1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/metrics/persistent_memory_allocator.h"
#include <assert.h>
#include <algorithm>
#include <atomic>
#include <optional>
#include <string_view>
#include "base/bits.h"
#include "base/compiler_specific.h"
#include "base/containers/contains.h"
#include "base/debug/alias.h"
#include "base/debug/crash_logging.h"
#include "base/debug/dump_without_crashing.h"
#include "base/files/memory_mapped_file.h"
#include "base/logging.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/persistent_histogram_allocator.h"
#include "base/metrics/sparse_histogram.h"
#include "base/numerics/checked_math.h"
#include "base/numerics/safe_conversions.h"
#include "base/strings/strcat.h"
#include "base/system/sys_info.h"
#include "base/threading/scoped_blocking_call.h"
#include "build/build_config.h"
#if BUILDFLAG(IS_WIN)
#include <windows.h>
#include "base/win/winbase_shim.h"
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
#include <sys/mman.h>
#if BUILDFLAG(IS_ANDROID)
#include <sys/prctl.h>
#endif
#endif
#define PMA "PMA-DBG"
namespace {
// Limit of memory segment size. It has to fit in an unsigned 32-bit number and
// should be a power of 2 in order to accommodate almost any page size.
constexpr uint32_t kSegmentMaxSize = 1 << 30; // 1 GiB
// A constant (random) value placed in the shared metadata to identify an
// already initialized memory segment.
constexpr uint32_t kGlobalCookie = 0x408305DC;
// The current version of the metadata. If updates are made that change the
// metadata, the version number can be queried to operate in a backward-
// compatible manner until the memory segment is completely re-initalized.
// Note: If you update the metadata in a non-backwards compatible way, reset
// `kCompatibleVersions`. Otherwise, add the previous version.
constexpr uint32_t kGlobalVersion = 3;
static constexpr uint32_t kOldCompatibleVersions[] = {2};
// Constant values placed in the block headers to indicate its state.
constexpr uint32_t kBlockCookieFree = 0;
constexpr uint32_t kBlockCookieQueue = 1;
constexpr uint32_t kBlockCookieWasted = 0x4B594F52;
constexpr uint32_t kBlockCookieAllocated = 0xC8799269;
// TODO(bcwhite): When acceptable, consider moving flags to std::atomic<char>
// types rather than combined bitfield.
// Flags stored in the flags_ field of the SharedMetadata structure below.
constexpr uint32_t kFlagCorrupt = 1 << 0;
constexpr uint32_t kFlagFull = 1 << 1;
// Errors that are logged in "errors" histogram. These values are persisted to
// logs. Entries should not be renumbered and numeric values should never be
// reused.
enum AllocatorError : int {
kMemoryIsCorrupt = 1,
kMaxValue = kMemoryIsCorrupt,
};
bool CheckFlag(const volatile std::atomic<uint32_t>* flags, uint32_t flag) {
uint32_t loaded_flags = flags->load(std::memory_order_relaxed);
return (loaded_flags & flag) != 0;
}
void SetFlag(volatile std::atomic<uint32_t>* flags, uint32_t flag) {
uint32_t loaded_flags = flags->load(std::memory_order_relaxed);
for (;;) {
uint32_t new_flags = (loaded_flags & ~flag) | flag;
// In the failue case, actual "flags" value stored in loaded_flags.
// These access are "relaxed" because they are completely independent
// of all other values.
if (flags->compare_exchange_weak(loaded_flags, new_flags,
std::memory_order_relaxed,
std::memory_order_relaxed)) {
break;
}
}
}
} // namespace
namespace base {
// The block-header is placed at the top of every allocation within the
// segment to describe the data that follows it.
struct PersistentMemoryAllocator::BlockHeader {
uint32_t size; // Number of bytes in this block, including header.
uint32_t cookie; // Constant value indicating completed allocation.
std::atomic<uint32_t> type_id; // Arbitrary number indicating data type.
std::atomic<uint32_t> next; // Pointer to the next block when iterating.
};
// The shared metadata exists once at the top of the memory segment to
// describe the state of the allocator to all processes. The size of this
// structure must be a multiple of 64-bits to ensure compatibility between
// architectures.
struct PersistentMemoryAllocator::SharedMetadata {
uint32_t cookie; // Some value that indicates complete initialization.
uint32_t size; // Total size of memory segment.
uint32_t page_size; // Paging size within memory segment.
uint32_t version; // Version code so upgrades don't break.
uint64_t id; // Arbitrary ID number given by creator.
uint32_t name; // Reference to stored name string.
uint32_t padding1; // Pad-out read-only data to 64-bit alignment.
// Above is read-only after first construction. Below may be changed and
// so must be marked "volatile" to provide correct inter-process behavior.
// State of the memory, plus some padding to keep alignment.
volatile std::atomic<uint8_t> memory_state; // MemoryState enum values.
uint8_t padding2[3];
// Bitfield of information flags. Access to this should be done through
// the CheckFlag() and SetFlag() methods defined above.
volatile std::atomic<uint32_t> flags;
// Offset/reference to first free space in segment.
volatile std::atomic<uint32_t> freeptr;
// The "iterable" queue is an M&S Queue as described here, append-only:
// https://www.research.ibm.com/people/m/michael/podc-1996.pdf
// `queue` needs to be 64-bit aligned and is itself a multiple of 64 bits.
volatile std::atomic<uint32_t> tailptr; // Last block of iteration queue.
volatile BlockHeader queue; // Empty block for linked-list head/tail.
};
// The `queue` block header is used to detect the "last node" so that zero/null
// can be used to indicate that it hasn't been added at all. It is part of
// the SharedMetadata structure which itself is always located at offset zero.
const PersistentMemoryAllocator::Reference
PersistentMemoryAllocator::kReferenceQueue =
offsetof(SharedMetadata, queue);
const base::FilePath::CharType PersistentMemoryAllocator::kFileExtension[] =
FILE_PATH_LITERAL(".pma");
PersistentMemoryAllocator::Iterator::Iterator(
const PersistentMemoryAllocator* allocator)
: allocator_(allocator), last_record_(kReferenceQueue), record_count_(0) {}
PersistentMemoryAllocator::Iterator::Iterator(
const PersistentMemoryAllocator* allocator,
Reference starting_after)
: allocator_(allocator), last_record_(0), record_count_(0) {
Reset(starting_after);
}
PersistentMemoryAllocator::Iterator::~Iterator() = default;
void PersistentMemoryAllocator::Iterator::Reset() {
last_record_.store(kReferenceQueue, std::memory_order_relaxed);
record_count_.store(0, std::memory_order_relaxed);
}
void PersistentMemoryAllocator::Iterator::Reset(Reference starting_after) {
if (starting_after == 0) {
Reset();
return;
}
last_record_.store(starting_after, std::memory_order_relaxed);
record_count_.store(0, std::memory_order_relaxed);
// Ensure that the starting point is a valid, iterable block (meaning it can
// be read and has a non-zero "next" pointer).
