1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_pump_android.h"
#include <android/looper.h>
#include <errno.h>
#include <fcntl.h>
#include <jni.h>
#include <sys/eventfd.h>
#include <sys/timerfd.h>
#include <sys/types.h>
#include <unistd.h>
#include <atomic>
#include <map>
#include <memory>
#include <utility>
#include "base/android/input_hint_checker.h"
#include "base/android/jni_android.h"
#include "base/android/scoped_java_ref.h"
#include "base/check.h"
#include "base/check_op.h"
#include "base/message_loop/io_watcher.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/run_loop.h"
#include "base/task/task_features.h"
#include "base/time/time.h"
#include "build/build_config.h"
using base::android::InputHintChecker;
using base::android::InputHintResult;
namespace base {
namespace {
// https://crbug.com/873588. The stack may not be aligned when the ALooper calls
// into our code due to the inconsistent ABI on older Android OS versions.
//
// https://crbug.com/330761384#comment3. Calls from libutils.so into
// NonDelayedLooperCallback() and DelayedLooperCallback() confuse aarch64 builds
// with orderfile instrumentation causing incorrect value in
// __builtin_return_address(0). Disable instrumentation for them. TODO(pasko):
// Add these symbols to the orderfile manually or fix the builtin.
#if defined(ARCH_CPU_X86)
#define NO_INSTRUMENT_STACK_ALIGN \
__attribute__((force_align_arg_pointer, no_instrument_function))
#else
#define NO_INSTRUMENT_STACK_ALIGN __attribute__((no_instrument_function))
#endif
NO_INSTRUMENT_STACK_ALIGN int NonDelayedLooperCallback(int fd,
int events,
void* data) {
if (events & ALOOPER_EVENT_HANGUP) {
return 0;
}
DCHECK(events & ALOOPER_EVENT_INPUT);
MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data);
pump->OnNonDelayedLooperCallback();
return 1; // continue listening for events
}
NO_INSTRUMENT_STACK_ALIGN int DelayedLooperCallback(int fd,
int events,
void* data) {
if (events & ALOOPER_EVENT_HANGUP) {
return 0;
}
DCHECK(events & ALOOPER_EVENT_INPUT);
MessagePumpAndroid* pump = reinterpret_cast<MessagePumpAndroid*>(data);
pump->OnDelayedLooperCallback();
return 1; // continue listening for events
}
// A bit added to the |non_delayed_fd_| to keep it signaled when we yield to
// native work below.
constexpr uint64_t kTryNativeWorkBeforeIdleBit = uint64_t(1) << 32;
std::atomic_bool g_fast_to_sleep = false;
// Implements IOWatcher to allow any MessagePumpAndroid thread to watch
// arbitrary file descriptors for I/O events.
class IOWatcherImpl : public IOWatcher {
public:
explicit IOWatcherImpl(ALooper* looper) : looper_(looper) {}
~IOWatcherImpl() override {
for (auto& [fd, watches] : watched_fds_) {
ALooper_removeFd(looper_, fd);
if (auto read_watch = std::exchange(watches.read_watch, nullptr)) {
read_watch->Detach();
}
if (auto write_watch = std::exchange(watches.write_watch, nullptr)) {
write_watch->Detach();
}
}
}
// IOWatcher:
std::unique_ptr<IOWatcher::FdWatch> WatchFileDescriptorImpl(
int fd,
FdWatchDuration duration,
FdWatchMode mode,
IOWatcher::FdWatcher& watcher,
const Location& location) override {
auto& watches = watched_fds_[fd];
auto watch = std::make_unique<FdWatchImpl>(*this, fd, duration, watcher);
if (mode == FdWatchMode::kRead || mode == FdWatchMode::kReadWrite) {
CHECK(!watches.read_watch) << "Only one watch per FD per condition.";
watches.read_watch = watch.get();
}
if (mode == FdWatchMode::kWrite || mode == FdWatchMode::kReadWrite) {
CHECK(!watches.write_watch) << "Only one watch per FD per condition.";
watches.write_watch = watch.get();
}
const int events = (watches.read_watch ? ALOOPER_EVENT_INPUT : 0) |
(watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0);
ALooper_addFd(looper_, fd, 0, events, &OnFdIoEvent, this);
return watch;
}
private:
// Scopes the maximum lifetime of an FD watch started by WatchFileDescriptor.
