
// cost of verbosity and more template instantiations. Methods like `first()` or
// `subspan()` also provide templated overloads that produce fixed-extent spans;
// these are preferred when the size is known at compile time, in part because
// e.g. `first(1)` is a compile-error (the `int` arg is not compatible with the
// `StrictNumeric<size_t>` param; use `first(1u)` instead), but `first<1>()` is
// not.
//
// A fixed-extent span implicitly converts to a dynamic-extent span (e.g.
// `span<int, 6>` is implicitly convertible to `span<int>`), so most code that
// operates on spans of arbitrary length can just accept a `span<T>`; there is
// no need to add an additional overload for specially handling the `span<T, N>`
// case.
//
// There are several ways to go from a dynamic-extent span to a fixed-extent
// span:
// - Explicit construction of `span<T, N>`, which `CHECK()`s if the size doesn't
// match.
// - Construction of `span(T*, fixed_extent<N>)`, which is equivalent to the
// above.
// - `to_fixed_extent<N>()`, which returns `std::nullopt` if the size doesn't
// match.
// - `first<N>()`, `last<N>()`, and `subspan<Index, N>()`, which `CHECK()` if
// the size is insufficient.
//
// Spans, `const`, and pointer-type element types
// ----------------------------------------------
// Pointer-type elements can make translating `const` from container types to
// spans confusing. Fundamentally, if you analogize types this way:
// `std::vector<T>` => `span<T>`
// Then this would be const version:
// `const std::vector<T>` => `span<const T>`
// (or, more verbosely:) => `span<std::add_const_t<T>>`
//
// However, note that if `T` is `int*`, then `const T` is `int* const`. So:
// `const std::vector<int*>` => `span<int* const>`
// `std::vector<const int*>` => `span<const int*>`
// `const std::vector<const int*>` => `span<const int* const>`
//
// (N.B. There is no entry above for `std::vector<int* const>`, since per the
// C++ standard, `std::vector`'s element type must be non-const.)
//
// Byte spans, `std::has_unique_object_representations_v<>`, and conversions
// -------------------------------------------------------------------------
// Because byte spans are often used to copy and hash objects, the byte span
// conversion functions (e.g. `as_bytes()`, `as_byte_span()`) require the
// element type to meet `std::has_unique_object_representations_v<>`. For types
// which do not meet this requirement but need conversion to a byte span, there
// are two workarounds:
// 1. If the type is safe to convert to a byte span in general, specialize
// `kCanSafelyConvertToByteSpan<T>` to be true for it. For example, Blink's
// `AtomicString` is not trivially copyable, but it is interned, so hashing
// and comparing the hashed values is safe.
// 2. If the type is not safe in general but is safe for a particular use
// case, pass `base::allow_nonunique_obj` as the first arg to the byte span
// conversion functions. For example, floating-point values are not unique
// (among other reasons, because `+0` and `-0` are distinct but compare
// equal), but they are trivially copyable, so serializing them to disk and
// then deserializing is OK.
//
// Spans using `raw_ptr<T>` for internal storage
// ---------------------------------------------
// Provided via the type alias `raw_span<T[, N]>` (see base/memory/raw_span.h).
// Use only for the uncommon case when a span should be a data member of an
// object; for locals and params, use `span` (similarly to where you'd use a
// `raw_ptr<T>` vs. a `T*`).
//
// Beware the risk of dangling pointers! The object owning the member span must
// not access that span's data after the backing storage's lifetime ends. This
// is the same risk as with all spans, but members tend to be longer-lived than
// params/locals, and thus more prone to dangerous use.
//
// Differences from `std::span`
// ----------------------------
// https://eel.is/c++draft/views contains the latest C++ draft of `std::span`
// and related utilities. Chromium aims to follow the draft except where noted
// below; please report other divergences you find.
//
// Differences from [span.syn]:
// - For convenience, provides `fixed_extent<N>` as an alias to
// `std::integral_constant<size_t, N>`, to aid in constructing fixed-extent
// spans from pointers.
//
// Differences from [span.overview]:
// - `span` takes an optional third template argument that can be used to
// customize the underlying storage pointer type. This allows implementing
// `raw_span` as a specialization.
//
// Differences from [span.cons]:
// - The constructor which takes an iterator and a count uses
// `StrictNumeric<size_type>` instead of `size_type` to prevent unsafe type
// conversions.
// - Omits constructors from `std::array`, since separating these from the range
// constructor is only useful to mark them `noexcept`, and Chromium doesn't
// care about that.
// - Fixed-extent constructor from range is only `explicit` for ranges whose
// extent cannot be statically computed. This matches the spirit of
// `std::span`, which handles these (so far as it is aware) via other
// overloads. Without this, we would not only need the dedicated constructors
// from `std::array`, we would also need dedicated constructors from
// fixed-extent `std::span`.
// - Adds move construction and assignment. These can avoid refcount churn when
// the storage pointer is not `T*`. Not necessary for `std::span` since it
// does not allow customizing the storage pointer type.
// - Provides implicit conversion in both directions between fixed-extent `span`
// and `std::span`. The general-purpose range constructors that would
// otherwise handle these cases are explicit for both fixed-extent span types.
// - For convenience, provides `span::copy_from[_nonoverlapping]()` as wrappers
// around `std::ranges::copy()` that enforce equal-size spans.
// - For convenience, provides `span::copy_prefix_from()` to allow copying into
// the beginning of the current span.
//
// Differences from [span.deduct]:
// - The deduction guide from a range creates fixed-extent spans if the source
// extent is available at compile time.
//
// Differences from [span.sub]:
// - As in [span.cons], `size_t` parameters are changed to
// `StrictNumeric<size_type>`.
// - There are separate overloads for one-arg and two-arg forms of subspan,
// and the two-arg form does not accept dynamic_extent as a count.
// - For convenience, provides `span::split_at()` to split a single span into
// two at a given offset.
// - For convenience, provides `span::take_first[_elem]()` to remove the first
// portion of a dynamic-extent span and return it.
//
// Differences from [span.obs]:
// - For convenience, provides `span::operator==()` to check whether two spans
// refer to equal-sized ranges of equal objects. This was intentionally
// removed from `std::span` because it makes the type non-Regular; see
// http://wg21.link/p1085 for details.
// - Similarly, provides `span::operator<=>()`, which performs lexicographic
// comparison between spans.
//
// Differences from [span.elem]:
// - Because Chromium does not use exceptions, `span::at()` behaves identically
// to `span::operator[]()` (i.e. it `CHECK()`s on out-of-range indexes rather
// than throwing).
// - For convenience, provides `span::get_at()` to return a pointer (rather than
// reference) to an element. This is necessary if the backing memory may be
// uninitialized, since forming a reference would be UB.
//
// Differences from [span.objectrep]:
// - For convenience, provides `span::to_fixed_extent<N>()` to attempt
// conversion to a fixed-extent span, and return null on failure.
// - Because Chromium bans `std::byte`, `as_[writable_]bytes()` use `uint8_t`
// instead of `std::byte` as the returned element type.
// - For convenience, provides `as_[writable_]chars()` to convert to other
// "view of bytes"-like objects.
// - For convenience, provides `[byte_]span_from_ref()` to convert single
// (non-range) objects to spans.
// - For convenience, provides `[byte_]span_[with_nul_]from_cstring()` to
// convert `const char[]` literals to spans.
// - For convenience, provides `as_[writable_]byte_span()` to convert
// spanifiable objects directly to byte spans.
// - For safety, bans types which do not meet
// `std::has_unique_object_representations_v<>` from all byte span conversion
// functions by default. See more detailed comments above for workarounds.
namespace base {
// Provides a compile-time fixed extent to the `count` argument of the span
// constructor.