const volatile BlockHeader* block =
allocator_->GetBlock(/*ref=*/starting_after, /*type_id=*/0, /*size=*/0,
/*queue_ok=*/false, /*free_ok=*/false);
if (!block || block->next.load(std::memory_order_relaxed) == 0) {
allocator_->DumpWithoutCrashing(/*ref=*/starting_after,
/*expected_type=*/0,
/*expected_size=*/0,
/*dump_block_header=*/true);
}
}
PersistentMemoryAllocator::Reference
PersistentMemoryAllocator::Iterator::GetLast() {
Reference last = last_record_.load(std::memory_order_relaxed);
if (last == kReferenceQueue) {
return kReferenceNull;
}
return last;
}
PersistentMemoryAllocator::Reference
PersistentMemoryAllocator::Iterator::GetNext(uint32_t* type_return,
size_t* alloc_size) {
// Make a copy of the existing count of found-records, acquiring all changes
// made to the allocator, notably "freeptr" (see comment in loop for why
// the load of that value cannot be moved above here) that occurred during
// any previous runs of this method, including those by parallel threads
// that interrupted it. It pairs with the Release at the end of this method.
//
// Otherwise, if the compiler were to arrange the two loads such that
// "count" was fetched _after_ "freeptr" then it would be possible for
// this thread to be interrupted between them and other threads perform
// multiple allocations, make-iterables, and iterations (with the included
// increment of `record_count_`) culminating in the check at the bottom
// mistakenly determining that a loop exists. Isn't this stuff fun?
uint32_t count = record_count_.load(std::memory_order_acquire);
Reference last = last_record_.load(std::memory_order_acquire);
Reference next = 0;
size_t next_size = 0;
while (true) {
const volatile BlockHeader* block =
allocator_->GetBlock(/*ref=*/last, /*type_id=*/0, /*size=*/0,
/*queue_ok=*/true, /*free_ok=*/false);
if (!block) { // Invalid iterator state.
return kReferenceNull;
}
// The compiler and CPU can freely reorder all memory accesses on which
// there are no dependencies. It could, for example, move the load of
// "freeptr" to above this point because there are no explicit dependencies
// between it and "next". If it did, however, then another block could
// be queued after that but before the following load meaning there is
// one more queued block than the future "detect loop by having more
// blocks that could fit before freeptr" will allow.
//
// By "acquiring" the "next" value here, it's synchronized to the enqueue
// of the node which in turn is synchronized to the allocation (which sets
// freeptr). Thus, the scenario above cannot happen.
next = block->next.load(std::memory_order_acquire);
if (next == kReferenceQueue) { // No next allocation in queue.
return kReferenceNull;
}
block = allocator_->GetBlock(/*ref=*/next, /*type_id=*/0, /*size=*/0,
/*queue_ok=*/false, /*free_ok=*/false,
/*alloc_size=*/&next_size);
if (!block) { // Memory is corrupt.
allocator_->SetCorrupt();
return kReferenceNull;
}
// Update the "last_record" pointer to be the reference being returned.
// If it fails then another thread has already iterated past it so loop
// again. Failing will also load the existing value into "last" so there
// is no need to do another such load when the while-loop restarts. A
// "strong" compare-exchange is used because failing unnecessarily would
// mean repeating some fairly costly validations above.
if (last_record_.compare_exchange_strong(
last, next, std::memory_order_acq_rel, std::memory_order_acquire)) {
*type_return = block->type_id.load(std::memory_order_relaxed);
break;
}
}
// Memory corruption could cause a loop in the list. Such must be detected
// so as to not cause an infinite loop in the caller. This is done by simply
// making sure it doesn't iterate more times than the absolute maximum
// number of allocations that could have been made. Callers are likely
// to loop multiple times before it is detected but at least it stops.
const uint32_t freeptr = std::min(
allocator_->shared_meta()->freeptr.load(std::memory_order_relaxed),
allocator_->mem_size_);
const uint32_t max_records =
freeptr / (sizeof(BlockHeader) + kAllocAlignment);
if (count > max_records) {
allocator_->SetCorrupt();
return kReferenceNull;
}
// Increment the count and release the changes made above. It pairs with
// the Acquire at the top of this method. Note that this operation is not
// strictly synchonized with fetching of the object to return, which would
// have to be done inside the loop and is somewhat complicated to achieve.
// It does not matter if it falls behind temporarily so long as it never
// gets ahead.
record_count_.fetch_add(1, std::memory_order_release);
if (alloc_size) {
*alloc_size = next_size;
}
return next;
}
PersistentMemoryAllocator::Reference
PersistentMemoryAllocator::Iterator::GetNextOfType(uint32_t type_match,
size_t* alloc_size) {
Reference ref;
size_t size;
uint32_t type_found;
while ((ref = GetNext(&type_found, &size)) != 0) {
if (type_found == type_match) {
if (alloc_size) {
*alloc_size = size;
}
return ref;
}
}
return kReferenceNull;
}
// static
bool PersistentMemoryAllocator::IsMemoryAcceptable(const void* base,
size_t size,
size_t page_size,
bool readonly) {
return ((base && reinterpret_cast<uintptr_t>(base) % kAllocAlignment == 0) &&
(size >= sizeof(SharedMetadata) && size <= kSegmentMaxSize) &&
(size % kAllocAlignment == 0 || readonly) &&
(page_size == 0 || size % page_size == 0 || readonly));
}
PersistentMemoryAllocator::PersistentMemoryAllocator(void* base,
size_t size,
size_t page_size,
uint64_t id,
std::string_view name,
AccessMode access_mode)
: PersistentMemoryAllocator(Memory(base, MEM_EXTERNAL),
size,
page_size,
id,
name,
access_mode) {}
PersistentMemoryAllocator::PersistentMemoryAllocator(Memory memory,
size_t size,
size_t page_size,
uint64_t id,
std::string_view name,
AccessMode access_mode)
: mem_base_(static_cast<char*>(memory.base)),
mem_type_(memory.type),
mem_size_(checked_cast<uint32_t>(size)),
mem_page_(checked_cast<uint32_t>((page_size ? page_size : size))),
#if BUILDFLAG(IS_NACL)
vm_page_size_(4096U), // SysInfo is not built for NACL.
