1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Weak pointers are pointers to an object that do not affect its lifetime,
// and which may be invalidated (i.e. reset to nullptr) by the object, or its
// owner, at any time, most commonly when the object is about to be deleted.
// Weak pointers are useful when an object needs to be accessed safely by one
// or more objects other than its owner, and those callers can cope with the
// object vanishing and e.g. tasks posted to it being silently dropped.
// Reference-counting such an object would complicate the ownership graph and
// make it harder to reason about the object's lifetime.
// EXAMPLE:
//
// class Controller {
// public:
// void SpawnWorker() { Worker::StartNew(weak_factory_.GetWeakPtr()); }
// void WorkComplete(const Result& result) { ... }
// private:
// // Member variables should appear before the WeakPtrFactory, to ensure
// // that any WeakPtrs to Controller are invalidated before its members
// // variable's destructors are executed, rendering them invalid.
// WeakPtrFactory<Controller> weak_factory_{this};
// };
//
// class Worker {
// public:
// static void StartNew(WeakPtr<Controller> controller) {
// // Move WeakPtr when possible to avoid atomic refcounting churn on its
// // internal state.
// Worker* worker = new Worker(std::move(controller));
// // Kick off asynchronous processing...
// }
// private:
// Worker(WeakPtr<Controller> controller)
// : controller_(std::move(controller)) {}
// void DidCompleteAsynchronousProcessing(const Result& result) {
// if (controller_)
// controller_->WorkComplete(result);
// }
// WeakPtr<Controller> controller_;
// };
//
// With this implementation a caller may use SpawnWorker() to dispatch multiple
// Workers and subsequently delete the Controller, without waiting for all
// Workers to have completed.
// ------------------------- IMPORTANT: Thread-safety -------------------------
// Weak pointers may be passed safely between sequences, but must always be
// dereferenced and invalidated on the same SequencedTaskRunner otherwise
// checking the pointer would be racey.
//
// To ensure correct use, the first time a WeakPtr issued by a WeakPtrFactory
// is dereferenced, the factory and its WeakPtrs become bound to the calling
// sequence or current SequencedWorkerPool token, and cannot be dereferenced or
// invalidated on any other task runner. Bound WeakPtrs can still be handed
// off to other task runners, e.g. to use to post tasks back to object on the
// bound sequence.
//
// If all WeakPtr objects are destroyed or invalidated then the factory is
// unbound from the SequencedTaskRunner/Thread. The WeakPtrFactory may then be
// destroyed, or new WeakPtr objects may be used, from a different sequence.
//
// Thus, at least one WeakPtr object must exist and have been dereferenced on
// the correct sequence to enforce that other WeakPtr objects will enforce they
// are used on the desired sequence.
#ifndef BASE_MEMORY_WEAK_PTR_H_
#define BASE_MEMORY_WEAK_PTR_H_
#include <cstddef>
#include <type_traits>
#include <utility>
#include "base/base_export.h"
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/dcheck_is_on.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/ref_counted.h"
#include "base/memory/safe_ref_traits.h"
#include "base/sequence_checker.h"
#include "base/synchronization/atomic_flag.h"
namespace base {
namespace sequence_manager::internal {
class TaskQueueImpl;
}
template <typename T>
class WeakPtr;
namespace internal {
// These classes are part of the WeakPtr implementation.
// DO NOT USE THESE CLASSES DIRECTLY YOURSELF.
class BASE_EXPORT TRIVIAL_ABI WeakReference {
public:
// Although Flag is bound to a specific SequencedTaskRunner, it may be
// deleted from another via base::WeakPtr::~WeakPtr().
class BASE_EXPORT Flag : public RefCountedThreadSafe<Flag> {
public:
Flag();
void Invalidate();
bool IsValid() const;
bool MaybeValid() const;
#if DCHECK_IS_ON()
void DetachFromSequence();
void BindToCurrentSequence();
#endif
private:
friend class base::RefCountedThreadSafe<Flag>;
~Flag();
SEQUENCE_CHECKER(sequence_checker_);
AtomicFlag invalidated_;
};
WeakReference();
explicit WeakReference(const scoped_refptr<Flag>& flag);
~WeakReference();
WeakReference(const WeakReference& other);
WeakReference& operator=(const WeakReference& other);
WeakReference(WeakReference&& other) noexcept;
WeakReference& operator=(WeakReference&& other) noexcept;
void Reset();
// Returns whether the WeakReference is valid, meaning the WeakPtrFactory has
// not invalidated the pointer. Unlike, RefIsMaybeValid(), this may only be
// called from the same sequence as where the WeakPtr was created.
bool IsValid() const;
// Returns false if the WeakReference is confirmed to be invalid. This call is
// safe to make from any thread, e.g. to optimize away unnecessary work, but
// RefIsValid() must always be called, on the correct sequence, before
// actually using the pointer.
