1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/cpu.h"
#include <stdint.h>
#include <string.h>
#include <string>
#include <string_view>
#include <utility>
#include "base/containers/span.h"
#include "base/containers/span_writer.h"
#include "base/memory/protected_memory.h"
#include "build/build_config.h"
#if defined(ARCH_CPU_ARM_FAMILY) && \
(BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS))
#include <asm/hwcap.h>
#include <sys/auxv.h>
#include <algorithm>
#include "base/files/file_util.h"
#include "base/numerics/checked_math.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
// Temporary definitions until a new hwcap.h is pulled in everywhere.
// https://crbug.com/1265965
#ifndef HWCAP2_MTE
#define HWCAP2_MTE (1 << 18)
#define HWCAP2_BTI (1 << 17)
#endif
#endif
#if defined(ARCH_CPU_X86_FAMILY)
#if defined(COMPILER_MSVC)
#include <immintrin.h> // For _xgetbv()
#include <intrin.h>
#endif
#endif
namespace base {
#if defined(ARCH_CPU_X86_FAMILY)
namespace internal {
X86ModelInfo ComputeX86FamilyAndModel(const std::string& vendor,
int signature) {
X86ModelInfo results;
results.family = (signature >> 8) & 0xf;
results.model = (signature >> 4) & 0xf;
results.ext_family = 0;
results.ext_model = 0;
// The "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
// specifies the Extended Model is defined only when the Base Family is
// 06h or 0Fh.
// The "AMD CPUID Specification" specifies that the Extended Model is
// defined only when Base Family is 0Fh.
// Both manuals define the display model as
// {ExtendedModel[3:0],BaseModel[3:0]} in that case.
if (results.family == 0xf ||
(results.family == 0x6 && vendor == "GenuineIntel")) {
results.ext_model = (signature >> 16) & 0xf;
results.model += results.ext_model << 4;
}
// Both the "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
// and the "AMD CPUID Specification" specify that the Extended Family is
// defined only when the Base Family is 0Fh.
// Both manuals define the display family as {0000b,BaseFamily[3:0]} +
// ExtendedFamily[7:0] in that case.
if (results.family == 0xf) {
results.ext_family = (signature >> 20) & 0xff;
results.family += results.ext_family;
}
return results;
}
} // namespace internal
#endif // defined(ARCH_CPU_X86_FAMILY)
CPU::CPU() {
Initialize();
}
CPU::CPU(CPU&&) = default;
namespace {
#if defined(ARCH_CPU_X86_FAMILY)
#if !defined(COMPILER_MSVC)
#if defined(__pic__) && defined(__i386__)
// Requests extended feature information via |ecx|.
void __cpuidex(int cpu_info[4], int eax, int ecx) {
// SAFETY: `cpu_info` has length 4 and therefore all accesses below are valid.
UNSAFE_BUFFERS(
__asm__ volatile("mov %%ebx, %%edi\n"
"cpuid\n"
"xchg %%edi, %%ebx\n"
: "=a"(cpu_info[0]), "=D"(cpu_info[1]),
"=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(eax), "c"(ecx)));
}
void __cpuid(int cpu_info[4], int info_type) {
__cpuidex(cpu_info, info_type, /*ecx=*/0);
}
#else
// Requests extended feature information via |ecx|.
void __cpuidex(int cpu_info[4], int eax, int ecx) {
// SAFETY: `cpu_info` has length 4 and therefore all accesses below are valid.
UNSAFE_BUFFERS(__asm__ volatile("cpuid\n"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]),
"=c"(cpu_info[2]), "=d"(cpu_info[3])
: "a"(eax), "c"(ecx)));
}
void __cpuid(int cpu_info[4], int info_type) {
__cpuidex(cpu_info, info_type, /*ecx=*/0);
}
#endif
#endif // !defined(COMPILER_MSVC)
// xgetbv returns the value of an Intel Extended Control Register (XCR).
// Currently only XCR0 is defined by Intel so |xcr| should always be zero.
uint64_t xgetbv(uint32_t xcr) {
#if defined(COMPILER_MSVC)
return _xgetbv(xcr);
#else
uint32_t eax, edx;
__asm__ volatile("xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr));
return (static_cast<uint64_t>(edx) << 32) | eax;
#endif // defined(COMPILER_MSVC)
}
#endif // ARCH_CPU_X86_FAMILY
DEFINE_PROTECTED_DATA base::ProtectedMemory<CPU> g_cpu_instance;
} // namespace
void CPU::Initialize() {
#if defined(ARCH_CPU_X86_FAMILY)
int cpu_info[4] = {-1, 0, 0, 0};
// __cpuid with an InfoType argument of 0 returns the number of
// valid Ids in CPUInfo[0] and the CPU identification string in
// the other three array elements. The CPU identification string is
// not in linear order. The code below arranges the information
// in a human readable form. The human readable order is CPUInfo[1] |
// CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
// before copying these three array elements to |cpu_vendor_|.
__cpuid(cpu_info, 0);
int num_ids = cpu_info[0];
std::swap(cpu_info[2], cpu_info[3]);
{
SpanWriter writer{span(cpu_vendor_)};
writer.Write(as_chars(span(cpu_info)).last<kVendorNameSize>());
writer.Write('\0');
}
// Interpret CPU feature information.
if (num_ids > 0) {
int cpu_info7[4] = {};
int cpu_einfo7[4] = {};
__cpuid(cpu_info, 1);
if (num_ids >= 7) {
__cpuid(cpu_info7, 7);
if (cpu_info7[0] >= 1) {
__cpuidex(cpu_einfo7, 7, 1);
}
}
signature_ = cpu_info[0];
stepping_ = cpu_info[0] & 0xf;
type_ = (cpu_info[0] >> 12) & 0x3;
internal::X86ModelInfo results =
internal::ComputeX86FamilyAndModel(cpu_vendor_, signature_);
family_ = results.family;
model_ = results.model;
ext_family_ = results.ext_family;
ext_model_ = results.ext_model;
has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
has_sse_ = (cpu_info[3] & 0x02000000) != 0;
has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
// "Hypervisor Present Bit: Bit 31 of ECX of CPUID leaf 0x1."