#else
vm_page_size_(SysInfo::VMAllocationGranularity()),
#endif
access_mode_(access_mode) {
// These asserts ensure that the structures are 32/64-bit agnostic and meet
// all the requirements of use within the allocator. They access private
// definitions and so cannot be moved to the global scope.
static_assert(sizeof(PersistentMemoryAllocator::BlockHeader) == 16,
"struct is not portable across different natural word widths");
static_assert(sizeof(PersistentMemoryAllocator::SharedMetadata) == 64,
"struct is not portable across different natural word widths");
static_assert(sizeof(BlockHeader) % kAllocAlignment == 0,
"BlockHeader is not a multiple of kAllocAlignment");
static_assert(sizeof(SharedMetadata) % kAllocAlignment == 0,
"SharedMetadata is not a multiple of kAllocAlignment");
static_assert(kReferenceQueue % kAllocAlignment == 0,
"\"queue\" is not aligned properly; must be at end of struct");
// Ensure that memory segment is of acceptable size.
const bool readonly = access_mode == kReadOnly;
CHECK(IsMemoryAcceptable(memory.base, size, page_size, readonly));
// These atomics operate inter-process and so must be lock-free.
DCHECK(SharedMetadata().freeptr.is_lock_free());
DCHECK(SharedMetadata().flags.is_lock_free());
DCHECK(BlockHeader().next.is_lock_free());
CHECK(corrupt_.is_lock_free());
// When calling SetCorrupt() during initialization, don't write to the memory
// in kReadOnly and kReadWriteExisting modes.
const bool allow_write_for_set_corrupt = (access_mode == kReadWrite);
if (shared_meta()->cookie != kGlobalCookie) {
if (access_mode != kReadWrite) {
SetCorrupt(allow_write_for_set_corrupt);
return;
}
// This block is only executed when a completely new memory segment is
// being initialized. It's unshared and single-threaded...
volatile BlockHeader* const first_block =
UNSAFE_TODO(reinterpret_cast<volatile BlockHeader*>(
mem_base_ + sizeof(SharedMetadata)));
if (shared_meta()->cookie != 0 || shared_meta()->size != 0 ||
shared_meta()->version != 0 ||
shared_meta()->freeptr.load(std::memory_order_relaxed) != 0 ||
shared_meta()->flags.load(std::memory_order_relaxed) != 0 ||
shared_meta()->id != 0 || shared_meta()->name != 0 ||
shared_meta()->tailptr != 0 || shared_meta()->queue.cookie != 0 ||
shared_meta()->queue.next.load(std::memory_order_relaxed) != 0 ||
first_block->size != 0 || first_block->cookie != 0 ||
first_block->type_id.load(std::memory_order_relaxed) != 0 ||
first_block->next != 0) {
// ...or something malicious has been playing with the metadata.
CHECK(allow_write_for_set_corrupt);
SetCorrupt(allow_write_for_set_corrupt);
}
// This is still safe to do even if corruption has been detected.
shared_meta()->cookie = kGlobalCookie;
shared_meta()->size = mem_size_;
shared_meta()->page_size = mem_page_;
shared_meta()->version = kGlobalVersion;
shared_meta()->id = id;
// Don't overwrite `freeptr` if it is set since we could have raced with
// another allocator. In such a case, `freeptr` would get "rewinded", and
// new objects would be allocated on top of already allocated objects.
uint32_t empty_freeptr = 0;
shared_meta()->freeptr.compare_exchange_strong(
/*expected=*/empty_freeptr, /*desired=*/sizeof(SharedMetadata),
/*success=*/std::memory_order_release,
/*failure=*/std::memory_order_relaxed);
// Set up the queue of iterable allocations.
shared_meta()->queue.size = sizeof(BlockHeader);
shared_meta()->queue.cookie = kBlockCookieQueue;
shared_meta()->queue.next.store(kReferenceQueue, std::memory_order_release);
shared_meta()->tailptr.store(kReferenceQueue, std::memory_order_release);
// Allocate space for the name so other processes can learn it.
if (!name.empty()) {
const size_t name_length = name.length() + 1;
shared_meta()->name = Allocate(name_length, 0);
char* name_cstr = GetAsArray<char>(shared_meta()->name, 0, name_length);
if (name_cstr) {
UNSAFE_TODO(memcpy(name_cstr, name.data(), name.length()));
}
}
shared_meta()->memory_state.store(MEMORY_INITIALIZED,
std::memory_order_release);
} else {
if (shared_meta()->size == 0 ||
(shared_meta()->version != kGlobalVersion &&
!Contains(kOldCompatibleVersions, shared_meta()->version)) ||
shared_meta()->freeptr.load(std::memory_order_relaxed) == 0 ||
shared_meta()->tailptr == 0 || shared_meta()->queue.cookie == 0 ||
shared_meta()->queue.next.load(std::memory_order_relaxed) == 0) {
SetCorrupt(allow_write_for_set_corrupt);
}
if (!readonly) {
// The allocator is attaching to a previously initialized segment of
// memory. If the initialization parameters differ, make the best of it
// by reducing the local construction parameters to match those of the
// actual memory area. This ensures that the local object never tries to
// write outside of the original bounds.
// Because the fields are const to ensure that no code other than the
// constructor makes changes to them as well as to give optimization hints
// to the compiler, it's necessary to const-cast them for changes here.
if (shared_meta()->size < mem_size_) {
*const_cast<uint32_t*>(&mem_size_) = shared_meta()->size;
}
if (shared_meta()->page_size < mem_page_) {
*const_cast<uint32_t*>(&mem_page_) = shared_meta()->page_size;
}
// Ensure that settings are still valid after the above adjustments.
if (!IsMemoryAcceptable(memory.base, mem_size_, mem_page_, readonly)) {
SetCorrupt(allow_write_for_set_corrupt);
}
}
}
}
// It's strictly forbidden to do any memory access inside this destructor in
// case there is some issue with the underlying memory segment. The "Local"
// allocator makes use of this to allow deletion of the segment on the heap from
// within its destructor.
