1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
|
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_MOVING_WINDOW_H_
#define BASE_MOVING_WINDOW_H_
#include <math.h>
#include <stddef.h>
#include <cmath>
#include <functional>
#include <limits>
#include <vector>
#include "base/check_op.h"
#include "base/memory/raw_ref.h"
#include "base/time/time.h"
namespace base {
// Class to efficiently calculate statistics in a sliding window.
// This class isn't thread safe.
// Supported statistics are Min/Max/Mean/Deviation.
// You can also iterate through the items in the window.
// The class is modular: required features must be specified in the template
// arguments.
// Non listed features don't consume memory or runtime cycles at all.
//
// Usage:
// base::MovingWindow<int,
// base::MovingWindowFeatures::Min,
// base::MovingWindowFeatures::Max>
// moving_window(window_size);
//
// Following convenience shortcuts are provided with predefined sets of
// features:
// MovingMax/MovingMin/MovingAverage/MovingAverageDeviation/MovingMinMax.
//
// Methods:
// Constructor:
// MovingWindow(size_t window_size);
//
// Window update (available for all templates):
// AddSample(T value) const;
// size_t Count() const;
// void Reset();
//
// Available for MovingWindowFeatures::Min:
// T Min() const;
//
// Available for MovingWindowFeatures::Max:
// T Max() const;
//
// Available for MovingWindowFeatures::Mean:
// U Mean<U>() const;
//
// Available for MovingWindowFeatures::Deviation:
// U Deviation<U>() const;
//
// Available for MovingWindowFeatures::Iteration. Iterating through the window:
// iterator begin() const;
// iterator begin() const;
// size_t size() const;
// Features supported by the class.
struct MovingWindowFeatures {
struct Min {
static bool has_min;
};
struct Max {
static bool has_max;
};
// Need to specify a type capable of holding a sum of all elements in the
// window.
template <typename SumType>
struct Mean {
static SumType has_mean;
};
// Need to specify a type capable of holding a sum of squares of all elements
// in the window.
template <typename SumType>
struct Deviation {
static SumType has_deviation;
};
struct Iteration {
static bool has_iteration;
};
};
// Main template.
template <typename T, typename... Features>
class MovingWindow;
// Convenience shortcuts.
template <typename T>
using MovingMax = MovingWindow<T, MovingWindowFeatures::Max>;
template <typename T>
using MovingMin = MovingWindow<T, MovingWindowFeatures::Min>;
template <typename T>
using MovingMinMax =
MovingWindow<T, MovingWindowFeatures::Min, MovingWindowFeatures::Max>;
template <typename T, typename SumType>
using MovingAverage = MovingWindow<T, MovingWindowFeatures::Mean<SumType>>;
template <typename T>
using MovingAverageDeviation =
MovingWindow<T,
MovingWindowFeatures::Mean<T>,
MovingWindowFeatures::Deviation<double>>;
namespace internal {
// Class responsible only for calculating maximum in the window.
// It's reused to calculate both min and max via inverting the comparator.
template <typename T, typename Comparator>
class MovingExtremumBase {
public:
explicit MovingExtremumBase(size_t window_size)
: window_size_(window_size),
values_(window_size),
added_at_(window_size),
last_idx_(window_size - 1),
compare_(Comparator()) {}
~MovingExtremumBase() = default;
// Add new sample to the stream.
void AddSample(const T& value, size_t total_added) {
// Remove old elements from the back of the window;
while (size_ > 0 && added_at_[begin_idx_] + window_size_ <= total_added) {
++begin_idx_;
if (begin_idx_ == window_size_) {
begin_idx_ = 0;
}
--size_;
}
// Remove small elements from the front of the window because they can never
// become the maximum in the window since the currently added element is
// bigger than them and will leave the window later.
while (size_ > 0 && compare_(values_[last_idx_], value)) {
if (last_idx_ == 0) {
last_idx_ = window_size_;
}
--last_idx_;
--size_;
}
DCHECK_LT(size_, window_size_);
++last_idx_;
if (last_idx_ == window_size_) {
last_idx_ = 0;
}
values_[last_idx_] = value;
added_at_[last_idx_] = total_added;
++size_;
}
// Get the maximum of the last `window_size` elements.