//
// (Not in `std::`.)
template <size_t N>
using fixed_extent = std::integral_constant<size_t, N>;
} // namespace base
// Mark `span` as satisfying the `view` and `borrowed_range` concepts. This
// should be done before the definition of `span`, so that any inlined calls to
// range functionality use the correct specializations.
template <typename ElementType, size_t Extent, typename InternalPtrType>
inline constexpr bool
std::ranges::enable_view<base::span<ElementType, Extent, InternalPtrType>> =
true;
template <typename ElementType, size_t Extent, typename InternalPtrType>
inline constexpr bool std::ranges::enable_borrowed_range<
base::span<ElementType, Extent, InternalPtrType>> = true;
namespace base {
// Allows global use of a type for conversion to byte spans.
template <typename T>
inline constexpr bool kCanSafelyConvertToByteSpan =
std::has_unique_object_representations_v<T>;
template <typename T, typename U>
inline constexpr bool kCanSafelyConvertToByteSpan<std::pair<T, U>> =
kCanSafelyConvertToByteSpan<std::remove_cvref_t<T>> &&
kCanSafelyConvertToByteSpan<std::remove_cvref_t<U>>;
// Type tag to provide to byte span conversion functions to bypass
// `std::has_unique_object_representations_v<>` check.
struct allow_nonunique_obj_t {
explicit allow_nonunique_obj_t() = default;
};
inline constexpr allow_nonunique_obj_t allow_nonunique_obj{};
namespace internal {
// Exposition-only concept from [span.syn]
template <typename T>
inline constexpr size_t MaybeStaticExt = dynamic_extent;
template <typename T>
requires IntegralConstantLike<T>
inline constexpr size_t MaybeStaticExt<T> = {T::value};
template <typename From, typename To>
concept LegalDataConversion = std::is_convertible_v<From (*)[], To (*)[]>;
// Akin to `std::constructible_from<span, T>`, but meant to be used in a
// type-deducing context where we don't know what args would be deduced;
// `std::constructible_from` can't be directly used in such a case since the
// type parameters must be fully-specified (e.g. `span<int>`), requiring us to
// have that knowledge already.
template <typename T>
concept SpanConstructibleFrom = requires(T&& t) { span(std::forward<T>(t)); };
// Returns the element type of `span(T)`.
template <typename T>
requires SpanConstructibleFrom<T>
using ElementTypeOfSpanConstructedFrom =
typename decltype(span(std::declval<T>()))::element_type;
template <typename T, typename It>
concept CompatibleIter =
std::contiguous_iterator<It> &&
LegalDataConversion<std::remove_reference_t<std::iter_reference_t<It>>, T>;
// True when `T` is a `span`.
template <typename T>
inline constexpr bool kIsSpan = false;
template <typename ElementType, size_t Extent, typename InternalPtrType>
inline constexpr bool kIsSpan<span<ElementType, Extent, InternalPtrType>> =
true;
template <typename T, typename R>
concept CompatibleRange =
std::ranges::contiguous_range<R> && std::ranges::sized_range<R> &&
(std::ranges::borrowed_range<R> || (std::is_const_v<T>)) &&
// `span`s should go through the copy constructor.
(!kIsSpan<std::remove_cvref_t<R>> &&
// Arrays should go through the array constructors.
(!std::is_array_v<std::remove_cvref_t<R>>)) &&
LegalDataConversion<
std::remove_reference_t<std::ranges::range_reference_t<R>>,
T>;
// Whether source object extent `X` will work to create a span of fixed extent
// `N`. This is not intended for use in dynamic-extent spans.
template <size_t N, size_t X>
concept FixedExtentConstructibleFromExtent = X == N || X == dynamic_extent;
// Computes a fixed extent if possible from a source container type `T`.
template <typename T>
inline constexpr size_t kComputedExtentImpl = dynamic_extent;
template <typename T>
requires requires { std::tuple_size<T>(); }
inline constexpr size_t kComputedExtentImpl<T> = std::tuple_size_v<T>;
template <typename T, size_t N>
inline constexpr size_t kComputedExtentImpl<T[N]> = N;
template <typename T, size_t N>
inline constexpr size_t kComputedExtentImpl<std::span<T, N>> = N;
template <typename T, size_t N, typename InternalPtrType>
inline constexpr size_t kComputedExtentImpl<span<T, N, InternalPtrType>> = N;
template <typename T>
inline constexpr size_t kComputedExtent =
kComputedExtentImpl<std::remove_cvref_t<T>>;
template <typename T>
concept CanSafelyConvertToByteSpan =
kCanSafelyConvertToByteSpan<std::remove_cvref_t<T>>;
template <typename T>
concept ByteSpanConstructibleFrom =
SpanConstructibleFrom<T> &&
CanSafelyConvertToByteSpan<ElementTypeOfSpanConstructedFrom<T>>;
// Allows one-off use of a type that wouldn't normally convert to a byte span.
template <typename T>
concept CanSafelyConvertNonUniqueToByteSpan =
// Non-trivially-copyable elements usually aren't safe even to serialize;
// when they are that's normally unconditionally true and can be handled
// using `kCanSafelyConvertToByteSpan`.
std::is_trivially_copyable_v<T> &&
// If this fails, `allow_nonunique_obj` wasn't necessary.
!std::has_unique_object_representations_v<T>;
template <typename T>
concept ByteSpanConstructibleFromNonUnique =
SpanConstructibleFrom<T> &&
CanSafelyConvertNonUniqueToByteSpan<ElementTypeOfSpanConstructedFrom<T>>;
template <typename ByteType,
typename ElementType,
size_t Extent,
typename InternalPtrType>
requires((std::same_as<std::remove_const_t<ByteType>, char> ||
std::same_as<std::remove_const_t<ByteType>, unsigned char>) &&
(std::is_const_v<ByteType> || !std::is_const_v<ElementType>))
constexpr auto as_byte_span(
span<ElementType, Extent, InternalPtrType> s) noexcept {
constexpr size_t kByteExtent =
Extent == dynamic_extent ? dynamic_extent : sizeof(ElementType) * Extent;
// SAFETY: `s.data()` points to at least `s.size_bytes()` bytes' worth of
// valid elements, so the size computed below must only contain valid
// elements. Since `ByteType` is an alias to a character type, it has a size
// of 1 byte, the resulting pointer has no alignment concerns, and it is not
// UB to access memory contents inside the allocation through it.
return UNSAFE_BUFFERS(span<ByteType, kByteExtent>(
reinterpret_cast<ByteType*>(s.data()), s.size_bytes()));
}
} // namespace internal
// [span]: class `span` (non-dynamic `Extent`s)
template <typename ElementType, size_t Extent, typename InternalPtrType>
class GSL_POINTER span {
public:
using element_type = ElementType;
using value_type = std::remove_cv_t<element_type>;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using iterator = CheckedContiguousIterator<element_type>;
using const_iterator = CheckedContiguousConstIterator<element_type>;
using reverse_iterator = std::reverse_iterator<iterator>;
// TODO(C++23): When `std::const_iterator<>` is available, switch to
// `std::const_iterator<reverse_iterator>` as the standard specifies.
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
static constexpr size_type extent = Extent;
// [span.cons]: Constructors, copy, and assignment
// Default constructor.
constexpr span() noexcept
requires(extent == 0)
= default;
// Iterator + count.
template <typename It>
requires(internal::CompatibleIter<element_type, It>)
// PRECONDITIONS: `first` must point to the first of at least `count`
// contiguous valid elements.
UNSAFE_BUFFER_USAGE constexpr explicit span(It first,
StrictNumeric<size_type> count)
: data_(to_address(first)) {
CHECK(size_type{count} == extent);
// Non-zero `count` implies non-null `data_`. Use `SpanOrSize<T>` to
// represent a size that might not be accompanied by the actual data.
DCHECK(count == 0 || !!data_);
}
// Iterator + sentinel.
template <typename It, typename End>
requires(internal::CompatibleIter<element_type, It> &&
std::sized_sentinel_for<End, It> &&
!std::is_convertible_v<End, size_t>)
// PRECONDITIONS: `first` and `last` must be for the same allocation and all
// elements in the range [first, last) must be valid.
UNSAFE_BUFFER_USAGE constexpr explicit span(It first, End last)
// SAFETY: The caller must guarantee that `first` and `last` point into
// the same allocation. In this case, the extent will be the number of
// elements between the iterators and thus a valid size for the pointer to
// the element at `first`.