PersistentMemoryAllocator::~PersistentMemoryAllocator() = default;
uint64_t PersistentMemoryAllocator::Id() const {
return shared_meta()->id;
}
std::string_view PersistentMemoryAllocator::Name() const {
Reference name_ref = shared_meta()->name;
size_t alloc_size = 0;
const char* name_cstr = GetAsArray<char>(
name_ref, 0, PersistentMemoryAllocator::kSizeAny, &alloc_size);
return StringViewAt(name_cstr, /*offset=*/0, alloc_size);
}
void PersistentMemoryAllocator::CreateTrackingHistograms(
std::string_view name) {
if (name.empty() || access_mode_ == kReadOnly) {
return;
}
DCHECK(!used_histogram_);
used_histogram_ = LinearHistogram::FactoryGet(
base::StrCat({"UMA.PersistentAllocator.", name, ".UsedPct"}), 1, 101, 21,
HistogramBase::kUmaTargetedHistogramFlag);
}
void PersistentMemoryAllocator::Flush(bool sync) {
FlushPartial(used(), sync);
}
void PersistentMemoryAllocator::SetMemoryState(uint8_t memory_state) {
shared_meta()->memory_state.store(memory_state, std::memory_order_relaxed);
FlushPartial(sizeof(SharedMetadata), false);
}
uint8_t PersistentMemoryAllocator::GetMemoryState() const {
return shared_meta()->memory_state.load(std::memory_order_relaxed);
}
size_t PersistentMemoryAllocator::used() const {
return std::min(shared_meta()->freeptr.load(std::memory_order_relaxed),
mem_size_);
}
PersistentMemoryAllocator::Reference PersistentMemoryAllocator::GetAsReference(
const void* memory,
uint32_t type_id) const {
uintptr_t address = reinterpret_cast<uintptr_t>(memory);
if (address < reinterpret_cast<uintptr_t>(mem_base_)) {
return kReferenceNull;
}
uintptr_t offset = address - reinterpret_cast<uintptr_t>(mem_base_);
if (offset >= mem_size_ || offset < sizeof(BlockHeader)) {
return kReferenceNull;
}
Reference ref = static_cast<Reference>(offset) - sizeof(BlockHeader);
if (!GetBlockData(ref, type_id, kSizeAny)) {
return kReferenceNull;
}
return ref;
}
uint32_t PersistentMemoryAllocator::GetType(Reference ref) const {
const volatile BlockHeader* const block = GetBlock(
ref, /*type_id=*/0, /*size=*/0, /*queue_ok=*/false, /*free_ok=*/false);
if (!block) {
return 0;
}
return block->type_id.load(std::memory_order_relaxed);
}
bool PersistentMemoryAllocator::ChangeType(Reference ref,
uint32_t to_type_id,
uint32_t from_type_id,
bool clear) {
DCHECK_NE(access_mode_, kReadOnly);
volatile BlockHeader* const block = GetBlock(
ref, /*type_id=*/0, /*size=*/0, /*queue_ok=*/false, /*free_ok=*/false);
if (!block) {
return false;
}
// "Strong" exchanges are used below because there is no loop that can retry
// in the wake of spurious failures possible with "weak" exchanges. It is,
// in aggregate, an "acquire-release" operation so no memory accesses can be
// reordered either before or after this method (since changes based on type
// could happen on either side).
if (clear) {
// If clearing the memory, first change it to the "transitioning" type so
// there can be no confusion by other threads. After the memory is cleared,
// it can be changed to its final type.
if (!block->type_id.compare_exchange_strong(
from_type_id, kTypeIdTransitioning, std::memory_order_acquire,
std::memory_order_acquire)) {
// Existing type wasn't what was expected: fail (with no changes)
return false;
}
// Clear the memory in an atomic manner. Using "release" stores force
// every write to be done after the ones before it. This is better than
// using memset because (a) it supports "volatile" and (b) it creates a
// reliable pattern upon which other threads may rely.
volatile std::atomic<int>* data =
UNSAFE_TODO(reinterpret_cast<volatile std::atomic<int>*>(
reinterpret_cast<volatile char*>(block) + sizeof(BlockHeader)));
const uint32_t words = (block->size - sizeof(BlockHeader)) / sizeof(int);
DCHECK_EQ(0U, (block->size - sizeof(BlockHeader)) % sizeof(int));
for (uint32_t i = 0; i < words; ++i) {
data->store(0, std::memory_order_release);
UNSAFE_TODO(++data);
}
// If the destination type is "transitioning" then skip the final exchange.
if (to_type_id == kTypeIdTransitioning) {
return true;
}
// Finish the change to the desired type.
from_type_id = kTypeIdTransitioning; // Exchange needs modifiable original.
bool success = block->type_id.compare_exchange_strong(
from_type_id, to_type_id, std::memory_order_release,
std::memory_order_relaxed);
DCHECK(success); // Should never fail.
return success;
}
// One step change to the new type. Will return false if the existing value
// doesn't match what is expected.
return block->type_id.compare_exchange_strong(from_type_id, to_type_id,
std::memory_order_acq_rel,
std::memory_order_acquire);
}
// static
std::string_view PersistentMemoryAllocator::StringViewAt(const void* object,
size_t offset,
size_t alloc_size) {
if (!object || offset >= alloc_size) {
return "";
}
const char* const cstr =
UNSAFE_TODO(static_cast<const char*>(object) + offset);
return std::string_view(cstr,
UNSAFE_TODO(strnlen(cstr, alloc_size - offset - 1)));
}
PersistentMemoryAllocator::Reference PersistentMemoryAllocator::Allocate(
size_t req_size,
uint32_t type_id,
size_t* alloc_size) {
return AllocateImpl(req_size, type_id, alloc_size);
}
PersistentMemoryAllocator::Reference PersistentMemoryAllocator::AllocateImpl(
size_t req_size,
uint32_t type_id,
size_t* alloc_size) {
DCHECK_NE(access_mode_, kReadOnly);
// Validate req_size to ensure it won't overflow when used as 32-bit value.
if (req_size > kSegmentMaxSize - sizeof(BlockHeader)) {
this->DumpWithoutCrashing(/*ref=*/0, type_id, req_size,
/*dump_block_header=*/false);
return kReferenceNull;
}
// Round up the requested size, plus header, to the next allocation alignment.
size_t size = bits::AlignUp(req_size + sizeof(BlockHeader), kAllocAlignment);
if (size <= sizeof(BlockHeader) || size > mem_page_) {
this->DumpWithoutCrashing(/*ref=*/0, type_id, req_size,
/*dump_block_header=*/false);
return kReferenceNull;
}
// Get the current start of unallocated memory. Other threads may
// update this at any time and cause us to retry these operations.
// This value should be treated as "const" to avoid confusion through
// the code below but recognize that any failed compare-exchange operation
// involving it will cause it to be loaded with a more recent value. The
// code should either exit or restart the loop in that case.