// See https://lwn.net/Articles/301888/
// This is checking for any hypervisor. Hypervisors may choose not to
// announce themselves. Hypervisors trap CPUID and sometimes return
// different results to underlying hardware.
is_running_in_vm_ = (static_cast<uint32_t>(cpu_info[2]) & 0x80000000) != 0;
// AVX instructions will generate an illegal instruction exception unless
// a) they are supported by the CPU,
// b) XSAVE is supported by the CPU and
// c) XSAVE is enabled by the kernel.
// See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
//
// In addition, we have observed some crashes with the xgetbv instruction
// even after following Intel's example code. (See crbug.com/375968.)
// Because of that, we also test the XSAVE bit because its description in
// the CPUID documentation suggests that it signals xgetbv support.
has_avx_ = (cpu_info[2] & 0x10000000) != 0 &&
(cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
(cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
(xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */;
has_aesni_ = (cpu_info[2] & 0x02000000) != 0;
has_fma3_ = (cpu_info[2] & 0x00001000) != 0;
if (has_avx_) {
has_avx2_ = (cpu_info7[1] & 0x00000020) != 0;
has_avx_vnni_ = (cpu_einfo7[0] & 0x00000010) != 0;
// Check AVX-512 state, bits 5-7.
if ((xgetbv(0) & 0xe0) == 0xe0) {
has_avx512_f_ = (cpu_info7[1] & 0x00010000) != 0;
has_avx512_bw_ = (cpu_info7[1] & 0x40000000) != 0;
has_avx512_vnni_ = (cpu_info7[2] & 0x00000800) != 0;
}
}
has_pku_ = (cpu_info7[2] & 0x00000010) != 0;
has_pclmul_ = (cpu_info[2] & 0x00000002) != 0;
}
// Get the brand string of the cpu.
__cpuid(cpu_info, static_cast<int>(0x80000000));
const uint32_t max_parameter = static_cast<uint32_t>(cpu_info[0]);
static constexpr uint32_t kParameterStart = 0x80000002;
static constexpr uint32_t kParameterEnd = 0x80000004;
static constexpr uint32_t kParameterSize =
kParameterEnd - kParameterStart + 1;
static_assert(kParameterSize * sizeof(cpu_info) == kBrandNameSize,
"cpu_brand_ has wrong size");
if (max_parameter >= kParameterEnd) {
SpanWriter writer{span(cpu_brand_)};
for (uint32_t parameter = kParameterStart; parameter <= kParameterEnd;
++parameter) {
__cpuid(cpu_info, static_cast<int>(parameter));
writer.Write(as_chars(span(cpu_info)));
}
writer.Write('\0');
}
static constexpr uint32_t kParameterContainingNonStopTimeStampCounter =
0x80000007;
if (max_parameter >= kParameterContainingNonStopTimeStampCounter) {
__cpuid(cpu_info,
static_cast<int>(kParameterContainingNonStopTimeStampCounter));
has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
}
if (!has_non_stop_time_stamp_counter_ && is_running_in_vm_) {
int cpu_info_hv[4] = {};
__cpuid(cpu_info_hv, 0x40000000);
if (cpu_info_hv[1] == 0x7263694D && // Micr
cpu_info_hv[2] == 0x666F736F && // osof
cpu_info_hv[3] == 0x76482074) { // t Hv
// If CPUID says we have a variant TSC and a hypervisor has identified
// itself and the hypervisor says it is Microsoft Hyper-V, then treat
// TSC as invariant.
//
// Microsoft Hyper-V hypervisor reports variant TSC as there are some
// scenarios (eg. VM live migration) where the TSC is variant, but for
// our purposes we can treat it as invariant.
has_non_stop_time_stamp_counter_ = true;
}
}
#elif defined(ARCH_CPU_ARM_FAMILY)
#if defined(ARCH_CPU_ARM64) && \
(BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS))
// Check for Armv8.5-A BTI/MTE support, exposed via HWCAP2
unsigned long hwcap2 = getauxval(AT_HWCAP2);
has_mte_ = hwcap2 & HWCAP2_MTE;
has_bti_ = hwcap2 & HWCAP2_BTI;
#elif BUILDFLAG(IS_WIN)
// Windows makes high-resolution thread timing information available in
// user-space.
has_non_stop_time_stamp_counter_ = true;
#endif
#endif
}
#if defined(ARCH_CPU_X86_FAMILY)
CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const {
if (has_avx512_vnni()) {
return AVX512_VNNI;
}
if (has_avx512_bw()) {
return AVX512BW;
}
if (has_avx512_f()) {
return AVX512F;
}
if (has_avx_vnni()) {
return AVX_VNNI;
}
if (has_avx2()) {
return AVX2;
}
if (has_fma3()) {
return FMA3;
}
if (has_avx()) {
return AVX;
}
if (has_sse42()) {
return SSE42;
}
if (has_sse41()) {
return SSE41;
}
if (has_ssse3()) {
return SSSE3;
}
if (has_sse3()) {
return SSE3;
}
if (has_sse2()) {
return SSE2;
}
if (has_sse()) {
return SSE;
}
return PENTIUM;
}
#endif
const CPU& CPU::GetInstanceNoAllocation() {
static ProtectedMemoryInitializer cpu_initializer(g_cpu_instance, CPU());
return *g_cpu_instance;
}
} // namespace base
|