T Value() const {
DCHECK_GT(size_, 0u);
return values_[begin_idx_];
}
// Clear all samples.
void Reset() {
size_ = 0;
begin_idx_ = 0;
last_idx_ = window_size_ - 1;
}
private:
const size_t window_size_;
// Circular buffer with some values in the window.
// Only possible candidates for maximum are stored:
// values form a non-increasing sequence.
std::vector<T> values_;
// Circular buffer storing when numbers in `values_` were added.
std::vector<size_t> added_at_;
// Begin of the circular buffers above.
size_t begin_idx_ = 0;
// Last occupied position.
size_t last_idx_;
// How many elements are stored in the circular buffers above.
size_t size_ = 0;
// Template parameter comparator.
const Comparator compare_;
};
// Null implementation of the above class to be used when feature is disabled.
template <typename T>
struct NullExtremumImpl {
explicit NullExtremumImpl(size_t) {}
~NullExtremumImpl() = default;
void AddSample(const T&, size_t) {}
void Reset() {}
};
// Class to hold the moving window.
// It's used to calculate replaced element for Mean/Deviation calculations.
template <typename T>
class MovingWindowBase {
public:
explicit MovingWindowBase(size_t window_size) : values_(window_size) {}
~MovingWindowBase() = default;
void AddSample(const T& sample) {
values_[cur_idx_] = sample;
++cur_idx_;
if (cur_idx_ == values_.size()) {
cur_idx_ = 0;
}
}
// Is the window filled integer amount of times.
bool IsLastIdx() const { return cur_idx_ + 1 == values_.size(); }
void Reset() {
cur_idx_ = 0;
std::fill(values_.begin(), values_.end(), T());
}
T GetValue() const { return values_[cur_idx_]; }
T operator[](size_t idx) const { return values_[idx]; }
size_t Size() const { return values_.size(); }
// What index will be overwritten by a new element;
size_t CurIdx() const { return cur_idx_; }
private:
// Circular buffer.
std::vector<T> values_;
// Where the buffer begins.
size_t cur_idx_ = 0;
};
// Null implementation of the above class to be used when feature is disabled.
template <typename T>
struct NullWindowImpl {
explicit NullWindowImpl(size_t) {}
~NullWindowImpl() = default;
void AddSample(const T& sample) {}
bool IsLastIdx() const { return false; }
void Reset() {}
T GetValue() const { return T(); }
};
// Performs division allowing the class to work with more types.
// General template.
template <typename SumType, typename ReturnType>
struct DivideInternal {
static ReturnType Compute(const SumType& sum, const size_t count) {
return static_cast<ReturnType>(sum) / static_cast<ReturnType>(count);
}
};
// Class to calculate moving mean.
template <typename T, typename SumType, bool IsFloating>
class MovingMeanBase {
public:
explicit MovingMeanBase(size_t window_size) : sum_() {}
~MovingMeanBase() = default;
void AddSample(const T& sample, const T& replaced_value, bool is_last_idx) {
sum_ += sample - replaced_value;
}
template <typename ReturnType = SumType>
ReturnType Mean(const size_t count) const {
if (count == 0) {
return ReturnType();
}
return DivideInternal<SumType, ReturnType>::Compute(sum_, count);
}
void Reset() { sum_ = SumType(); }
SumType Sum() const { return sum_; }
private:
SumType sum_;
};
// Class to calculate moving mean.