/* const */ uint32_t freeptr =
shared_meta()->freeptr.load(std::memory_order_acquire);
// Allocation is lockless so we do all our caculation and then, if saving
// indicates a change has occurred since we started, scrap everything and
// start over.
for (;;) {
if (IsCorrupt()) {
return kReferenceNull;
}
if (freeptr + size > mem_size_) {
SetFlag(&shared_meta()->flags, kFlagFull);
return kReferenceNull;
}
// Get pointer to the "free" block. If something has been allocated since
// the load of freeptr above, it is still safe as nothing will be read or
// written to that location until after the compare-exchange below.
volatile BlockHeader* const block =
GetBlock(/*ref=*/freeptr, /*type_id=*/0, /*size=*/0, /*queue_ok=*/false,
/*free_ok=*/true);
if (!block) {
SetCorrupt();
return kReferenceNull;
}
// An allocation cannot cross page boundaries. If it would, create a
// "wasted" block and begin again at the top of the next page. This
// area could just be left empty but we fill in the block header just
// for completeness sake.
const uint32_t page_free = mem_page_ - freeptr % mem_page_;
if (size > page_free) {
if (page_free <= sizeof(BlockHeader)) {
SetCorrupt();
return kReferenceNull;
}
// TODO(crbug.com/40064026): With the current state of the code, this
// code path should not be reached. However, crash reports have been
// hinting that it is. Add crash keys to investigate this.
#if !BUILDFLAG(IS_NACL)
const auto* allocator = GlobalHistogramAllocator::Get();
SCOPED_CRASH_KEY_STRING256(
PMA, "file_name",
allocator && allocator->HasPersistentLocation()
? allocator->GetPersistentLocation().BaseName().AsUTF8Unsafe()
: "N/A");
#endif // !BUILDFLAG(IS_NACL)
// It is not thread-safe to read from the block header.
this->DumpWithoutCrashing(/*ref=*/freeptr,
/*expected_type=*/type_id,
/*expected_size=*/req_size,
/*dump_block_header=*/false);
const uint32_t new_freeptr = freeptr + page_free;
if (shared_meta()->freeptr.compare_exchange_strong(
freeptr, new_freeptr, std::memory_order_acq_rel,
std::memory_order_acquire)) {
block->size = page_free;
block->cookie = kBlockCookieWasted;
}
continue;
}
// Don't leave a slice at the end of a page too small for anything. This
// can result in an allocation up to two alignment-sizes greater than the
// minimum required by requested-size + header + alignment.
if (page_free - size < sizeof(BlockHeader) + kAllocAlignment) {
size = page_free;
if (freeptr + size > mem_size_) {
SetCorrupt();
return kReferenceNull;
}
}
// This cast is safe because (freeptr + size) <= mem_size_.
const uint32_t new_freeptr = static_cast<uint32_t>(freeptr + size);
// Save our work. Try again if another thread has completed an allocation
// while we were processing. A "weak" exchange would be permissable here
// because the code will just loop and try again but the above processing
// is significant so make the extra effort of a "strong" exchange.
if (!shared_meta()->freeptr.compare_exchange_strong(
freeptr, new_freeptr, std::memory_order_acq_rel,
std::memory_order_acquire)) {
continue;
}
// Given that all memory was zeroed before ever being given to an instance
// of this class and given that we only allocate in a monotomic fashion
// going forward, it must be that the newly allocated block is completely
// full of zeros. If we find anything in the block header that is NOT a
// zero then something must have previously run amuck through memory,
// writing beyond the allocated space and into unallocated space.
if (block->size != 0 || block->cookie != kBlockCookieFree ||
block->type_id.load(std::memory_order_relaxed) != 0 ||
block->next.load(std::memory_order_relaxed) != 0) {
SetCorrupt();
return kReferenceNull;
}
// Make sure the memory exists by writing to the first byte of every memory
// page it touches beyond the one containing the block header itself.
// As the underlying storage is often memory mapped from disk or shared
// space, sometimes things go wrong and those address don't actually exist
// leading to a SIGBUS (or Windows equivalent) at some arbitrary location
// in the code. This should concentrate all those failures into this
// location for easy tracking and, eventually, proper handling.
volatile char* mem_end =
UNSAFE_TODO(reinterpret_cast<volatile char*>(block) + size);
volatile char* mem_begin = reinterpret_cast<volatile char*>(
(reinterpret_cast<uintptr_t>(block) + sizeof(BlockHeader) +
(vm_page_size_ - 1)) &
~static_cast<uintptr_t>(vm_page_size_ - 1));
for (volatile char* memory = mem_begin; memory < mem_end;
UNSAFE_TODO(memory += vm_page_size_)) {
// It's required that a memory segment start as all zeros and thus the
// newly allocated block is all zeros at this point. Thus, writing a
// zero to it allows testing that the memory exists without actually
// changing its contents. The compiler doesn't know about the requirement
// and so cannot optimize-away these writes.
*memory = 0;
}
// Load information into the block header. There is no "release" of the
// data here because this memory can, currently, be seen only by the thread
// performing the allocation. When it comes time to share this, the thread
// will call MakeIterable() which does the release operation.
// `size` is at most kSegmentMaxSize, so this cast is safe.
block->size = static_cast<uint32_t>(size);
block->cookie = kBlockCookieAllocated;
block->type_id.store(type_id, std::memory_order_relaxed);
// Return the allocation size if requested.
if (alloc_size) {
*alloc_size = size - sizeof(BlockHeader);
}
return freeptr;
}
}
void PersistentMemoryAllocator::GetMemoryInfo(MemoryInfo* meminfo) const {
uint32_t remaining = std::max(
mem_size_ - shared_meta()->freeptr.load(std::memory_order_relaxed),
(uint32_t)sizeof(BlockHeader));
meminfo->total = mem_size_;
meminfo->free = remaining - sizeof(BlockHeader);
}
void PersistentMemoryAllocator::MakeIterable(Reference ref) {
DCHECK_NE(access_mode_, kReadOnly);
if (IsCorrupt()) {
return;
}
volatile BlockHeader* block = GetBlock(ref, /*type_id=*/0, /*size=*/0,
/*queue_ok=*/false, /*free_ok=*/false);
if (!block) { // invalid reference
return;
}
Reference empty_ref = 0;
if (!block->next.compare_exchange_strong(
/*expected=*/empty_ref, /*desired=*/kReferenceQueue,
/*success=*/std::memory_order_acq_rel,
/*failure=*/std::memory_order_acquire)) {
// Already iterable (or another thread is currently making this iterable).
return;
}
// Try to add this block to the tail of the queue. May take multiple tries.