//
// It is safe to check for underflow after subtraction because the
// underflow itself is not UB and `size_` is not converted to an invalid
// pointer (which would be UB) before the check.
: UNSAFE_BUFFERS(span(first, static_cast<size_type>(last - first))) {
// Verify `last - first` did not underflow.
CHECK(first <= last);
}
// Array of size `extent`.
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr span(
std::type_identity_t<element_type> (&arr LIFETIME_BOUND)[extent]) noexcept
// SAFETY: The type signature guarantees `arr` contains `extent` elements.
: UNSAFE_BUFFERS(span(arr, extent)) {}
// Range.
template <typename R, size_t N = internal::kComputedExtent<R>>
requires(internal::CompatibleRange<element_type, R> &&
internal::FixedExtentConstructibleFromExtent<extent, N>)
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr explicit(N != extent) span(R&& range LIFETIME_BOUND)
// SAFETY: `std::ranges::size()` returns the number of elements
// `std::ranges::data()` will point to, so accessing those elements will
// be safe.
: UNSAFE_BUFFERS(
span(std::ranges::data(range), std::ranges::size(range))) {}
template <typename R, size_t N = internal::kComputedExtent<R>>
requires(internal::CompatibleRange<element_type, R> &&
internal::FixedExtentConstructibleFromExtent<extent, N> &&
std::ranges::borrowed_range<R>)
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr explicit(N != extent) span(R&& range)
// SAFETY: `std::ranges::size()` returns the number of elements
// `std::ranges::data()` will point to, so accessing those elements will
// be safe.
: UNSAFE_BUFFERS(
span(std::ranges::data(range), std::ranges::size(range))) {}
// Initializer list.
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr explicit span(std::initializer_list<value_type> il LIFETIME_BOUND)
requires(std::is_const_v<element_type>)
// SAFETY: `size()` is exactly the number of elements in the initializer
// list, so accessing that many will be safe.
: UNSAFE_BUFFERS(span(il.begin(), il.size())) {}
// Copy and move.
constexpr span(const span& other) noexcept = default;
template <typename OtherElementType,
size_t OtherExtent,
typename OtherInternalPtrType>
requires((OtherExtent == dynamic_extent || extent == OtherExtent) &&
internal::LegalDataConversion<OtherElementType, element_type>)
constexpr explicit(OtherExtent == dynamic_extent)
span(const span<OtherElementType, OtherExtent, OtherInternalPtrType>&
other) noexcept
// SAFETY: `size()` is the number of elements that can be safely accessed
// at `data()`.
: UNSAFE_BUFFERS(span(other.data(), other.size())) {}
constexpr span(span&& other) noexcept = default;
// Copy and move assignment.
constexpr span& operator=(const span& other) noexcept = default;
constexpr span& operator=(span&& other) noexcept = default;
// Performs a deep copy of the elements referenced by `other` to those
// referenced by `this`. The spans must be the same size.
//
// If it's known the spans can not overlap, `copy_from_nonoverlapping()`
// provides an unsafe alternative that avoids intermediate copies.
//
// (Not in `std::`; inspired by Rust's `slice::copy_from_slice()`.)
constexpr void copy_from(span<const element_type, extent> other)
requires(!std::is_const_v<element_type>)
{
if (std::is_constant_evaluated()) {
// Comparing pointers to different objects at compile time yields
// unspecified behavior, which would halt compilation. Instead,
// unconditionally use a separate buffer in the constexpr context. This
// would be inefficient at runtime, but that's irrelevant.
// operator[] does not exist if extent == 0.
if constexpr (extent > 0) {
// Hold each value to be copied in a union so `element_type` does not
// need to be default constructible.
union Holder {
constexpr Holder() {}
constexpr ~Holder() {}
element_type value;
};
// std::unique_ptr<T[]> isn't constexpr enough prior to C++23; another
// alternative is std::vector, but that requires including <vector> just
// for this edge case.
Holder* buffer = new Holder[extent];
for (size_t i = 0; i < extent; ++i) {
// SAFETY: `buffers` is allocated with `extent` elements, and the loop
// body only executes if `i < extent`.
std::construct_at(&UNSAFE_BUFFERS(buffer[i]).value, other[i]);
}
for (size_t i = 0; i < extent; ++i) {
// SAFETY: `buffers` is allocated with `extent` elements, and the loop
// body only executes if `i < extent`.
(*this)[i] = UNSAFE_BUFFERS(buffer[i]).value;
UNSAFE_BUFFERS(buffer[i]).value.~element_type();
}
delete[] buffer;
}
} else {
// Using `<=` to compare pointers to different allocations is UB;
// reinterpret_cast is the workaround.
if (reinterpret_cast<uintptr_t>(to_address(begin())) <=
reinterpret_cast<uintptr_t>(to_address(other.begin()))) {
std::ranges::copy(other, begin());
} else {
std::ranges::copy_backward(other, end());
}
}
}
template <typename R, size_t N = internal::kComputedExtent<R>>
requires(!std::is_const_v<element_type> &&
// Fixed-extent ranges should implicitly convert to use the
// overload above; if they don't, it's because the extent doesn't
// match. Rejecting this here improves the resulting errors.
N == dynamic_extent &&
std::convertible_to<R &&, span<const element_type>>)
constexpr void copy_from(R&& other) {
// Note: The constructor `CHECK()`s that a dynamic-extent `other` has the
// right size.
copy_from(span<const element_type, extent>(std::forward<R>(other)));
}
// Like `copy_from()`, but may be more performant; however, the caller must
// guarantee the spans do not overlap, or this will invoke UB.
//
// (Not in `std::`; inspired by Rust's `slice::copy_from_slice()`.)
constexpr void copy_from_nonoverlapping(
span<const element_type, extent> other)
requires(!std::is_const_v<element_type>)
{
// Comparing pointers to different objects at compile time yields
// unspecified behavior, which would halt compilation. Instead implement in
// terms of the guaranteed-safe behavior; performance is irrelevant in the
// constexpr context.
if (std::is_constant_evaluated()) {
copy_from(other);
return;
}
// See comments in `copy_from()` re: use of templated comparison objects.
DCHECK(reinterpret_cast<uintptr_t>(to_address(end())) <=
reinterpret_cast<uintptr_t>(to_address(other.begin())) ||
reinterpret_cast<uintptr_t>(to_address(begin())) >=
reinterpret_cast<uintptr_t>(to_address(other.end())));
std::ranges::copy(other, begin());
}
template <typename R, size_t N = internal::kComputedExtent<R>>
requires(!std::is_const_v<element_type> && N == dynamic_extent &&
std::convertible_to<R &&, span<const element_type>>)
constexpr void copy_from_nonoverlapping(R&& other) {
// Note: The constructor `CHECK()`s that a dynamic-extent `other` has the
// right size.
copy_from_nonoverlapping(
span<const element_type, extent>(std::forward<R>(other)));
}
// Like `copy_from()`, but allows the source to be smaller than this span, and
// will only copy as far as the source size, leaving the remaining elements of
// this span unwritten.
//
// (Not in `std::`; allows caller code to elide repeated size information and
// makes it easier to preserve fixed-extent spans in the process.)
template <typename R, size_t N = internal::kComputedExtent<R>>
requires(!std::is_const_v<element_type> &&
(N <= extent || N == dynamic_extent) &&
std::convertible_to<R &&, span<const element_type>>)
constexpr void copy_prefix_from(R&& other) {
if constexpr (N == dynamic_extent) {
return first(other.size()).copy_from(other);
} else {
return first<N>().copy_from(other);
}
}
// Implicit conversion to fixed-extent `std::span<>`. (The fixed-extent
// `std::span` range constructor is explicit.)