class FdWatchImpl : public FdWatch {
public:
FdWatchImpl(IOWatcherImpl& io_watcher,
int fd,
FdWatchDuration duration,
FdWatcher& fd_watcher)
: fd_(fd),
duration_(duration),
fd_watcher_(fd_watcher),
io_watcher_(&io_watcher) {}
~FdWatchImpl() override {
Stop();
if (destruction_flag_) {
*destruction_flag_ = true;
}
}
void set_destruction_flag(bool* flag) { destruction_flag_ = flag; }
int fd() const { return fd_; }
FdWatcher& fd_watcher() const { return *fd_watcher_; }
bool is_persistent() const {
return duration_ == FdWatchDuration::kPersistent;
}
void Detach() { io_watcher_ = nullptr; }
void Stop() {
if (io_watcher_) {
std::exchange(io_watcher_, nullptr)->StopWatching(*this);
}
}
private:
const int fd_;
const FdWatchDuration duration_;
raw_ref<FdWatcher> fd_watcher_;
raw_ptr<IOWatcherImpl> io_watcher_;
// If non-null during destruction, the pointee is set to true. Used to
// detect reentrant destruction during dispatch.
raw_ptr<bool> destruction_flag_ = nullptr;
};
enum class EventResult {
kStopWatching,
kKeepWatching,
};
static NO_INSTRUMENT_STACK_ALIGN int OnFdIoEvent(int fd,
int events,
void* data) {
switch (static_cast<IOWatcherImpl*>(data)->HandleEvent(fd, events)) {
case EventResult::kStopWatching:
return 0;
case EventResult::kKeepWatching:
return 1;
}
}
EventResult HandleEvent(int fd, int events) {
// NOTE: It is possible for Looper to dispatch one last event for `fd`
// *after* we have removed the FD from the Looper - for example if multiple
// FDs wake the thread at the same time, and a handler for another FD runs
// first and removes the watch for `fd`; this callback will have already
// been queued for `fd` and will still run. As such, we must gracefully
// tolerate receiving a callback for an FD that is no longer watched.
auto it = watched_fds_.find(fd);
if (it == watched_fds_.end()) {
return EventResult::kStopWatching;
}
auto& watches = it->second;
const bool is_readable =
events & (ALOOPER_EVENT_INPUT | ALOOPER_EVENT_HANGUP);
const bool is_writable =
events & (ALOOPER_EVENT_OUTPUT | ALOOPER_EVENT_HANGUP);
auto* read_watch = watches.read_watch.get();
auto* write_watch = watches.write_watch.get();
// Any event dispatch can stop any number of watches, so we're careful to
// set up destruction observation before dispatching anything.
bool read_watch_destroyed = false;
bool write_watch_destroyed = false;
bool fd_removed = false;
if (read_watch) {
read_watch->set_destruction_flag(&read_watch_destroyed);
}
if (write_watch && read_watch != write_watch) {
write_watch->set_destruction_flag(&write_watch_destroyed);
}
watches.removed_flag = &fd_removed;
bool did_observe_one_shot_read = false;
if (read_watch && is_readable) {
DCHECK_EQ(read_watch->fd(), fd);
did_observe_one_shot_read = !read_watch->is_persistent();
read_watch->fd_watcher().OnFdReadable(fd);
if (!read_watch_destroyed && did_observe_one_shot_read) {
read_watch->Stop();
}
}
// If the read and write watches are the same object, it may have been
// destroyed; or it may have been a one-shot watch already consumed by a
// read above. In either case we inhibit write dispatch.
if (read_watch == write_watch &&
(read_watch_destroyed || did_observe_one_shot_read)) {
write_watch = nullptr;
}
if (write_watch && is_writable && !write_watch_destroyed) {
DCHECK_EQ(write_watch->fd(), fd);
const bool is_persistent = write_watch->is_persistent();
write_watch->fd_watcher().OnFdWritable(fd);
if (!write_watch_destroyed && !is_persistent) {
write_watch->Stop();
}
}
if (read_watch && !read_watch_destroyed) {
read_watch->set_destruction_flag(nullptr);
}
if (write_watch && !write_watch_destroyed) {
write_watch->set_destruction_flag(nullptr);
}
if (fd_removed) {
return EventResult::kStopWatching;
}
watches.removed_flag = nullptr;
return EventResult::kKeepWatching;
}
void StopWatching(FdWatchImpl& watch) {
const int fd = watch.fd();
auto it = watched_fds_.find(fd);
if (it == watched_fds_.end()) {
return;
}
WatchPair& watches = it->second;
if (watches.read_watch == &watch) {
watches.read_watch = nullptr;
}
if (watches.write_watch == &watch) {
watches.write_watch = nullptr;
}
const int remaining_events =
(watches.read_watch ? ALOOPER_EVENT_INPUT : 0) |
(watches.write_watch ? ALOOPER_EVENT_OUTPUT : 0);
if (remaining_events) {
ALooper_addFd(looper_, fd, 0, remaining_events, &OnFdIoEvent, this);
return;
}
ALooper_removeFd(looper_, fd);
if (watches.removed_flag) {
*watches.removed_flag = true;
}
watched_fds_.erase(it);
}
private:
const raw_ptr<ALooper> looper_;
// The set of active FdWatches. Note that each FD may have up to two active
// watches only - one for read and one for write. No two FdWatches can watch
// the same FD for the same signal. `read_watch` and `write_watch` may point
// to the same object.