// If so, tail will be automatically updated with a more recent value during
// compare-exchange operations.
uint32_t tail = shared_meta()->tailptr.load(std::memory_order_acquire);
for (;;) {
// Acquire the current tail-pointer released by previous call to this
// method and validate it.
block = GetBlock(/*ref=*/tail, /*type_id=*/0, /*size=*/0, /*queue_ok=*/true,
/*free_ok=*/false);
if (!block) {
SetCorrupt();
return;
}
// Try to insert the block at the tail of the queue. The tail node always
// has an existing value of kReferenceQueue; if that is somehow not the
// existing value then another thread has acted in the meantime. A "strong"
// exchange is necessary so the "else" block does not get executed when
// that is not actually the case (which can happen with a "weak" exchange).
uint32_t next = kReferenceQueue; // Will get replaced with existing value.
if (block->next.compare_exchange_strong(
next, ref, std::memory_order_acq_rel, std::memory_order_acquire)) {
// Update the tail pointer to the new offset. If the "else" clause did
// not exist, then this could be a simple Release_Store to set the new
// value but because it does, it's possible that other threads could add
// one or more nodes at the tail before reaching this point. We don't
// have to check the return value because it either operates correctly
// or the exact same operation has already been done (by the "else"
// clause) on some other thread.
shared_meta()->tailptr.compare_exchange_strong(
tail, ref, std::memory_order_release, std::memory_order_relaxed);
return;
}
// In the unlikely case that a thread crashed or was killed between the
// update of "next" and the update of "tailptr", it is necessary to
// perform the operation that would have been done. There's no explicit
// check for crash/kill which means that this operation may also happen
// even when the other thread is in perfect working order which is what
// necessitates the CompareAndSwap above.
shared_meta()->tailptr.compare_exchange_strong(
tail, next, std::memory_order_acq_rel, std::memory_order_acquire);
}
}
// The "corrupted" state is held both locally and globally (shared). The
// shared flag can't be trusted since a malicious actor could overwrite it.
// Because corruption can be detected during read-only operations such as
// iteration, this method may be called by other "const" methods. In this
// case, it's safe to discard the constness and modify the local flag and
// maybe even the shared flag if the underlying data isn't actually read-only.
void PersistentMemoryAllocator::SetCorrupt(bool allow_write) const {
if (!corrupt_.load(std::memory_order_relaxed) &&
!CheckFlag(
const_cast<volatile std::atomic<uint32_t>*>(&shared_meta()->flags),
kFlagCorrupt)) {
LOG(ERROR) << "Corruption detected in shared-memory segment.";
}
corrupt_.store(true, std::memory_order_relaxed);
if (allow_write && access_mode_ != kReadOnly) {
SetFlag(const_cast<volatile std::atomic<uint32_t>*>(&shared_meta()->flags),
kFlagCorrupt);
}
}
bool PersistentMemoryAllocator::IsCorrupt() const {
if (corrupt_.load(std::memory_order_relaxed)) {
return true;
}
if (CheckFlag(&shared_meta()->flags, kFlagCorrupt)) {
// Set the local flag if we found the flag in the data.
SetCorrupt(/*allow_write=*/false);
return true;
}
return false;
}
bool PersistentMemoryAllocator::IsFull() const {
return CheckFlag(&shared_meta()->flags, kFlagFull);
}
const volatile PersistentMemoryAllocator::BlockHeader*
PersistentMemoryAllocator::GetBlock(Reference ref,
uint32_t type_id,
size_t size,
bool queue_ok,
bool free_ok,
size_t* alloc_size) const {
// The caller cannot request `alloc_size` if `queue_ok` or `free_ok`.
CHECK(!(alloc_size && (queue_ok || free_ok)));
// Handle special cases.
if (ref == kReferenceQueue && queue_ok) {
return UNSAFE_TODO(
reinterpret_cast<const volatile BlockHeader*>(mem_base_ + ref));
}
// Validation of parameters.
if (ref < sizeof(SharedMetadata)) {
return nullptr;
}
if (ref % kAllocAlignment != 0) {
return nullptr;
}
size += sizeof(BlockHeader);
uint32_t total_size;
if (!base::CheckAdd(ref, size).AssignIfValid(&total_size)) {
return nullptr;
}
if (total_size > mem_size_) {
return nullptr;
}
const volatile BlockHeader* const block =
UNSAFE_TODO(reinterpret_cast<volatile BlockHeader*>(mem_base_ + ref));
// Validation of referenced block-header.
if (!free_ok) {
if (block->cookie != kBlockCookieAllocated) {
return nullptr;
}
const uint32_t block_size = block->size;
if (block_size < size) {
return nullptr;
}
// Find a validate the end of the block.
uint32_t block_end_ref;
if (!base::CheckAdd(ref, block_size).AssignIfValid(&block_end_ref)) {
return nullptr;
}
if (block_end_ref > mem_size_) {
// The end of the alloc extends beyond the allocator's bounds.
SetCorrupt();
return nullptr;
}
if (type_id != 0 &&
block->type_id.load(std::memory_order_relaxed) != type_id) {
return nullptr;
}
// Return `alloc_size` if requested by the caller.
if (alloc_size) {
*alloc_size = block_size - sizeof(BlockHeader);
}
}
// Return pointer to block data.
return block;
}
void PersistentMemoryAllocator::FlushPartial(size_t length, bool sync) {
// Generally there is nothing to do as every write is done through volatile
// memory with atomic instructions to guarantee consistency. This (virtual)
// method exists so that derived classes can do special things, such as tell
// the OS to write changes to disk now rather than when convenient.