// NOLINTNEXTLINE(google-explicit-constructor)
operator std::span<element_type, extent>() const {
return std::span<element_type, extent>(*this);
}
// NOLINTNEXTLINE(google-explicit-constructor)
operator std::span<const element_type, extent>() const
requires(!std::is_const_v<element_type>)
{
return std::span<const element_type, extent>(*this);
}
// [span.sub]: Subviews
// First `count` elements.
template <size_t Count>
constexpr auto first() const
requires(Count <= extent)
{
// SAFETY: `data()` points to at least `extent` elements, so the new data
// scope is a strict subset of the old.
return UNSAFE_BUFFERS(span<element_type, Count>(data(), Count));
}
constexpr auto first(StrictNumeric<size_type> count) const {
CHECK(size_type{count} <= extent);
// SAFETY: `data()` points to at least `extent` elements, so the new data
// scope is a strict subset of the old.
return UNSAFE_BUFFERS(span<element_type>(data(), count));
}
// Last `count` elements.
template <size_t Count>
constexpr auto last() const
requires(Count <= extent)
{
// SAFETY: `data()` points to at least `extent` elements, so the new data
// scope is a strict subset of the old.
return UNSAFE_BUFFERS(
span<element_type, Count>(data() + (extent - Count), Count));
}
constexpr auto last(StrictNumeric<size_type> count) const {
CHECK(size_type{count} <= extent);
// SAFETY: `data()` points to at least `extent` elements, so the new data
// scope is a strict subset of the old.
return UNSAFE_BUFFERS(
span<element_type>(data() + (extent - size_type{count}), count));
}
// `count` elements beginning at `offset`.
template <size_t Offset, size_t Count = dynamic_extent>
constexpr auto subspan() const
requires(Offset <= extent &&
(Count == dynamic_extent || Count <= extent - Offset))
{
if constexpr (Count == dynamic_extent) {
constexpr size_t kRemaining = extent - Offset;
// SAFETY: `data()` points to at least `extent` elements, so `Offset`
// specifies a valid element index or the past-the-end index, and
// `kRemaining` cannot index past-the-end elements.
return UNSAFE_BUFFERS(
span<element_type, kRemaining>(data() + Offset, kRemaining));
} else {
// SAFETY: `data()` points to at least `extent` elements, so `Offset`
// specifies a valid element index or the past-the-end index, and `Count`
// is no larger than the number of remaining valid elements.
return UNSAFE_BUFFERS(span<element_type, Count>(data() + Offset, Count));
}
}
constexpr auto subspan(StrictNumeric<size_type> offset) const {
CHECK(size_type{offset} <= extent);
const size_type remaining = extent - size_type{offset};
// SAFETY: `data()` points to at least `extent` elements, so `offset`
// specifies a valid element index or the past-the-end index, and
// `remaining` cannot index past-the-end elements.
return UNSAFE_BUFFERS(
span<element_type>(data() + size_type{offset}, remaining));
}
constexpr auto subspan(StrictNumeric<size_type> offset,
StrictNumeric<size_type> count) const {
// base does not allow dynamic_extent in two-arg subspan().
DCHECK(size_type{count} != dynamic_extent);
// Deliberately combine tests to minimize code size.
CHECK(size_type{offset} <= size() &&
size_type{count} <= size() - size_type{offset});
// SAFETY: `data()` points to at least `extent` elements, so `offset`
// specifies a valid element index or the past-the-end index, and `count` is
// no larger than the number of remaining valid elements.
return UNSAFE_BUFFERS(
span<element_type>(data() + size_type{offset}, count));
}
// Splits a span a given offset, returning a pair of spans that cover the
// ranges strictly before the offset and starting at the offset, respectively.
//
// (Not in `std::span`; inspired by Rust's `slice::split_at()` and
// `split_at_mut()`.)
template <size_t Offset>
requires(Offset <= extent)
constexpr auto split_at() const {
return std::pair(first<Offset>(), subspan<Offset, extent - Offset>());
}
constexpr auto split_at(StrictNumeric<size_type> offset) const {
return std::pair(first(offset), subspan(offset));
}
// [span.obs]: Observers
// Size.
constexpr size_type size() const noexcept { return extent; }
constexpr size_type size_bytes() const noexcept {
return extent * sizeof(element_type);
}
// Empty.
[[nodiscard]] constexpr bool empty() const noexcept { return extent == 0; }
// Returns true if `lhs` and `rhs` are equal-sized and are per-element equal.
//
// (Not in `std::span`; improves both ergonomics and safety.)
//
// NOTE: Using non-members here intentionally allows comparing types that
// implicitly convert to `span`.
friend constexpr bool operator==(span lhs, span rhs)
requires(std::is_const_v<element_type> &&
std::equality_comparable<const element_type>)
{
return std::ranges::equal(span<const element_type, extent>(lhs),
span<const element_type, extent>(rhs));
}
friend constexpr bool operator==(span lhs,
span<const element_type, extent> rhs)
requires(!std::is_const_v<element_type> &&
std::equality_comparable<const element_type>)
{
return std::ranges::equal(span<const element_type, extent>(lhs), rhs);
}
template <typename OtherElementType,
size_t OtherExtent,
typename OtherInternalPtrType>
requires((OtherExtent == dynamic_extent || extent == OtherExtent) &&
std::equality_comparable_with<const element_type,
const OtherElementType>)
friend constexpr bool operator==(
span lhs,
span<OtherElementType, OtherExtent, OtherInternalPtrType> rhs) {
return std::ranges::equal(span<const element_type, extent>(lhs),
span<const OtherElementType, OtherExtent>(rhs));
}
// Performs lexicographical comparison of `lhs` and `rhs`.
//
// (Not in `std::span`; improves both ergonomics and safety.)
//
// NOTE: Using non-members here intentionally allows comparing types that
// implicitly convert to `span`.
friend constexpr auto operator<=>(span lhs, span rhs)
requires(std::is_const_v<element_type> &&
std::three_way_comparable<const element_type>)
{
const auto const_lhs = span<const element_type>(lhs);
const auto const_rhs = span<const element_type>(rhs);
return std::lexicographical_compare_three_way(
const_lhs.begin(), const_lhs.end(), const_rhs.begin(), const_rhs.end());
}
friend constexpr auto operator<=>(span lhs,
span<const element_type, extent> rhs)
requires(!std::is_const_v<element_type> &&
std::three_way_comparable<const element_type>)
{
return span<const element_type>(lhs) <=> rhs;
}
template <typename OtherElementType,
size_t OtherExtent,
typename OtherInternalPtrType>
requires((OtherExtent == dynamic_extent || extent == OtherExtent) &&
std::three_way_comparable_with<const element_type,
const OtherElementType>)
friend constexpr auto operator<=>(
span lhs,
span<OtherElementType, OtherExtent, OtherInternalPtrType> rhs) {
const auto const_lhs = span<const element_type>(lhs);
const auto const_rhs = span<const OtherElementType, OtherExtent>(rhs);
return std::lexicographical_compare_three_way(
const_lhs.begin(), const_lhs.end(), const_rhs.begin(), const_rhs.end());
}
// [span.elem]: Element access
// Reference to specific element.
// When `idx` is outside the span, the underlying call will `CHECK()`.
//
// Intentionally does not take `StrictNumeric<size_t>`, unlike all other APIs.
// There are far too many false positives on integer literals (e.g. `s[0]`),
// and while `ENABLE_IF_ATTR` can be used to work around those for Clang, that
// would leave the gcc build broken. The consequence of not upgrading this is
// that some errors will only be detected at runtime instead of compile time.
constexpr reference operator[](size_type idx) const
requires(extent > 0)
{
return at(idx);
}
// When `idx` is outside the span, the underlying call will `CHECK()`.
constexpr reference at(StrictNumeric<size_type> idx) const
requires(extent > 0)
{
return *get_at(idx);
}
// Returns a pointer to an element in the span.
//
// (Not in `std::`; necessary when underlying memory is not yet initialized.)
constexpr pointer get_at(StrictNumeric<size_type> idx) const
requires(extent > 0)
{
CHECK(size_type{idx} < extent);
// SAFETY: `data()` points to at least `extent` elements, so `idx` must be
// the index of a valid element.
return UNSAFE_BUFFERS(data() + size_type{idx});
}
// Reference to first/last elements.