struct WatchPair {
raw_ptr<FdWatchImpl> read_watch = nullptr;
raw_ptr<FdWatchImpl> write_watch = nullptr;
// If non-null when this WatchPair is removed, the pointee is set to true.
// Used to track reentrant map mutations during dispatch.
raw_ptr<bool> removed_flag = nullptr;
};
std::map<int, WatchPair> watched_fds_;
};
} // namespace
MessagePumpAndroid::MessagePumpAndroid()
: env_(base::android::AttachCurrentThread()) {
// The Android native ALooper uses epoll to poll our file descriptors and wake
// us up. We use a simple level-triggered eventfd to signal that non-delayed
// work is available, and a timerfd to signal when delayed work is ready to
// be run.
non_delayed_fd_ = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
CHECK_NE(non_delayed_fd_, -1);
DCHECK_EQ(TimeTicks::GetClock(), TimeTicks::Clock::LINUX_CLOCK_MONOTONIC);
delayed_fd_ = checked_cast<int>(
timerfd_create(CLOCK_MONOTONIC, TFD_NONBLOCK | TFD_CLOEXEC));
CHECK_NE(delayed_fd_, -1);
looper_ = ALooper_prepare(0);
DCHECK(looper_);
// Add a reference to the looper so it isn't deleted on us.
ALooper_acquire(looper_);
ALooper_addFd(looper_, non_delayed_fd_, 0, ALOOPER_EVENT_INPUT,
&NonDelayedLooperCallback, reinterpret_cast<void*>(this));
ALooper_addFd(looper_, delayed_fd_, 0, ALOOPER_EVENT_INPUT,
&DelayedLooperCallback, reinterpret_cast<void*>(this));
}
MessagePumpAndroid::~MessagePumpAndroid() {
DCHECK_EQ(ALooper_forThread(), looper_);
io_watcher_.reset();
ALooper_removeFd(looper_, non_delayed_fd_);
ALooper_removeFd(looper_, delayed_fd_);
ALooper_release(looper_);
looper_ = nullptr;
close(non_delayed_fd_);
close(delayed_fd_);
}
void MessagePumpAndroid::InitializeFeatures() {
g_fast_to_sleep = base::FeatureList::IsEnabled(kPumpFastToSleepAndroid);
}
void MessagePumpAndroid::OnDelayedLooperCallback() {
OnReturnFromLooper();
// There may be non-Chromium callbacks on the same ALooper which may have left
// a pending exception set, and ALooper does not check for this between
// callbacks. Check here, and if there's already an exception, just skip this
// iteration without clearing the fd. If the exception ends up being non-fatal
// then we'll just get called again on the next polling iteration.
if (base::android::HasException(env_)) {
return;
}
// ALooper_pollOnce may call this after Quit() if OnNonDelayedLooperCallback()
// resulted in Quit() in the same round.
if (ShouldQuit()) {
return;
}
// Clear the fd.
uint64_t value;
long ret = read(delayed_fd_, &value, sizeof(value));
// TODO(mthiesse): Figure out how it's possible to hit EAGAIN here.
// According to http://man7.org/linux/man-pages/man2/timerfd_create.2.html
// EAGAIN only happens if no timer has expired. Also according to the man page
// poll only returns readable when a timer has expired. So this function will
// only be called when a timer has expired, but reading reveals no timer has
// expired...
// Quit() and ScheduleDelayedWork() are the only other functions that touch
// the timerfd, and they both run on the same thread as this callback, so
// there are no obvious timing or multi-threading related issues.