//
// Warning: as with any object, this call is only thread-safe if the WeakPtr
// instance isn't being re-assigned or reset() racily with this call.
bool MaybeValid() const;
private:
scoped_refptr<const Flag> flag_;
};
class BASE_EXPORT WeakReferenceOwner {
public:
WeakReferenceOwner();
~WeakReferenceOwner();
WeakReference GetRef() const;
bool HasRefs() const { return !flag_->HasOneRef(); }
void Invalidate();
void InvalidateAndDoom();
void BindToCurrentSequence();
private:
scoped_refptr<WeakReference::Flag> flag_;
};
// Forward declaration from safe_ptr.h.
template <typename T>
SafeRef<T> MakeSafeRefFromWeakPtrInternals(internal::WeakReference&& ref,
T* ptr);
} // namespace internal
template <typename T>
class WeakPtrFactory;
// The WeakPtr class holds a weak reference to |T*|.
//
// This class is designed to be used like a normal pointer. You should always
// null-test an object of this class before using it or invoking a method that
// may result in the underlying object being destroyed.
//
// EXAMPLE:
//
// class Foo { ... };
// WeakPtr<Foo> foo;
// if (foo)
// foo->method();
//
// WeakPtr intentionally doesn't implement operator== or operator<=>, because
// comparisons of weak references are inherently unstable. If the comparison
// takes validity into account, the result can change at any time as pointers
// are invalidated. If it depends only on the underlying pointer value, even
// after the pointer is invalidated, unrelated WeakPtrs can unexpectedly
// compare equal if the address is reused.
template <typename T>
class TRIVIAL_ABI WeakPtr {
public:
WeakPtr() = default;
// NOLINTNEXTLINE(google-explicit-constructor)
WeakPtr(std::nullptr_t) {}
// Allow conversion from U to T provided U "is a" T. Note that this
// is separate from the (implicit) copy and move constructors.
template <typename U>
requires(std::convertible_to<U*, T*>)
// NOLINTNEXTLINE(google-explicit-constructor)
WeakPtr(const WeakPtr<U>& other) : ref_(other.ref_), ptr_(other.ptr_) {}
template <typename U>
requires(std::convertible_to<U*, T*>)
// NOLINTNEXTLINE(google-explicit-constructor)
WeakPtr& operator=(const WeakPtr<U>& other) {
ref_ = other.ref_;
ptr_ = other.ptr_;
return *this;
}
template <typename U>
requires(std::convertible_to<U*, T*>)
// NOLINTNEXTLINE(google-explicit-constructor)
WeakPtr(WeakPtr<U>&& other)
: ref_(std::move(other.ref_)), ptr_(std::move(other.ptr_)) {}
template <typename U>
requires(std::convertible_to<U*, T*>)
// NOLINTNEXTLINE(google-explicit-constructor)
WeakPtr& operator=(WeakPtr<U>&& other) {
ref_ = std::move(other.ref_);
ptr_ = std::move(other.ptr_);
return *this;
}
T* get() const { return ref_.IsValid() ? ptr_ : nullptr; }
// Provide access to the underlying T as a reference. Will CHECK() if the T
// pointee is no longer alive.
T& operator*() const {
CHECK(ref_.IsValid());
return *ptr_;
}
// Used to call methods on the underlying T. Will CHECK() if the T pointee is
// no longer alive.
T* operator->() const {
CHECK(ref_.IsValid());
return ptr_;
}
// Allow conditionals to test validity, e.g. if (weak_ptr) {...};
explicit operator bool() const { return get() != nullptr; }
// Resets the WeakPtr to hold nothing.
//
// The `get()` method will return `nullptr` thereafter, and `MaybeValid()`
// will be `false`.
void reset() {
ref_.Reset();
ptr_ = nullptr;
}
// Do not use this method. Almost all callers should instead use operator
// bool().
//
// There are a few rare cases where the caller intentionally needs to check
// validity of a base::WeakPtr on a sequence different from the bound sequence
// as an unavoidable performance optimization. This is the only valid use-case
// for this method. See
// https://docs.google.com/document/d/1IGzq9Nx69GS_2iynGmPWo5sFAD2DcCyBY1zIvZwF7k8
// for details.
//
// Returns false if the WeakPtr is confirmed to be invalid. This call is safe
// to make from any thread, e.g. to optimize away unnecessary work, but
// RefIsValid() must always be called, on the correct sequence, before
// actually using the pointer.
//
// Warning: as with any object, this call is only thread-safe if the WeakPtr
// instance isn't being re-assigned or reset() racily with this call.
bool MaybeValid() const { return ref_.MaybeValid(); }
// Returns whether the object |this| points to has been invalidated. This can
// be used to distinguish a WeakPtr to a destroyed object from one that has
// been explicitly set to null.
bool WasInvalidated() const { return ptr_ && !ref_.IsValid(); }
private:
template <typename U>
friend class WeakPtr;
friend class WeakPtrFactory<T>;
friend class WeakPtrFactory<std::remove_const_t<T>>;
WeakPtr(internal::WeakReference&& ref, T* ptr)
: ref_(std::move(ref)), ptr_(ptr) {
DCHECK(ptr);
}
internal::WeakReference CloneWeakReference() const { return ref_; }
internal::WeakReference ref_;
// This pointer is only valid when ref_.is_valid() is true. Otherwise, its
// value is undefined (as opposed to nullptr). The pointer is allowed to
// dangle as we verify its liveness through `ref_` before allowing access to
// the pointee. We don't use raw_ptr<T> here to prevent WeakPtr from keeping
// the memory allocation in quarantine, as it can't be accessed through the
// WeakPtr.