// When `empty()`, the underlying call will `CHECK()`.
constexpr reference front() const
requires(extent > 0)
{
return operator[](0);
}
// When `empty()`, the underlying call will `CHECK()`.
constexpr reference back() const
requires(extent > 0)
{
return operator[](size() - 1);
}
// Underlying memory.
constexpr pointer data() const noexcept { return data_; }
// [span.iter]: Iterator support
// Forward iterators.
constexpr iterator begin() const noexcept {
// SAFETY: `data()` points to at least `extent` elements, so `data() +
// extent` is no larger than just past the end of the corresponding
// allocation, which is a legal pointer to construct and compare to (though
// not dereference).
//
// Use `AssumeValid()` to elide unnecessary precondition `CHECK()`'s in the
// iterator constructor: `data() + extent` must not overflow given the above
// constraints, so the iterator's requirement that begin <= current <= end
// is guaranteed to be true.
return UNSAFE_BUFFERS(iterator(
typename iterator::AssumeValid(data(), data(), data() + extent)));
}
constexpr const_iterator cbegin() const noexcept {
return const_iterator(begin());
}
constexpr iterator end() const noexcept {
// SAFETY: `data()` points to at least `extent` elements, so `data() +
// extent` is no larger than just past the end of the corresponding
// allocation, which is a legal pointer to construct and compare to (though
// not dereference).
//
// Use `AssumeValid()` to elide unnecessary precondition `CHECK()`'s in the
// iterator constructor: `data() + extent` must not overflow given the above
// constraints, so the iterator's requirement that begin <= current <= end
// is guaranteed to be true.
return UNSAFE_BUFFERS(iterator(typename iterator::AssumeValid(
data(), data() + extent, data() + extent)));
}
constexpr const_iterator cend() const noexcept {
return const_iterator(end());
}
// Reverse iterators.
constexpr reverse_iterator rbegin() const noexcept {
return reverse_iterator(end());
}
constexpr const_reverse_iterator crbegin() const noexcept {
return const_iterator(rbegin());
}
constexpr reverse_iterator rend() const noexcept {
return reverse_iterator(begin());
}
constexpr const_reverse_iterator crend() const noexcept {
return const_iterator(rend());
}
private:
InternalPtrType data_ = nullptr;
};
// [span]: class <span> (dynamic `Extent`)
template <typename ElementType, typename InternalPtrType>
class GSL_POINTER span<ElementType, dynamic_extent, InternalPtrType> {
public:
using element_type = ElementType;
using value_type = std::remove_cv_t<element_type>;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using iterator = CheckedContiguousIterator<element_type>;
using const_iterator = CheckedContiguousConstIterator<element_type>;
using reverse_iterator = std::reverse_iterator<iterator>;
// TODO(C++23): When `std::const_iterator<>` is available, switch to
// `std::const_iterator<reverse_iterator>` as the standard specifies.
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
static constexpr size_type extent = dynamic_extent;
// [span.cons]: Constructors, copy, and assignment
// Default constructor.
constexpr span() noexcept = default;
// Iterator + count.
template <typename It>
requires(internal::CompatibleIter<element_type, It>)
// PRECONDITIONS: `first` must point to the first of at least `count`
// contiguous valid elements.
UNSAFE_BUFFER_USAGE constexpr span(It first, StrictNumeric<size_type> count)
: data_(to_address(first)), size_(count) {
// Non-zero `count` implies non-null `data_`. Use `SpanOrSize<T>` to
// represent a size that might not be accompanied by the actual data.
DCHECK(count == 0 || !!data_);
}
// Iterator + sentinel.
template <typename It, typename End>
requires(internal::CompatibleIter<element_type, It> &&
std::sized_sentinel_for<End, It> &&
!std::is_convertible_v<End, size_t>)
// PRECONDITIONS: `first` and `last` must be for the same allocation and all
// elements in the range [first, last) must be valid.
UNSAFE_BUFFER_USAGE constexpr span(It first, End last)
// SAFETY: The caller must guarantee that `first` and `last` point into
// the same allocation. In this case, `size_` will be the number of
// elements between the iterators and thus a valid size for the pointer to
// the element at `first`.
//
// It is safe to check for underflow after subtraction because the
// underflow itself is not UB and `size_` is not converted to an invalid
// pointer (which would be UB) before the check.
: UNSAFE_BUFFERS(span(first, static_cast<size_type>(last - first))) {
// Verify `last - first` did not underflow.
CHECK(first <= last);
}
// Array of size N.
template <size_t N>
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr span(
std::type_identity_t<element_type> (&arr LIFETIME_BOUND)[N]) noexcept
// SAFETY: The type signature guarantees `arr` contains `N` elements.
: UNSAFE_BUFFERS(span(arr, N)) {}
// Range.
template <typename R>
requires(internal::CompatibleRange<element_type, R>)
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr span(R&& range LIFETIME_BOUND)
// SAFETY: `std::ranges::size()` returns the number of elements
// `std::ranges::data()` will point to, so accessing those elements will
// be safe.
: UNSAFE_BUFFERS(
span(std::ranges::data(range), std::ranges::size(range))) {}
template <typename R>
requires(internal::CompatibleRange<element_type, R> &&
std::ranges::borrowed_range<R>)
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr span(R&& range)
// SAFETY: `std::ranges::size()` returns the number of elements
// `std::ranges::data()` will point to, so accessing those elements will
// be safe.
: UNSAFE_BUFFERS(
span(std::ranges::data(range), std::ranges::size(range))) {}
// Initializer list.
constexpr span(std::initializer_list<value_type> il LIFETIME_BOUND)
requires(std::is_const_v<element_type>)
// SAFETY: `size()` is exactly the number of elements in the initializer
// list, so accessing that many will be safe.
: UNSAFE_BUFFERS(span(il.begin(), il.size())) {}
// Copy and move.
constexpr span(const span& other) noexcept = default;
template <typename OtherElementType,
size_t OtherExtent,
typename OtherInternalPtrType>
requires(internal::LegalDataConversion<OtherElementType, element_type>)
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr span(
const span<OtherElementType, OtherExtent, OtherInternalPtrType>&
other) noexcept
: data_(other.data()), size_(other.size()) {}
constexpr span(span&& other) noexcept = default;
// Copy and move assignment.
constexpr span& operator=(const span& other) noexcept = default;
constexpr span& operator=(span&& other) noexcept = default;
// Performs a deep copy of the elements referenced by `other` to those
// referenced by `this`. The spans must be the same size.
//
// If it's known the spans can not overlap, `copy_from_nonoverlapping()`
// provides an unsafe alternative that avoids intermediate copies.
//
// (Not in `std::`; inspired by Rust's `slice::copy_from_slice()`.)
constexpr void copy_from(span<const element_type> other)
requires(!std::is_const_v<element_type>)
{
CHECK(size() == other.size());
if (std::is_constant_evaluated()) {
// Comparing pointers to different objects at compile time yields
// unspecified behavior, which would halt compilation. Instead,
// unconditionally use a separate buffer in the constexpr context. This
// would be inefficient at runtime, but that's irrelevant.
// Hold each value to be copied in a union so `element_type` does not
// need to be default constructible.
union Holder {
constexpr Holder() {}
constexpr ~Holder() {}
element_type value;
};
// std::unique_ptr<T[]> isn't constexpr enough prior to C++23; another
// alternative is std::vector, but that requires including <vector> just
// for this edge case.
Holder* buffer = new Holder[other.size()];
for (size_t i = 0; i < other.size(); ++i) {
// SAFETY: `buffers` is allocated with `other.size()` elements, and the
// loop body only executes if `i < other.size()`.
std::construct_at(&UNSAFE_BUFFERS(buffer[i]).value, other[i]);
}
for (size_t i = 0; i < other.size(); ++i) {
// SAFETY: `buffers` is allocated with `other.size()` elements, and the
// loop body only executes if `i < other.size()`.