}
uint32_t PersistentMemoryAllocator::freeptr() const {
return shared_meta()->freeptr.load(std::memory_order_relaxed);
}
uint32_t PersistentMemoryAllocator::version() const {
return shared_meta()->version;
}
const volatile void* PersistentMemoryAllocator::GetBlockData(
Reference ref,
uint32_t type_id,
size_t size,
size_t* alloc_size) const {
DCHECK(size > 0);
const volatile BlockHeader* block = GetBlock(
ref, type_id, size, /*queue_ok=*/false, /*free_ok=*/false, alloc_size);
if (!block) {
return nullptr;
}
return UNSAFE_TODO(reinterpret_cast<const volatile char*>(block) +
sizeof(BlockHeader));
}
void PersistentMemoryAllocator::UpdateTrackingHistograms() {
DCHECK_NE(access_mode_, kReadOnly);
if (used_histogram_) {
MemoryInfo meminfo;
GetMemoryInfo(&meminfo);
HistogramBase::Sample32 used_percent = static_cast<HistogramBase::Sample32>(
((meminfo.total - meminfo.free) * 100ULL / meminfo.total));
used_histogram_->Add(used_percent);
}
}
void PersistentMemoryAllocator::DumpWithoutCrashing(
[[maybe_unused]] Reference ref,
[[maybe_unused]] uint32_t expected_type,
[[maybe_unused]] size_t expected_size,
[[maybe_unused]] bool dump_block_header) const {
#if !BUILDFLAG(IS_NACL)
SCOPED_CRASH_KEY_STRING32(PMA, "name", Name());
SCOPED_CRASH_KEY_NUMBER(PMA, "memory_size", size());
SCOPED_CRASH_KEY_NUMBER(PMA, "page_size", page_size());
SCOPED_CRASH_KEY_BOOL(PMA, "is_full", IsFull());
SCOPED_CRASH_KEY_BOOL(PMA, "is_corrupted", IsCorrupt());
SCOPED_CRASH_KEY_NUMBER(PMA, "freeptr", freeptr());
SCOPED_CRASH_KEY_NUMBER(
PMA, "global_cookie",
static_cast<const volatile SharedMetadata*>(shared_meta())->cookie);
SCOPED_CRASH_KEY_NUMBER(PMA, "ref", ref);
SCOPED_CRASH_KEY_NUMBER(PMA, "expected_type", expected_type);
SCOPED_CRASH_KEY_NUMBER(PMA, "expected_size", expected_size);
const volatile BlockHeader* const block =
dump_block_header ? GetBlock(ref, /*type_id=*/expected_type,
/*size=*/expected_size, /*queue_ok=*/false,
/*free_ok=*/false)
: nullptr;
std::string_view unknown = dump_block_header ? "unknown" : "N/A";
SCOPED_CRASH_KEY_STRING32(PMA, "block_size",
block ? NumberToString(block->size) : unknown);
SCOPED_CRASH_KEY_STRING32(PMA, "block_cookie",
block ? NumberToString(block->cookie) : unknown);
SCOPED_CRASH_KEY_STRING32(PMA, "block_type_id",
block ? NumberToString(block->type_id) : unknown);
SCOPED_CRASH_KEY_STRING32(PMA, "block_next",
block ? NumberToString(block->next) : unknown);
#endif // !BUILDFLAG(IS_NACL)
::base::debug::DumpWithoutCrashing();
}
//----- LocalPersistentMemoryAllocator -----------------------------------------
LocalPersistentMemoryAllocator::LocalPersistentMemoryAllocator(
size_t size,
uint64_t id,
std::string_view name)
: PersistentMemoryAllocator(AllocateLocalMemory(size, name),
size,
0,
id,
name,
kReadWrite) {}
LocalPersistentMemoryAllocator::~LocalPersistentMemoryAllocator() {
DeallocateLocalMemory(const_cast<char*>(mem_base_), mem_size_, mem_type_);
}
// static
PersistentMemoryAllocator::Memory
LocalPersistentMemoryAllocator::AllocateLocalMemory(size_t size,
std::string_view name) {
void* address;
#if BUILDFLAG(IS_WIN)
address =
::VirtualAlloc(nullptr, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE);
if (address) {
return Memory(address, MEM_VIRTUAL);
}
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
// MAP_ANON is deprecated on Linux but MAP_ANONYMOUS is not universal on Mac.
// MAP_SHARED is not available on Linux <2.4 but required on Mac.
address = ::mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED,
-1, 0);
if (address != MAP_FAILED) {
#if BUILDFLAG(IS_ANDROID)
// Allow the anonymous memory region allocated by mmap(MAP_ANON) to be
// identified in /proc/$PID/smaps. This helps improve visibility into
// Chrome's memory usage on Android.
const std::string arena_name = base::StrCat({"persistent:", name});
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, address, size, arena_name.c_str());
#endif
return Memory(address, MEM_VIRTUAL);
}
#else
#error This architecture is not (yet) supported.
#endif
// As a last resort, just allocate the memory from the heap. This will
// achieve the same basic result but the acquired memory has to be
// explicitly zeroed and thus realized immediately (i.e. all pages are
// added to the process now istead of only when first accessed).
address = malloc(size);
DPCHECK(address);
UNSAFE_TODO(memset(address, 0, size));
return Memory(address, MEM_MALLOC);
}
// static
void LocalPersistentMemoryAllocator::DeallocateLocalMemory(void* memory,
size_t size,
MemoryType type) {
if (type == MEM_MALLOC) {
free(memory);
return;
}
DCHECK_EQ(MEM_VIRTUAL, type);
#if BUILDFLAG(IS_WIN)
BOOL success = ::VirtualFree(memory, 0, MEM_DECOMMIT);
DCHECK(success);
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
int result = ::munmap(memory, size);
DCHECK_EQ(0, result);
#else
#error This architecture is not (yet) supported.
#endif
}
//----- WritableSharedPersistentMemoryAllocator --------------------------------
WritableSharedPersistentMemoryAllocator::
WritableSharedPersistentMemoryAllocator(
base::WritableSharedMemoryMapping memory,
uint64_t id,
std::string_view name)
: PersistentMemoryAllocator(Memory(memory.memory(), MEM_SHARED),
memory.size(),
0,
id,
name,
kReadWrite),
shared_memory_(std::move(memory)) {}
WritableSharedPersistentMemoryAllocator::
~WritableSharedPersistentMemoryAllocator() = default;
// static
bool WritableSharedPersistentMemoryAllocator::IsSharedMemoryAcceptable(
const base::WritableSharedMemoryMapping& memory) {
return IsMemoryAcceptable(memory.memory(), memory.size(), 0, false);
}
//----- ReadOnlySharedPersistentMemoryAllocator --------------------------------
ReadOnlySharedPersistentMemoryAllocator::
ReadOnlySharedPersistentMemoryAllocator(
base::ReadOnlySharedMemoryMapping memory,
uint64_t id,
std::string_view name)
: PersistentMemoryAllocator(
Memory(const_cast<void*>(memory.memory()), MEM_SHARED),
memory.size(),
0,
id,
name,
kReadOnly),
shared_memory_(std::move(memory)) {}
ReadOnlySharedPersistentMemoryAllocator::
~ReadOnlySharedPersistentMemoryAllocator() = default;
// static
bool ReadOnlySharedPersistentMemoryAllocator::IsSharedMemoryAcceptable(
const base::ReadOnlySharedMemoryMapping& memory) {
return IsMemoryAcceptable(memory.memory(), memory.size(), 0, true);
}
#if !BUILDFLAG(IS_NACL)
//----- FilePersistentMemoryAllocator ------------------------------------------
FilePersistentMemoryAllocator::FilePersistentMemoryAllocator(
std::unique_ptr<MemoryMappedFile> file,
size_t max_size,
uint64_t id,
std::string_view name,
AccessMode access_mode)
: PersistentMemoryAllocator(
Memory(const_cast<uint8_t*>(file->data()), MEM_FILE),
max_size != 0 ? max_size : file->length(),
0,
id,
name,
access_mode),
mapped_file_(std::move(file)) {}
FilePersistentMemoryAllocator::~FilePersistentMemoryAllocator() = default;
// static
bool FilePersistentMemoryAllocator::IsFileAcceptable(
const MemoryMappedFile& file,
bool readonly) {
return IsMemoryAcceptable(file.data(), file.length(), 0, readonly);
}
void FilePersistentMemoryAllocator::Cache() {
// Since this method is expected to load data from permanent storage
// into memory, blocking I/O may occur.