// Variant for float types with running sum to avoid rounding errors
// accumulation.
template <typename T, typename SumType>
class MovingMeanBase<T, SumType, true> {
public:
explicit MovingMeanBase(size_t window_size) : sum_(), running_sum_() {}
~MovingMeanBase() = default;
void AddSample(const T& sample, const T& replaced_value, bool is_last_idx) {
running_sum_ += sample;
if (is_last_idx) {
// Replace sum with running sum to avoid rounding errors accumulation.
sum_ = running_sum_;
running_sum_ = SumType();
} else {
sum_ += sample - replaced_value;
}
}
template <typename ReturnType = SumType>
ReturnType Mean(const size_t count) const {
if (count == 0) {
return ReturnType();
}
return DivideInternal<SumType, ReturnType>::Compute(sum_, count);
}
void Reset() { sum_ = running_sum_ = SumType(); }
SumType Sum() const { return sum_; }
private:
SumType sum_;
SumType running_sum_;
};
// Null implementation of the above class to be used when feature is disabled.
template <typename T>
struct NullMeanImpl {
explicit NullMeanImpl(size_t window_size) {}
~NullMeanImpl() = default;
void AddSample(const T& sample, const T&, bool) {}
void Reset() {}
};
// Computs main Deviation fromula, allowing the class to work with more types.
// Deviation is equal to mean of squared values minus squared mean value.
// General template.
template <typename SumType, typename ReturnType>
struct DeivationInternal {
static ReturnType Compute(const SumType& sum_squares,
const SumType& square_of_sum,
const size_t count) {
return static_cast<ReturnType>(
std::sqrt((static_cast<double>(sum_squares) -
static_cast<double>(square_of_sum) / count) /
count));
}
};
// Class to compute square of the number.
// General template
template <typename T, typename SquareType>
struct SquareInternal {
static SquareType Compute(const T& sample) {
return static_cast<SquareType>(sample) * sample;
}
};
// Class to calculate moving deviation.
template <typename T, typename SumType, bool IsFloating>
class MovingDeviationBase {
public:
explicit MovingDeviationBase(size_t window_size) : sum_sq_() {}
~MovingDeviationBase() = default;
void AddSample(const T& sample, const T& replaced_value, bool is_last_idx) {
sum_sq_ += SquareInternal<T, SumType>::Compute(sample) -
SquareInternal<T, SumType>::Compute(replaced_value);
}
template <typename ReturnType, typename U>
ReturnType Deviation(const size_t count, const U& sum) const {
if (count == 0) {
return ReturnType();
}
return DeivationInternal<SumType, ReturnType>::Compute(
sum_sq_, SquareInternal<U, SumType>::Compute(sum), count);
}
void Reset() { sum_sq_ = SumType(); }
private:
SumType sum_sq_;
};
// Class to calculate moving deviation.
// Variant for float types with running sum to avoid rounding errors
// accumulation.
template <typename T, typename SumType>
class MovingDeviationBase<T, SumType, true> {
public:
explicit MovingDeviationBase(size_t window_size)
: sum_sq_(), running_sum_() {}
~MovingDeviationBase() = default;
void AddSample(const T& sample, const T& replaced_value, bool is_last_idx) {
SumType square = SquareInternal<T, SumType>::Compute(sample);
running_sum_ += square;
if (is_last_idx) {
// Replace sum with running sum to avoid rounding errors accumulation.
sum_sq_ = running_sum_;
running_sum_ = SumType();
} else {
sum_sq_ += square - SquareInternal<T, SumType>::Compute(replaced_value);
}
}
template <typename ReturnType, typename U>
ReturnType Deviation(const size_t count, const U& sum) const {
if (count == 0) {
return ReturnType();
}
return DeivationInternal<SumType, ReturnType>::Compute(
sum_sq_, SquareInternal<U, SumType>::Compute(sum), count);
}
void Reset() { running_sum_ = sum_sq_ = SumType(); }
private:
SumType sum_sq_;
SumType running_sum_;
};
// Null implementation of the above class to be used when feature is disabled.
template <typename T>
struct NullDeviationImpl {
public:
explicit NullDeviationImpl(size_t window_size) {}
~NullDeviationImpl() = default;
void AddSample(const T&, const T&, bool) {}
void Reset() {}
};
// Template helpers.