RAW_PTR_EXCLUSION T* ptr_ = nullptr;
};
// Allow callers to compare WeakPtrs against nullptr to test validity.
template <class T>
bool operator!=(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
return !(weak_ptr == nullptr);
}
template <class T>
bool operator!=(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
return weak_ptr != nullptr;
}
template <class T>
bool operator==(const WeakPtr<T>& weak_ptr, std::nullptr_t) {
return weak_ptr.get() == nullptr;
}
template <class T>
bool operator==(std::nullptr_t, const WeakPtr<T>& weak_ptr) {
return weak_ptr == nullptr;
}
namespace internal {
class BASE_EXPORT WeakPtrFactoryBase {
protected:
WeakPtrFactoryBase(uintptr_t ptr);
~WeakPtrFactoryBase();
internal::WeakReferenceOwner weak_reference_owner_;
uintptr_t ptr_;
};
} // namespace internal
namespace subtle {
// Restricts access to WeakPtrFactory::BindToCurrentSequence() to authorized
// callers.
class BASE_EXPORT BindWeakPtrFactoryPassKey {
private:
BindWeakPtrFactoryPassKey() = default;
friend class BindWeakPtrFactoryForTesting;
friend class sequence_manager::internal::TaskQueueImpl;
};
} // namespace subtle
// A class may be composed of a WeakPtrFactory and thereby
// control how it exposes weak pointers to itself. This is helpful if you only
// need weak pointers within the implementation of a class. This class is also
// useful when working with primitive types. For example, you could have a
// WeakPtrFactory<bool> that is used to pass around a weak reference to a bool.
template <class T>
class WeakPtrFactory : public internal::WeakPtrFactoryBase {
public:
WeakPtrFactory() = delete;
explicit WeakPtrFactory(T* ptr)
: WeakPtrFactoryBase(reinterpret_cast<uintptr_t>(ptr)) {}
WeakPtrFactory(const WeakPtrFactory&) = delete;
WeakPtrFactory& operator=(const WeakPtrFactory&) = delete;
~WeakPtrFactory() = default;
WeakPtr<const T> GetWeakPtr() const {
return WeakPtr<const T>(weak_reference_owner_.GetRef(),
reinterpret_cast<const T*>(ptr_));
}
WeakPtr<T> GetWeakPtr()
requires(!std::is_const_v<T>)
{
return WeakPtr<T>(weak_reference_owner_.GetRef(),
reinterpret_cast<T*>(ptr_));
}
WeakPtr<T> GetMutableWeakPtr() const
requires(!std::is_const_v<T>)
{
return WeakPtr<T>(weak_reference_owner_.GetRef(),
reinterpret_cast<T*>(ptr_));
}
// Returns a smart pointer that is valid until the WeakPtrFactory is
// invalidated. Unlike WeakPtr, this smart pointer cannot be null, and cannot
// be checked to see if the WeakPtrFactory is invalidated. It's intended to
// express that the pointer will not (intentionally) outlive the `T` object it
// points to, and to crash safely in the case of a bug instead of causing a
// use-after-free. This type provides an alternative to WeakPtr to prevent
// use-after-free bugs without also introducing "fuzzy lifetimes" that can be
// checked for at runtime.
SafeRef<T> GetSafeRef() const {
return internal::MakeSafeRefFromWeakPtrInternals(
weak_reference_owner_.GetRef(), reinterpret_cast<T*>(ptr_));
}
// Invalidates all existing weak pointers.
void InvalidateWeakPtrs() {
DCHECK(ptr_);
weak_reference_owner_.Invalidate();
}
// Invalidates all existing weak pointers, and makes the factory unusable
// (cannot call GetWeakPtr after this). This is more efficient than
// InvalidateWeakPtrs().
void InvalidateWeakPtrsAndDoom() {
DCHECK(ptr_);
weak_reference_owner_.InvalidateAndDoom();
ptr_ = 0;
}
// Call this method to determine if any weak pointers exist.
bool HasWeakPtrs() const { return ptr_ && weak_reference_owner_.HasRefs(); }
// Rebind the factory to the current sequence. This allows creating an object
// and associated weak pointers on a different thread from the one they are
// used on.
void BindToCurrentSequence(subtle::BindWeakPtrFactoryPassKey) {
weak_reference_owner_.BindToCurrentSequence();
}
};
} // namespace base
#endif // BASE_MEMORY_WEAK_PTR_H_
|