base::ScopedBlockingCall scoped_blocking_call(FROM_HERE,
base::BlockingType::MAY_BLOCK);
// Calculate begin/end addresses so that the first byte of every page
// in that range can be read. Keep within the used space. The `volatile`
// keyword makes it so the compiler can't make assumptions about what is
// in a given memory location and thus possibly avoid the read.
const volatile char* mem_end = UNSAFE_TODO(mem_base_ + used());
const volatile char* mem_begin = mem_base_;
// Iterate over the memory a page at a time, reading the first byte of
// every page. The values are added to a `total` so that the compiler
// can't omit the read.
int total = 0;
for (const volatile char* memory = mem_begin; memory < mem_end;
UNSAFE_TODO(memory += vm_page_size_)) {
total += *memory;
}
// Tell the compiler that `total` is used so that it can't optimize away
// the memory accesses above.
debug::Alias(&total);
}
void FilePersistentMemoryAllocator::FlushPartial(size_t length, bool sync) {
if (IsReadonly()) {
return;
}
std::optional<base::ScopedBlockingCall> scoped_blocking_call;
if (sync) {
scoped_blocking_call.emplace(FROM_HERE, base::BlockingType::MAY_BLOCK);
}
#if BUILDFLAG(IS_WIN)
// Windows doesn't support asynchronous flush.
scoped_blocking_call.emplace(FROM_HERE, base::BlockingType::MAY_BLOCK);
BOOL success = ::FlushViewOfFile(data(), length);
DPCHECK(success);
#elif BUILDFLAG(IS_APPLE)
// On OSX, "invalidate" removes all cached pages, forcing a re-read from
// disk. That's not applicable to "flush" so omit it.
int result =
::msync(const_cast<void*>(data()), length, sync ? MS_SYNC : MS_ASYNC);
DCHECK_NE(EINVAL, result);
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
// On POSIX, "invalidate" forces _other_ processes to recognize what has
// been written to disk and so is applicable to "flush".
int result = ::msync(const_cast<void*>(data()), length,
MS_INVALIDATE | (sync ? MS_SYNC : MS_ASYNC));
DCHECK_NE(EINVAL, result);
#else
#error Unsupported OS.
#endif
}
#endif // !BUILDFLAG(IS_NACL)
//----- DelayedPersistentAllocation --------------------------------------------
DelayedPersistentAllocation::DelayedPersistentAllocation(
PersistentMemoryAllocator* allocator,
std::atomic<Reference>* ref,
uint32_t type,
size_t size,
size_t offset)
: allocator_(allocator),
type_(type),
size_(checked_cast<uint32_t>(size)),
offset_(checked_cast<uint32_t>(offset)),
reference_(ref) {
DCHECK(allocator_);
DCHECK_NE(0U, type_);
DCHECK_LT(0U, size_);
DCHECK(reference_);
}
DelayedPersistentAllocation::~DelayedPersistentAllocation() = default;
span<uint8_t> DelayedPersistentAllocation::GetUntyped() const {
// Relaxed operations are acceptable here because it's not protecting the
// contents of the allocation in any way.
Reference ref = reference_->load(std::memory_order_acquire);
// TODO(crbug.com/40064026): Remove this. It is used to investigate unexpected
// failures and code paths.
[[maybe_unused]] const bool ref_found = (ref != 0);
[[maybe_unused]] bool race_detected = false;
if (!ref) {
[[maybe_unused]] size_t alloc_size = 0;
ref = allocator_->Allocate(size_, type_, &alloc_size);
if (!ref) {
return span<uint8_t>();
}
// Store the new reference in its proper location using compare-and-swap.
// Use a "strong" exchange to ensure no false-negatives since the operation
// cannot be retried.
Reference existing = 0; // Must be mutable; receives actual value.
if (!reference_->compare_exchange_strong(existing, ref,
std::memory_order_release,
std::memory_order_relaxed)) {
// Failure indicates that something else has raced ahead, performed the
// allocation, and stored its reference. Purge the allocation that was
// just done and use the other one instead.
DCHECK_EQ(type_, allocator_->GetType(existing));
DCHECK_LE(size_, alloc_size);
allocator_->ChangeType(ref, 0, type_, /*clear=*/false);
ref = existing;
race_detected = true;
}
}
// Find the referenced memory and return it as a span if successful.
uint8_t* mem = allocator_->GetAsArray<uint8_t>(ref, type_, size_);
if (mem) {
// This is the success path.
return UNSAFE_TODO(span(mem + offset_, size_ - offset_));
}
// TODO(crbug.com/40064026) Under normal circumstances, this should not be
// reached. Getting here means the is some corruption or error in the
// allocator and/or the allocated block.
#if !BUILDFLAG(IS_NACL)
// There are many crash reports containing the `kBlockCookieAllocated` magic
// value in `ref`. This value is used to indicate that a given block in
// persistent memory was successfully allocated, so it should not appear as a
// `ref` value. This likely indicates a dereference into a block header.
// Include some extra crash keys inspect the surrounding values. The value
// before would likely be the size of the allocated object, and the value
// after would likely be the type id of the allocated object. If this is, in
// fact, a valid reference, the value before should contain the
// `ranges_checksum` and value after should contain the start of
// `samples_metadata` respectively (see PersistentHistogramData struct). We do
// some pointer arithmetic here -- it should theoretically be safe, unless
// something went terribly wrong...
const bool ref_is_magic_number = (ref == kBlockCookieAllocated);
SCOPED_CRASH_KEY_STRING32(
PMA, "ref_value_before",
ref_is_magic_number
? NumberToString((reference_ - 1)->load(std::memory_order_relaxed))
: "N/A");
SCOPED_CRASH_KEY_STRING32(
PMA, "ref_value_after",
ref_is_magic_number
? NumberToString((reference_ + 1)->load(std::memory_order_relaxed))
: "N/A");
SCOPED_CRASH_KEY_BOOL(PMA, "ref_found", ref_found);
SCOPED_CRASH_KEY_BOOL(PMA, "race_detected", race_detected);
#endif // !BUILDFLAG(IS_NACL)
// The allocator has detected a corrupt/invalid reference. This is not fatal.
// Capture the current state to a crash dump so the circumstances can be
// analyzed,
allocator_->DumpWithoutCrashing(ref,
/*expected_type=*/type_,
/*expected_size=*/size_,
/*dump_block_header=*/true);
// Caller's must gracefully handle the return of an empty span.
return span<uint8_t>();
}
} // namespace base
|