// Gets all enabled features in one struct.
template <typename... Features>
struct EnabledFeatures : public Features... {};
template <typename T>
concept has_member_min = requires { T::has_min; };
template <typename T>
concept has_member_max = requires { T::has_max; };
template <typename T>
concept has_member_mean = requires { T::has_mean; };
template <typename T>
concept has_member_deviation = requires { T::has_deviation; };
template <typename T>
concept has_member_iteration = requires { T::has_iteration; };
// Gets the type of the member if present.
// Can't just use decltype, because the member might be absent.
template <typename T>
struct get_type_mean {
using type = void;
};
template <typename T>
requires has_member_mean<T>
struct get_type_mean<T> {
using type = decltype(T::has_mean);
};
template <typename T>
using mean_t = typename get_type_mean<T>::type;
template <typename T>
struct get_type_deviation {
using type = void;
};
template <typename T>
requires has_member_deviation<T>
struct get_type_deviation<T> {
using type = decltype(T::has_deviation);
};
template <typename T>
using deviation_t = typename get_type_deviation<T>::type;
// Performs division allowing the class to work with more types.
// Specific template for TimeDelta.
template <>
struct DivideInternal<TimeDelta, TimeDelta> {
static TimeDelta Compute(const TimeDelta& sum, const size_t count) {
return sum / count;
}
};
// Computs main Deviation fromula, allowing the class to work with more types.
// Deviation is equal to mean of squared values minus squared mean value.
// Specific template for TimeDelta.
template <>
struct DeivationInternal<double, TimeDelta> {
static TimeDelta Compute(const double sum_squares,
const double square_of_sum,
const size_t count) {
return Seconds(std::sqrt((sum_squares - square_of_sum / count) / count));
}
};
// Class to compute square of the number.
// Specific template for TimeDelta.
template <>
struct SquareInternal<TimeDelta, double> {
static double Compute(const TimeDelta& sample) {
return sample.InSecondsF() * sample.InSecondsF();
}
};
} // namespace internal
// Implementation of the main class.
template <typename T, typename... Features>
class MovingWindow {
public:
// List of all requested features.
using EnabledFeatures = internal::EnabledFeatures<Features...>;
explicit MovingWindow(size_t window_size)
: min_impl_(window_size),
max_impl_(window_size),
mean_impl_(window_size),
deviation_impl_(window_size),
window_impl_(window_size) {}
// Adds sample to the window.
void AddSample(const T& sample) {
++total_added_;
min_impl_.AddSample(sample, total_added_);
max_impl_.AddSample(sample, total_added_);
mean_impl_.AddSample(sample, window_impl_.GetValue(),
window_impl_.IsLastIdx());
deviation_impl_.AddSample(sample, window_impl_.GetValue(),
window_impl_.IsLastIdx());
window_impl_.AddSample(sample);
}
// Returns amount of elementes so far in the stream (might be bigger than the
// window size).
size_t Count() const { return total_added_; }
// Calculates min in the window.
T Min() const
requires internal::has_member_min<EnabledFeatures>
{
return min_impl_.Value();
}
// Calculates max in the window.
T Max() const
requires internal::has_member_max<EnabledFeatures>
{
return max_impl_.Value();
}
// Calculates mean in the window.
// `ReturnType` can be used to adjust the type of the calculated mean value;
// if not specified, uses `T` by default.
template <typename ReturnType = T>
requires internal::has_member_mean<EnabledFeatures>
ReturnType Mean() const {
return mean_impl_.template Mean<ReturnType>(
std::min(total_added_, window_impl_.Size()));
}
// Calculates deviation in the window.
// `ReturnType` can be used to adjust the type of the calculated deviation
// value; if not specified, uses `T` by default.
template <typename ReturnType = T>
requires internal::has_member_deviation<EnabledFeatures>
ReturnType Deviation() const {
const size_t count = std::min(total_added_, window_impl_.Size());
return deviation_impl_.template Deviation<ReturnType>(count,
mean_impl_.Sum());
}
// Resets the state to an empty window.
void Reset() {
min_impl_.Reset();
max_impl_.Reset();
mean_impl_.Reset();
deviation_impl_.Reset();
window_impl_.Reset();
total_added_ = 0;
}
// iterator implementation.