(*this)[i] = UNSAFE_BUFFERS(buffer[i]).value;
UNSAFE_BUFFERS(buffer[i]).value.~element_type();
}
delete[] buffer;
} else {
// Using `<=` to compare pointers to different allocations is UB;
// reinterpret_cast is the workaround.
if (reinterpret_cast<uintptr_t>(to_address(begin())) <=
reinterpret_cast<uintptr_t>(to_address(other.begin()))) {
std::ranges::copy(other, begin());
} else {
std::ranges::copy_backward(other, end());
}
}
}
// Like `copy_from()`, but may be more performant; however, the caller must
// guarantee the spans do not overlap, or this will invoke UB.
//
// (Not in `std::`; inspired by Rust's `slice::copy_from_slice()`.)
constexpr void copy_from_nonoverlapping(span<const element_type> other)
requires(!std::is_const_v<element_type>)
{
// Comparing pointers to different objects at compile time yields
// unspecified behavior, which would halt compilation. Instead implement in
// terms of the guaranteed-safe behavior; performance is irrelevant in the
// constexpr context.
if (std::is_constant_evaluated()) {
copy_from(other);
return;
}
CHECK(size() == other.size());
// See comments in `copy_from()` re: use of templated comparison objects.
DCHECK(reinterpret_cast<uintptr_t>(to_address(end())) <=
reinterpret_cast<uintptr_t>(to_address(other.begin())) ||
reinterpret_cast<uintptr_t>(to_address(begin())) >=
reinterpret_cast<uintptr_t>(to_address(other.end())));
std::ranges::copy(other, begin());
}
// Like `copy_from()`, but allows the source to be smaller than this span, and
// will only copy as far as the source size, leaving the remaining elements of
// this span unwritten.
//
// (Not in `std::`; allows caller code to elide repeated size information and
// makes it easier to preserve fixed-extent spans in the process.)
constexpr void copy_prefix_from(span<const element_type> other)
requires(!std::is_const_v<element_type>)
{
return first(other.size()).copy_from(other);
}
// [span.sub]: Subviews
// First `count` elements.
template <size_t Count>
constexpr auto first() const {
CHECK(Count <= size());
// SAFETY: `data()` points to at least `size()` elements, so the new data
// scope is a strict subset of the old.
return UNSAFE_BUFFERS(span<element_type, Count>(data(), Count));
}
constexpr auto first(StrictNumeric<size_t> count) const {
CHECK(size_type{count} <= size());
// SAFETY: `data()` points to at least `size()` elements, so the new data
// scope is a strict subset of the old.
return UNSAFE_BUFFERS(span<element_type>(data(), count));
}
// Last `count` elements.
template <size_t Count>
constexpr auto last() const {
CHECK(Count <= size());
// SAFETY: `data()` points to at least `size()` elements, so the new data
// scope is a strict subset of the old.
return UNSAFE_BUFFERS(
span<element_type, Count>(data() + (size() - Count), Count));
}
constexpr auto last(StrictNumeric<size_type> count) const {
CHECK(size_type{count} <= size());
// SAFETY: `data()` points to at least `size()` elements, so the new data
// scope is a strict subset of the old.
return UNSAFE_BUFFERS(
span<element_type>(data() + (size() - size_type{count}), count));
}
// `count` elements beginning at `offset`.
template <size_t Offset, size_t Count = dynamic_extent>
constexpr auto subspan() const {
CHECK(Offset <= size());
const size_type remaining = size() - Offset;
if constexpr (Count == dynamic_extent) {
// SAFETY: `data()` points to at least `size()` elements, so `Offset`
// specifies a valid element index or the past-the-end index, and
// `remaining` cannot index past-the-end elements.
return UNSAFE_BUFFERS(
span<element_type, Count>(data() + Offset, remaining));
}
CHECK(Count <= remaining);
// SAFETY: `data()` points to at least `size()` elements, so `Offset`
// specifies a valid element index or the past-the-end index, and `Count` is
// no larger than the number of remaining valid elements.
return UNSAFE_BUFFERS(span<element_type, Count>(data() + Offset, Count));
}
constexpr auto subspan(StrictNumeric<size_type> offset) const {
CHECK(size_type{offset} <= size());
const size_type remaining = size() - size_type{offset};
// SAFETY: `data()` points to at least `size()` elements, so `offset`
// specifies a valid element index or the past-the-end index, and
// `remaining` cannot index past-the-end elements.
return UNSAFE_BUFFERS(
span<element_type>(data() + size_type{offset}, remaining));
}
constexpr auto subspan(StrictNumeric<size_type> offset,
StrictNumeric<size_type> count) const {
// base does not allow dynamic_extent in two-arg subspan().
DCHECK(size_type{count} != dynamic_extent);
// Deliberately combine tests to minimize code size.
CHECK(size_type{offset} <= size() &&
size_type{count} <= size() - size_type{offset});
// SAFETY: `data()` points to at least `size()` elements, so `offset`
// specifies a valid element index or the past-the-end index, and `count` is
// no larger than the number of remaining valid elements.
return UNSAFE_BUFFERS(
span<element_type>(data() + size_type{offset}, count));
}
// Splits a span a given offset, returning a pair of spans that cover the
// ranges strictly before the offset and starting at the offset, respectively.
//
// (Not in `std::span`; inspired by Rust's `slice::split_at()` and
// `split_at_mut()`.)
template <size_t Offset>
constexpr auto split_at() const {
CHECK(Offset <= size());
return std::pair(first<Offset>(), subspan<Offset>());
}
constexpr auto split_at(StrictNumeric<size_type> offset) const {
return std::pair(first(offset), subspan(offset));
}
// Returns a span of the first N elements, removing them.
// When `Offset` is outside the span, the underlying call will `CHECK()`. For
// a non-fatal alternative, consider `SpanReader`.
//
// (Not in `std::span`; convenient for processing a stream of disparate
// objects or looping over elements.)
template <size_t Offset>
constexpr auto take_first() {
const auto [first, rest] = split_at<Offset>();
*this = rest;
return first;
}
// When `offset` is outside the span, the underlying call will `CHECK()`.
constexpr auto take_first(StrictNumeric<size_type> offset) {
const auto [first, rest] = split_at(offset);
*this = rest;
return first;
}
// Returns the first element, removing it.
// When `empty()`, the underlying call will `CHECK()`. For a non-fatal
// alternative, consider `SpanReader`.
//
// (Not in `std::span`; convenient for processing a stream of disparate
// objects or looping over elements.)
constexpr auto take_first_elem() { return take_first<1>().front(); }
// [span.obs]: Observers
// Size.
constexpr size_type size() const noexcept { return size_; }
constexpr size_type size_bytes() const noexcept {
return size() * sizeof(element_type);
}
// Empty.
[[nodiscard]] constexpr bool empty() const noexcept { return size() == 0; }
// Returns true if `lhs` and `rhs` are equal-sized and are per-element equal.
//
// (Not in `std::span`; improves both ergonomics and safety.)
//
// NOTE: Using non-members here intentionally allows comparing types that
// implicitly convert to `span`.
friend constexpr bool operator==(span lhs, span rhs)
requires(std::is_const_v<element_type> &&
std::equality_comparable<const element_type>)
{
return std::ranges::equal(span<const element_type>(lhs),
span<const element_type>(rhs));
}
friend constexpr bool operator==(span lhs,
span<const element_type, extent> rhs)
requires(!std::is_const_v<element_type> &&
std::equality_comparable<const element_type>)
{
return std::ranges::equal(span<const element_type>(lhs), rhs);
}
template <typename OtherElementType,
size_t OtherExtent,
typename OtherInternalPtrType>
requires(std::equality_comparable_with<const element_type,
const OtherElementType>)
friend constexpr bool operator==(
span lhs,
span<OtherElementType, OtherExtent, OtherInternalPtrType> rhs) {
return std::ranges::equal(span<const element_type>(lhs),
span<const OtherElementType, OtherExtent>(rhs));
}
// Performs lexicographical comparison of `lhs` and `rhs`.
//
// (Not in `std::span`; improves both ergonomics and safety.)