DPCHECK(ret >= 0 || errno == EAGAIN);
DoDelayedLooperWork();
}
void MessagePumpAndroid::DoDelayedLooperWork() {
delayed_scheduled_time_.reset();
Delegate::NextWorkInfo next_work_info = delegate_->DoWork();
if (ShouldQuit()) {
return;
}
if (next_work_info.is_immediate()) {
ScheduleWork();
return;
}
delegate_->DoIdleWork();
if (!next_work_info.delayed_run_time.is_max()) {
ScheduleDelayedWork(next_work_info);
}
}
void MessagePumpAndroid::OnNonDelayedLooperCallback() {
OnReturnFromLooper();
// There may be non-Chromium callbacks on the same ALooper which may have left
// a pending exception set, and ALooper does not check for this between
// callbacks. Check here, and if there's already an exception, just skip this
// iteration without clearing the fd. If the exception ends up being non-fatal
// then we'll just get called again on the next polling iteration.
if (base::android::HasException(env_)) {
return;
}
// ALooper_pollOnce may call this after Quit() if OnDelayedLooperCallback()
// resulted in Quit() in the same round.
if (ShouldQuit()) {
return;
}
// We're about to process all the work requested by ScheduleWork().
// MessagePump users are expected to do their best not to invoke
// ScheduleWork() again before DoWork() returns a non-immediate
// NextWorkInfo below. Hence, capturing the file descriptor's value now and
// resetting its contents to 0 should be okay. The value currently stored
// should be greater than 0 since work having been scheduled is the reason
// we're here. See http://man7.org/linux/man-pages/man2/eventfd.2.html
uint64_t value = 0;
long ret = read(non_delayed_fd_, &value, sizeof(value));
DPCHECK(ret >= 0);
DCHECK_GT(value, 0U);
bool do_idle_work = value == kTryNativeWorkBeforeIdleBit;
DoNonDelayedLooperWork(do_idle_work);
}
void MessagePumpAndroid::DoNonDelayedLooperWork(bool do_idle_work) {
// Note: We can't skip DoWork() even if |do_idle_work| is true here (i.e. no
// additional ScheduleWork() since yielding to native) as delayed tasks might
// have come in and we need to re-sample |next_work_info|.
// Runs all application tasks scheduled to run.
Delegate::NextWorkInfo next_work_info;
do {
if (ShouldQuit()) {
return;
}
next_work_info = delegate_->DoWork();
// As an optimization, yield to the Looper when input events are waiting to
// be handled. In some cases input events can remain undetected. Such "input
// hint false negatives" happen, for example, during initialization, in
// multi-window cases, or when a previous value is cached to throttle
// polling the input channel.
if (is_type_ui_ && next_work_info.is_immediate() &&
InputHintChecker::HasInput()) {
InputHintChecker::GetInstance().set_is_after_input_yield(true);
ScheduleWork();
return;
}
} while (next_work_info.is_immediate());
// Do not resignal |non_delayed_fd_| if we're quitting (this pump doesn't
// allow nesting so needing to resume in an outer loop is not an issue
// either).
if (ShouldQuit()) {
return;
}
// Under the fast to sleep feature, `do_idle_work` is ignored, and the pump
// will always "sleep" after finishing all its work items.
if (!g_fast_to_sleep) {
// Before declaring this loop idle, yield to native work items and arrange
// to be called again (unless we're already in that second call).
if (!do_idle_work) {
ScheduleWorkInternal(/*do_idle_work=*/true);
return;
}
// We yielded to native work items already and they didn't generate a
// ScheduleWork() request so we can declare idleness. It's possible for a
// ScheduleWork() request to come in racily while this method unwinds, this
// is fine and will merely result in it being re-invoked shortly after it
// returns.
// TODO(scheduler-dev): this doesn't account for tasks that don't ever call
// SchedulerWork() but still keep the system non-idle (e.g., the Java
// Handler API). It would be better to add an API to query the presence of
// native tasks instead of relying on yielding once +
// kTryNativeWorkBeforeIdleBit.
DCHECK(do_idle_work);
}
if (ShouldQuit()) {
return;
}
// Do the idle work.
//
// At this point, the Java Looper might not be idle. It is possible to skip
// idle work if !MessageQueue.isIdle(), but this check is not very accurate
// because the MessageQueue does not know about the additional tasks
// potentially waiting in the Looper.
//
// Note that this won't cause us to fail to run java tasks using QuitWhenIdle,
// as the JavaHandlerThread will finish running all currently scheduled tasks
// before it quits. Also note that we can't just add an idle callback to the
// java looper, as that will fire even if application tasks are still queued
// up.
delegate_->DoIdleWork();
if (!next_work_info.delayed_run_time.is_max()) {
ScheduleDelayedWork(next_work_info);
}
}
void MessagePumpAndroid::Run(Delegate* delegate) {
NOTREACHED() << "Unexpected call to Run()";
}
void MessagePumpAndroid::Attach(Delegate* delegate) {
DCHECK(!quit_);
// Since the Looper is controlled by the UI thread or JavaHandlerThread, we
// can't use Run() like we do on other platforms or we would prevent Java
// tasks from running. Instead we create and initialize a run loop here, then
// return control back to the Looper.