class iterator {
public:
~iterator() = default;
const T operator*() {
DCHECK_LT(idx_, window_impl_->Size());
return (*window_impl_)[idx_];
}
iterator& operator++() {
++idx_;
// Wrap around the circular buffer.
if (idx_ == window_impl_->Size()) {
idx_ = 0;
}
// The only way to arrive to the current element is to
// come around after iterating through the whole window.
if (idx_ == window_impl_->CurIdx()) {
idx_ = kInvalidIndex;
}
return *this;
}
bool operator==(const iterator& other) const { return idx_ == other.idx_; }
private:
iterator(const internal::MovingWindowBase<T>& window, size_t idx)
: window_impl_(window), idx_(idx) {}
static const size_t kInvalidIndex = std::numeric_limits<size_t>::max();
raw_ref<const internal::MovingWindowBase<T>> window_impl_;
size_t idx_;
friend class MovingWindow<T, Features...>;
};
// Begin iterator. Template to enable only if iteration feature is requested.
iterator begin() const
requires internal::has_member_iteration<EnabledFeatures>
{
if (total_added_ == 0) {
return end();
}
// Before window is fully filled, the oldest element is at the index 0.
size_t idx =
(total_added_ < window_impl_.Size()) ? 0 : window_impl_.CurIdx();
return iterator(window_impl_, idx);
}
// End iterator. Template to enable only if iteration feature is requested.
iterator end() const
requires internal::has_member_iteration<EnabledFeatures>
{
return iterator(window_impl_, iterator::kInvalidIndex);
}
// Size of the collection. Template to enable only if iteration feature is
// requested.
size_t size() const
requires internal::has_member_iteration<EnabledFeatures>
{
return std::min(total_added_, window_impl_.Size());
}
private:
// Member for calculating min.
// Conditionally enabled on Min feature.
std::conditional_t<internal::has_member_min<EnabledFeatures>,
internal::MovingExtremumBase<T, std::greater<>>,
internal::NullExtremumImpl<T>>
min_impl_;
// Member for calculating min.
// Conditionally enabled on Min feature.
std::conditional_t<internal::has_member_max<EnabledFeatures>,
internal::MovingExtremumBase<T, std::less<>>,
internal::NullExtremumImpl<T>>
max_impl_;
// Type for sum value in Mean implementation. Might need to reuse deviation
// sum type, because enabling only deviation feature will also enable mean
// member (because deviation calculation depends on mean calculation).
using MeanSumType =
std::conditional_t<internal::has_member_mean<EnabledFeatures>,
internal::mean_t<EnabledFeatures>,
internal::deviation_t<EnabledFeatures>>;
// Member for calculating mean.
// Conditionally enabled on Mean or Deviation feature (because deviation
// calculation depends on mean calculation).
std::conditional_t<
internal::has_member_mean<EnabledFeatures> ||
internal::has_member_deviation<EnabledFeatures>,
internal::
MovingMeanBase<T, MeanSumType, std::is_floating_point_v<MeanSumType>>,
internal::NullMeanImpl<T>>
mean_impl_;
// Member for calculating deviation.
// Conditionally enabled on Deviation feature.
std::conditional_t<
internal::has_member_deviation<EnabledFeatures>,
internal::MovingDeviationBase<
T,
internal::deviation_t<EnabledFeatures>,
std::is_floating_point_v<internal::deviation_t<EnabledFeatures>>>,
internal::NullDeviationImpl<T>>
deviation_impl_;
// Member for storing the moving window.
// Conditionally enabled on Mean, Deviation or Iteration feature since
// they need the elements in the window.
// Min and Max features store elements internally so they don't need this.
std::conditional_t<internal::has_member_mean<EnabledFeatures> ||
internal::has_member_deviation<EnabledFeatures> ||
internal::has_member_iteration<EnabledFeatures>,
internal::MovingWindowBase<T>,
internal::NullWindowImpl<T>>
window_impl_;
// Total number of added elements.
size_t total_added_ = 0;
};
} // namespace base
#endif // BASE_MOVING_WINDOW_H_
|