//
// NOTE: Using non-members here intentionally allows comparing types that
// implicitly convert to `span`.
friend constexpr auto operator<=>(span lhs, span rhs)
requires(std::is_const_v<element_type> &&
std::three_way_comparable<const element_type>)
{
const auto const_lhs = span<const element_type>(lhs);
const auto const_rhs = span<const element_type>(rhs);
return std::lexicographical_compare_three_way(
const_lhs.begin(), const_lhs.end(), const_rhs.begin(), const_rhs.end());
}
friend constexpr auto operator<=>(span lhs,
span<const element_type, extent> rhs)
requires(!std::is_const_v<element_type> &&
std::three_way_comparable<const element_type>)
{
return span<const element_type>(lhs) <=> rhs;
}
template <typename OtherElementType,
size_t OtherExtent,
typename OtherInternalPtrType>
requires(std::three_way_comparable_with<const element_type,
const OtherElementType>)
friend constexpr auto operator<=>(
span lhs,
span<OtherElementType, OtherExtent, OtherInternalPtrType> rhs) {
const auto const_lhs = span<const element_type>(lhs);
const auto const_rhs = span<const OtherElementType, OtherExtent>(rhs);
return std::lexicographical_compare_three_way(
const_lhs.begin(), const_lhs.end(), const_rhs.begin(), const_rhs.end());
}
// [span.elem]: Element access
// Reference to a specific element.
// When `idx` is outside the span, the underlying call will `CHECK()`.
//
// Intentionally does not take `StrictNumeric<size_type>`; see comments on
// fixed-extent version for rationale.
constexpr reference operator[](size_type idx) const { return at(idx); }
// When `idx` is outside the span, the underlying call will `CHECK()`.
constexpr reference at(StrictNumeric<size_type> idx) const {
return *get_at(idx);
}
// Returns a pointer to an element in the span.
//
// (Not in `std::`; necessary when underlying memory is not yet initialized.)
constexpr pointer get_at(StrictNumeric<size_type> idx) const {
CHECK(size_type{idx} < size());
// SAFETY: `data()` points to at least `size()` elements, so `idx` must be
// the index of a valid element.
return UNSAFE_BUFFERS(data() + size_type{idx});
}
// Reference to first/last elements.
// When `empty()`, the underlying call will `CHECK()`.
constexpr reference front() const { return operator[](0); }
// When `empty()`, the underlying call will `CHECK()`.
constexpr reference back() const { return operator[](size() - 1); }
// Underlying memory.
constexpr pointer data() const noexcept { return data_; }
// [span.iter]: Iterator support
// Forward iterators.
constexpr iterator begin() const noexcept {
// SAFETY: `data()` points to at least `size()` elements, so `data() +
// size()` is no larger than just past the end of the corresponding
// allocation, which is a legal pointer to construct and compare to (though
// not dereference).
//
// Use `AssumeValid()` to elide unnecessary precondition `CHECK()`'s in the
// iterator constructor: `data() + size()` must not overflow given the above
// constraints, so the iterator's requirement that begin <= current <= end
// is guaranteed to be true.
return UNSAFE_BUFFERS(iterator(
typename iterator::AssumeValid(data(), data(), data() + size())));
}
constexpr const_iterator cbegin() const noexcept {
return const_iterator(begin());
}
constexpr iterator end() const noexcept {
// SAFETY: `data()` points to at least `size()` elements, so `data() +
// size()` is no larger than just past the end of the corresponding
// allocation, which is a legal pointer to construct and compare to (though
// not dereference).
//
// Use `AssumeValid()` to elide unnecessary precondition `CHECK()`'s in the
// iterator constructor: `data() + size()` must not overflow given the above
// constraints, so the iterator's requirement that begin <= current <= end
// is guaranteed to be true.
return UNSAFE_BUFFERS(iterator(typename iterator::AssumeValid(
data(), data() + size(), data() + size())));
}
constexpr const_iterator cend() const noexcept {
return const_iterator(end());
}
// Reverse iterators.
constexpr reverse_iterator rbegin() const noexcept {
return reverse_iterator(end());
}
constexpr const_reverse_iterator crbegin() const noexcept {
return const_iterator(rbegin());
}
constexpr reverse_iterator rend() const noexcept {
return reverse_iterator(begin());
}
constexpr const_reverse_iterator crend() const noexcept {
return const_iterator(rend());
}
// [span.objectrep]: Views of object representation
// Converts a dynamic-extent span to a fixed-extent span. Returns a
// `span<element_type, Extent>` iff `size() == Extent`; otherwise, returns
// `std::nullopt`.
//
// (Not in `std::`; provides a conditional conversion path.)
template <size_t Extent>
constexpr std::optional<span<element_type, Extent>> to_fixed_extent() const {
return size() == Extent ? std::optional(span<element_type, Extent>(*this))
: std::nullopt;
}
private:
InternalPtrType data_ = nullptr;
size_t size_ = 0;
};
// [span.deduct]: Deduction guides
template <typename It, typename EndOrSize>
requires(std::contiguous_iterator<It>)
span(It, EndOrSize) -> span<std::remove_reference_t<std::iter_reference_t<It>>,
internal::MaybeStaticExt<EndOrSize>>;
template <typename T, size_t N>
span(T (&)[N]) -> span<T, N>;
template <typename R>
requires(std::ranges::contiguous_range<R>)
span(R&&) -> span<std::remove_reference_t<std::ranges::range_reference_t<R>>,
internal::kComputedExtent<R>>;
// [span.objectrep]: Views of object representation
template <typename ElementType, size_t Extent, typename InternalPtrType>
requires(internal::CanSafelyConvertToByteSpan<ElementType>)
constexpr auto as_bytes(span<ElementType, Extent, InternalPtrType> s) {
return internal::as_byte_span<const uint8_t>(s);
}
template <typename ElementType, size_t Extent, typename InternalPtrType>
requires(internal::CanSafelyConvertNonUniqueToByteSpan<ElementType>)
constexpr auto as_bytes(allow_nonunique_obj_t,
span<ElementType, Extent, InternalPtrType> s) {
return internal::as_byte_span<const uint8_t>(s);
}
template <typename ElementType, size_t Extent, typename InternalPtrType>
requires(internal::CanSafelyConvertToByteSpan<ElementType> &&
!std::is_const_v<ElementType>)
constexpr auto as_writable_bytes(span<ElementType, Extent, InternalPtrType> s) {
return internal::as_byte_span<uint8_t>(s);
}
template <typename ElementType, size_t Extent, typename InternalPtrType>
requires(internal::CanSafelyConvertNonUniqueToByteSpan<ElementType> &&
!std::is_const_v<ElementType>)
constexpr auto as_writable_bytes(allow_nonunique_obj_t,
span<ElementType, Extent, InternalPtrType> s) {
return internal::as_byte_span<uint8_t>(s);
}
// Like `as_[writable_]bytes()`, but uses `[const] char` rather than `[const]
// uint8_t`.
//
// (Not in `std::`; eases span adoption in Chromium, which uses `char` in many
// cases that rightfully should be `uint8_t`.)
template <typename ElementType, size_t Extent, typename InternalPtrType>
requires(internal::CanSafelyConvertToByteSpan<ElementType>)
constexpr auto as_chars(span<ElementType, Extent, InternalPtrType> s) {
return internal::as_byte_span<const char>(s);
}
template <typename ElementType, size_t Extent, typename InternalPtrType>
requires(internal::CanSafelyConvertNonUniqueToByteSpan<ElementType>)
constexpr auto as_chars(allow_nonunique_obj_t,
span<ElementType, Extent, InternalPtrType> s) {
return internal::as_byte_span<const char>(s);
}
template <typename ElementType, size_t Extent, typename InternalPtrType>
requires(internal::CanSafelyConvertToByteSpan<ElementType> &&
!std::is_const_v<ElementType>)
constexpr auto as_writable_chars(span<ElementType, Extent, InternalPtrType> s) {
return internal::as_byte_span<char>(s);
}
template <typename ElementType, size_t Extent, typename InternalPtrType>
requires(internal::CanSafelyConvertNonUniqueToByteSpan<ElementType> &&
!std::is_const_v<ElementType>)
constexpr auto as_writable_chars(allow_nonunique_obj_t,
span<ElementType, Extent, InternalPtrType> s) {
return internal::as_byte_span<char>(s);
}
// Converts a `T&` to a `span<T, 1>`.