SetDelegate(delegate);
run_loop_ = std::make_unique<RunLoop>();
// Since the RunLoop was just created above, BeforeRun should be guaranteed to
// return true (it only returns false if the RunLoop has been Quit already).
CHECK(run_loop_->BeforeRun());
}
void MessagePumpAndroid::Quit() {
if (quit_) {
return;
}
quit_ = true;
int64_t value;
// Clear any pending timer.
read(delayed_fd_, &value, sizeof(value));
// Clear the eventfd.
read(non_delayed_fd_, &value, sizeof(value));
if (run_loop_) {
run_loop_->AfterRun();
run_loop_ = nullptr;
}
if (on_quit_callback_) {
std::move(on_quit_callback_).Run();
}
}
void MessagePumpAndroid::ScheduleWork() {
ScheduleWorkInternal(/*do_idle_work=*/false);
}
void MessagePumpAndroid::ScheduleWorkInternal(bool do_idle_work) {
// Write (add) |value| to the eventfd. This tells the Looper to wake up and
// call our callback, allowing us to run tasks. This also allows us to detect,
// when we clear the fd, whether additional work was scheduled after we
// finished performing work, but before we cleared the fd, as we'll read back
// >=2 instead of 1 in that case. See the eventfd man pages
// (http://man7.org/linux/man-pages/man2/eventfd.2.html) for details on how
// the read and write APIs for this file descriptor work, specifically without
// EFD_SEMAPHORE.
// Note: Calls with |do_idle_work| set to true may race with potential calls
// where the parameter is false. This is fine as write() is adding |value|,
// not overwriting the existing value, and as such racing calls would merely
// have their values added together. Since idle work is only executed when the
// value read equals kTryNativeWorkBeforeIdleBit, a race would prevent idle
// work from being run and trigger another call to this method with
// |do_idle_work| set to true.
uint64_t value = do_idle_work ? kTryNativeWorkBeforeIdleBit : 1;
long ret = write(non_delayed_fd_, &value, sizeof(value));
DPCHECK(ret >= 0);
}
void MessagePumpAndroid::OnReturnFromLooper() {
if (!is_type_ui_) {
return;
}
auto& checker = InputHintChecker::GetInstance();
if (checker.is_after_input_yield()) {
InputHintChecker::GetInstance().RecordInputHintResult(
InputHintResult::kBackToNative);
}
checker.set_is_after_input_yield(false);
}
void MessagePumpAndroid::ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) {
if (ShouldQuit()) {
return;
}
if (delayed_scheduled_time_ &&
*delayed_scheduled_time_ == next_work_info.delayed_run_time) {
return;
}
DCHECK(!next_work_info.is_immediate());
delayed_scheduled_time_ = next_work_info.delayed_run_time;
int64_t nanos =
next_work_info.delayed_run_time.since_origin().InNanoseconds();
struct itimerspec ts;
ts.it_interval.tv_sec = 0; // Don't repeat.
ts.it_interval.tv_nsec = 0;
ts.it_value.tv_sec =
static_cast<time_t>(nanos / TimeTicks::kNanosecondsPerSecond);
ts.it_value.tv_nsec = nanos % TimeTicks::kNanosecondsPerSecond;
long ret = timerfd_settime(delayed_fd_, TFD_TIMER_ABSTIME, &ts, nullptr);
DPCHECK(ret >= 0);
}
IOWatcher* MessagePumpAndroid::GetIOWatcher() {
if (!io_watcher_) {
io_watcher_ = std::make_unique<IOWatcherImpl>(looper_);
}
return io_watcher_.get();
}
void MessagePumpAndroid::QuitWhenIdle(base::OnceClosure callback) {
DCHECK(!on_quit_callback_);
DCHECK(run_loop_);
on_quit_callback_ = std::move(callback);
run_loop_->QuitWhenIdle();
// Pump the loop in case we're already idle.
ScheduleWork();
}
MessagePump::Delegate* MessagePumpAndroid::SetDelegate(Delegate* delegate) {
return std::exchange(delegate_, delegate);
}
bool MessagePumpAndroid::SetQuit(bool quit) {
return std::exchange(quit_, quit);
}
} // namespace base
|