1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_SPAN_READER_H_
#define BASE_CONTAINERS_SPAN_READER_H_
#include <concepts>
#include <optional>
#include "base/containers/span.h"
#include "base/memory/stack_allocated.h"
#include "base/numerics/byte_conversions.h"
#include "base/numerics/safe_conversions.h"
namespace base {
// A Reader to consume elements from the front of a span dynamically.
//
// SpanReader is used to split off prefix spans from a larger span, reporting
// errors if there's not enough room left (instead of crashing, as would happen
// with span directly).
template <class T>
class SpanReader {
STACK_ALLOCATED();
public:
// Construct SpanReader from a span.
explicit SpanReader(span<T> buf) : buf_(buf), original_size_(buf_.size()) {}
// Returns a span over the next `n` objects, if there are enough objects left.
// Otherwise, it returns nullopt and does nothing.
std::optional<span<T>> Read(StrictNumeric<size_t> n) {
if (n > remaining()) {
return std::nullopt;
}
auto [lhs, rhs] = buf_.split_at(n);
buf_ = rhs;
return lhs;
}
// Returns a fixed-size span over the next `N` objects, if there are enough
// objects left. Otherwise, it returns nullopt and does nothing.
template <size_t N>
std::optional<span<T, N>> Read() {
if (N > remaining()) {
return std::nullopt;
}
auto [lhs, rhs] = buf_.template split_at<N>();
buf_ = rhs;
return lhs;
}
// Returns true and writes a span over the next `n` objects into `out`, if
// there are enough objects left. Otherwise, it returns false and does
// nothing.
bool ReadInto(StrictNumeric<size_t> n, span<T>& out) {
if (n > remaining()) {
return false;
}
auto [lhs, rhs] = buf_.split_at(n);
out = lhs;
buf_ = rhs;
return true;
}
// Returns true and copies objects into `out`, if there are enough objects
// left to fill `out`. Otherwise, it returns false and does nothing.
bool ReadCopy(span<std::remove_const_t<T>> out) {
if (out.size() > remaining()) {
return false;
}
auto [lhs, rhs] = buf_.split_at(out.size());
out.copy_from(lhs);
buf_ = rhs;
return true;
}
// Returns true and skips over the next `n` objects, if there are enough
// objects left. Otherwise, it returns false and does nothing.
std::optional<span<T>> Skip(StrictNumeric<size_t> n) {
if (n > remaining()) {
return std::nullopt;
}
auto [lhs, rhs] = buf_.split_at(n);
buf_ = rhs;
return lhs;
}
// For a SpanReader over bytes, we can read integer values directly from those
// bytes as a memcpy. Returns true if there was room remaining and the bytes
// were read.
//
// These treat the bytes from the buffer as being in big endian order.
bool ReadU8BigEndian(uint8_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<1>([&](auto buf) { value = U8FromBigEndian(buf); });
}
bool ReadU16BigEndian(uint16_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<2>([&](auto buf) { value = U16FromBigEndian(buf); });
}
bool ReadU32BigEndian(uint32_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<4>([&](auto buf) { value = U32FromBigEndian(buf); });
}
bool ReadU64BigEndian(uint64_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<8>([&](auto buf) { value = U64FromBigEndian(buf); });
}
// For a SpanReader over bytes, we can read integer values directly from those
// bytes as a memcpy. Returns true if there was room remaining and the bytes
// were read.
//
// These treat the bytes from the buffer as being in little endian order.
bool ReadU8LittleEndian(uint8_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<1>([&](auto buf) { value = U8FromLittleEndian(buf); });
}
bool ReadU16LittleEndian(uint16_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<2>([&](auto buf) { value = U16FromLittleEndian(buf); });
}
bool ReadU32LittleEndian(uint32_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<4>([&](auto buf) { value = U32FromLittleEndian(buf); });
}
bool ReadU64LittleEndian(uint64_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<8>([&](auto buf) { value = U64FromLittleEndian(buf); });
}
// For a SpanReader over bytes, we can read integer values directly from those
// bytes as a memcpy. Returns true if there was room remaining and the bytes
// were read.