//
// (Not in `std::`; inspired by Rust's `slice::from_ref()`.)
template <typename T>
constexpr auto span_from_ref(const T& t LIFETIME_BOUND) {
// SAFETY: It's safe to read the memory at `t`'s address as long as the
// provided reference is valid.
return UNSAFE_BUFFERS(span<const T, 1>(std::addressof(t), 1u));
}
template <typename T>
constexpr auto span_from_ref(T& t LIFETIME_BOUND) {
// SAFETY: It's safe to read the memory at `t`'s address as long as the
// provided reference is valid.
return UNSAFE_BUFFERS(span<T, 1>(std::addressof(t), 1u));
}
// Converts a `T&` to a `span<[const] uint8_t, sizeof(T)>`.
//
// (Not in `std::`.)
template <typename T>
requires(internal::CanSafelyConvertToByteSpan<T>)
constexpr auto byte_span_from_ref(const T& t LIFETIME_BOUND) {
return as_bytes(span_from_ref(t));
}
template <typename T>
requires(internal::CanSafelyConvertNonUniqueToByteSpan<T>)
constexpr auto byte_span_from_ref(allow_nonunique_obj_t,
const T& t LIFETIME_BOUND) {
return as_bytes(allow_nonunique_obj, span_from_ref(t));
}
template <typename T>
requires(internal::CanSafelyConvertToByteSpan<T>)
constexpr auto byte_span_from_ref(T& t LIFETIME_BOUND) {
return as_writable_bytes(span_from_ref(t));
}
template <typename T>
requires(internal::CanSafelyConvertNonUniqueToByteSpan<T>)
constexpr auto byte_span_from_ref(allow_nonunique_obj_t, T& t LIFETIME_BOUND) {
return as_writable_bytes(allow_nonunique_obj, span_from_ref(t));
}
// Converts a `const CharT[]` literal to a `span<const CharT>`, omitting the
// trailing '\0' (internal '\0's, if any, are preserved). For comparison:
// `span("hi")` => `span<const char, 3>({'h', 'i', '\0'})`
// `span(std::string_view("hi")) => `span<const char>({'h', 'i'})`
// `span_from_cstring("hi")` => `span<const char, 2>({'h', 'i'})`
//
// (Not in `std::`; useful when reading and writing character subsequences in
// larger files.)
template <typename CharT, size_t Extent>
constexpr auto span_from_cstring(const CharT (&str LIFETIME_BOUND)[Extent])
ENABLE_IF_ATTR(str[Extent - 1u] == CharT{0},
"requires string literal as input") {
return span(str).template first<Extent - 1>();
}
// Converts a `const CharT[]` literal to a `span<const CharT>`, preserving the
// trailing '\0'.
//
// (Not in `std::`; identical to constructor behavior, but more explicit.)
template <typename CharT, size_t Extent>
constexpr auto span_with_nul_from_cstring(
const CharT (&str LIFETIME_BOUND)[Extent])
ENABLE_IF_ATTR(str[Extent - 1u] == CharT{0},
"requires string literal as input") {
return span(str);
}
// Like `span_from_cstring()`, but returns a byte span.
//
// (Not in `std::`.)
template <typename CharT, size_t Extent>
constexpr auto byte_span_from_cstring(const CharT (&str LIFETIME_BOUND)[Extent])
ENABLE_IF_ATTR(str[Extent - 1u] == CharT{0},
"requires string literal as input") {
// Cannot call `span_from_cstring()` here, since the array contents do not
// carry through the function call, so the `ENABLE_IF_ATTR` will not be
// satisfied.
return as_bytes(span(str).template first<Extent - 1>());
}
// Like `span_with_nul_from_cstring()`, but returns a byte span.
//
// (Not in `std::`.)
template <typename CharT, size_t Extent>
constexpr auto byte_span_with_nul_from_cstring(
const CharT (&str LIFETIME_BOUND)[Extent])
ENABLE_IF_ATTR(str[Extent - 1u] == CharT{0},
"requires string literal as input") {
// Cannot call `span_with_nul_from_cstring()` here, since the array contents
// do not carry through the function call, so the `ENABLE_IF_ATTR` will not be
// satisfied.
return as_bytes(span(str));
}
// Converts an object which can already explicitly convert to some kind of span
// directly into a byte span.
//
// (Not in `std::`.)
template <int&... ExplicitArgumentBarrier, typename T>
requires(internal::ByteSpanConstructibleFrom<const T&>)
constexpr auto as_byte_span(const T& t LIFETIME_BOUND) {
return as_bytes(span(t));
}
template <int&... ExplicitArgumentBarrier, typename T>
requires(internal::ByteSpanConstructibleFromNonUnique<const T&>)
constexpr auto as_byte_span(allow_nonunique_obj_t, const T& t LIFETIME_BOUND) {
return as_bytes(allow_nonunique_obj, span(t));
}
template <int&... ExplicitArgumentBarrier, typename T>
requires(internal::ByteSpanConstructibleFrom<const T&> &&
std::ranges::borrowed_range<T>)
constexpr auto as_byte_span(const T& t) {
return as_bytes(span(t));
}
template <int&... ExplicitArgumentBarrier, typename T>
requires(internal::ByteSpanConstructibleFromNonUnique<const T&> &&
std::ranges::borrowed_range<T>)
constexpr auto as_byte_span(allow_nonunique_obj_t, const T& t) {
return as_bytes(allow_nonunique_obj, span(t));
}
// Array arguments require dedicated specializations because if only the
// generalized functions are available, the compiler cannot deduce the template
// parameter.
template <int&... ExplicitArgumentBarrier, typename ElementType, size_t Extent>
requires(internal::CanSafelyConvertToByteSpan<ElementType>)
constexpr auto as_byte_span(const ElementType (&arr LIFETIME_BOUND)[Extent]) {
return as_bytes(span<const ElementType, Extent>(arr));
}
template <int&... ExplicitArgumentBarrier, typename ElementType, size_t Extent>
requires(internal::CanSafelyConvertNonUniqueToByteSpan<ElementType>)
constexpr auto as_byte_span(allow_nonunique_obj_t,
const ElementType (&arr LIFETIME_BOUND)[Extent]) {
return as_bytes(allow_nonunique_obj, span<const ElementType, Extent>(arr));
}
template <int&... ExplicitArgumentBarrier, typename T>
requires(internal::ByteSpanConstructibleFrom<T &&> &&
!std::is_const_v<internal::ElementTypeOfSpanConstructedFrom<T>>)
// NOTE: `t` is not marked as lifetimebound because the "non-const
// `element_type`" requirement above will in turn require `T` to be a borrowed
// range.
constexpr auto as_writable_byte_span(T&& t) {
return as_writable_bytes(span(t));
}
template <int&... ExplicitArgumentBarrier, typename T>
requires(internal::ByteSpanConstructibleFromNonUnique<T &&> &&
!std::is_const_v<internal::ElementTypeOfSpanConstructedFrom<T>>)
constexpr auto as_writable_byte_span(allow_nonunique_obj_t, T&& t) {
return as_writable_bytes(allow_nonunique_obj, span(t));
}
template <int&... ExplicitArgumentBarrier, typename ElementType, size_t Extent>
requires(internal::CanSafelyConvertToByteSpan<ElementType> &&
!std::is_const_v<ElementType>)
constexpr auto as_writable_byte_span(
ElementType (&arr LIFETIME_BOUND)[Extent]) {
return as_writable_bytes(span<ElementType, Extent>(arr));
}
template <int&... ExplicitArgumentBarrier, typename ElementType, size_t Extent>
requires(internal::CanSafelyConvertNonUniqueToByteSpan<ElementType> &&
!std::is_const_v<ElementType>)
constexpr auto as_writable_byte_span(
allow_nonunique_obj_t,
ElementType (&arr LIFETIME_BOUND)[Extent]) {
return as_writable_bytes(allow_nonunique_obj, span<ElementType, Extent>(arr));
}
} // namespace base
#endif // BASE_CONTAINERS_SPAN_H_
|