//
// These treat the bytes from the buffer as being in native endian order. Note
// that this is almost never what you want to do. Native ordering only makes
// sense for byte buffers that are only meant to stay in memory and never be
// written to the disk or network.
bool ReadU8NativeEndian(uint8_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<1>([&](auto buf) { value = U8FromNativeEndian(buf); });
}
bool ReadU16NativeEndian(uint16_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<2>([&](auto buf) { value = U16FromNativeEndian(buf); });
}
bool ReadU32NativeEndian(uint32_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<4>([&](auto buf) { value = U32FromNativeEndian(buf); });
}
bool ReadU64NativeEndian(uint64_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<8>([&](auto buf) { value = U64FromNativeEndian(buf); });
}
// For a SpanReader over bytes, we can read integer values directly from those
// bytes as a memcpy. Returns true if there was room remaining and the bytes
// were read.
//
// These treat the bytes from the buffer as being in big endian order.
bool ReadI8BigEndian(int8_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<1>([&](auto buf) { value = I8FromBigEndian(buf); });
}
bool ReadI16BigEndian(int16_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<2>([&](auto buf) { value = I16FromBigEndian(buf); });
}
bool ReadI32BigEndian(int32_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<4>([&](auto buf) { value = I32FromBigEndian(buf); });
}
bool ReadI64BigEndian(int64_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<8>([&](auto buf) { value = I64FromBigEndian(buf); });
}
// For a SpanReader over bytes, we can read integer values directly from those
// bytes as a memcpy. Returns true if there was room remaining and the bytes
// were read.
//
// These treat the bytes from the buffer as being in little endian order.
bool ReadI8LittleEndian(int8_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<1>([&](auto buf) { value = I8FromLittleEndian(buf); });
}
bool ReadI16LittleEndian(int16_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<2>([&](auto buf) { value = I16FromLittleEndian(buf); });
}
bool ReadI32LittleEndian(int32_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<4>([&](auto buf) { value = I32FromLittleEndian(buf); });
}
bool ReadI64LittleEndian(int64_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<8>([&](auto buf) { value = I64FromLittleEndian(buf); });
}
// For a SpanReader over bytes, we can read integer values directly from those
// bytes as a memcpy. Returns true if there was room remaining and the bytes
// were read.
//
// These treat the bytes from the buffer as being in native endian order. Note
// that this is almost never what you want to do. Native ordering only makes
// sense for byte buffers that are only meant to stay in memory and never be
// written to the disk or network.
bool ReadI8NativeEndian(int8_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<1>([&](auto buf) { value = I8FromNativeEndian(buf); });
}
bool ReadI16NativeEndian(int16_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<2>([&](auto buf) { value = I16FromNativeEndian(buf); });
}
bool ReadI32NativeEndian(int32_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<4>([&](auto buf) { value = I32FromNativeEndian(buf); });
}
bool ReadI64NativeEndian(int64_t& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<8>([&](auto buf) { value = I64FromNativeEndian(buf); });
}
// For a SpanReader over bytes, reads one byte and returns it as a `char`,
// which may be signed or unsigned depending on the platform. Returns true if
// there was room remaining and the byte was read.
bool ReadChar(char& value)
requires(std::same_as<std::remove_const_t<T>, uint8_t>)
{
return ReadAnd<1>([&](auto buf) { value = static_cast<char>(buf[0u]); });
}
// Returns the number of objects remaining to be read from the original span.
size_t remaining() const { return buf_.size(); }
// Returns the objects that have not yet been read, as a span.
span<T> remaining_span() const { return buf_; }
// Returns the number of objects read (or skipped) in the original span.
size_t num_read() const { return original_size_ - buf_.size(); }
private:
template <size_t N, class F>
requires(std::invocable<F, span<T, N>>)
bool ReadAnd(F f) {
auto buf = Read<N>();
if (buf.has_value()) {
f(*buf);
}
return buf.has_value();
}
span<T> buf_;
size_t original_size_;
};
template <typename ElementType, size_t Extent, typename InternalPtrType>
SpanReader(span<ElementType, Extent, InternalPtrType>)
-> SpanReader<ElementType>;
} // namespace base
#endif // BASE_CONTAINERS_SPAN_READER_H_
|