1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CHECKED_MATH_IMPL_H_
#define BASE_NUMERICS_CHECKED_MATH_IMPL_H_
// IWYU pragma: private, include "base/numerics/checked_math.h"
#include <stdint.h>
#include <cmath>
#include <concepts>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math_shared_impl.h" // IWYU pragma: export
namespace base {
namespace internal {
template <typename T>
constexpr bool CheckedAddImpl(T x, T y, T* result) {
static_assert(std::integral<T>, "Type must be integral");
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
const UnsignedDst ux = static_cast<UnsignedDst>(x);
const UnsignedDst uy = static_cast<UnsignedDst>(y);
const UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy);
// Addition is valid if the sign of (x + y) is equal to either that of x or
// that of y.
if (std::is_signed_v<T>
? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) < 0
: uresult < uy) { // Unsigned is either valid or underflow.
return false;
}
*result = static_cast<T>(uresult);
return true;
}
template <typename T, typename U>
struct CheckedAddOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedAddOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if constexpr (CheckedAddFastOp<T, U>::is_supported) {
return CheckedAddFastOp<T, U>::Do(x, y, result);
}
// Double the underlying type up to a full machine word.
using FastPromotion = FastIntegerArithmeticPromotion<T, U>;
using Promotion =
std::conditional_t<(kIntegerBitsPlusSign<FastPromotion> >
kIntegerBitsPlusSign<intptr_t>),
BigEnoughPromotion<T, U>, FastPromotion>;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
if (!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) [[unlikely]] {
return false;
}
Promotion presult = {};
bool is_valid = true;
if constexpr (kIsIntegerArithmeticSafe<Promotion, T, U>) {
presult = static_cast<Promotion>(x) + static_cast<Promotion>(y);
} else {
is_valid = CheckedAddImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
if (!is_valid || !IsValueInRangeForNumericType<V>(presult)) {
return false;
}
*result = static_cast<V>(presult);
return true;
}
};
template <typename T>
constexpr bool CheckedSubImpl(T x, T y, T* result) {
static_assert(std::integral<T>, "Type must be integral");
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
const UnsignedDst ux = static_cast<UnsignedDst>(x);
const UnsignedDst uy = static_cast<UnsignedDst>(y);
const UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy);
// Subtraction is valid if either x and y have same sign, or (x-y) and x have
// the same sign.
if (std::is_signed_v<T>
? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) < 0
: x < y) {
return false;
}
*result = static_cast<T>(uresult);
return true;
}
template <typename T, typename U>
struct CheckedSubOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedSubOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if constexpr (CheckedSubFastOp<T, U>::is_supported) {
return CheckedSubFastOp<T, U>::Do(x, y, result);
}
// Double the underlying type up to a full machine word.
using FastPromotion = FastIntegerArithmeticPromotion<T, U>;
using Promotion =
std::conditional_t<(kIntegerBitsPlusSign<FastPromotion> >
kIntegerBitsPlusSign<intptr_t>),
BigEnoughPromotion<T, U>, FastPromotion>;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
if (!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) [[unlikely]] {
return false;
}
Promotion presult = {};
bool is_valid = true;
if constexpr (kIsIntegerArithmeticSafe<Promotion, T, U>) {
presult = static_cast<Promotion>(x) - static_cast<Promotion>(y);
} else {
is_valid = CheckedSubImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
if (!is_valid || !IsValueInRangeForNumericType<V>(presult)) {
return false;
}
*result = static_cast<V>(presult);
return true;
}
};
template <typename T>
constexpr bool CheckedMulImpl(T x, T y, T* result) {
static_assert(std::integral<T>, "Type must be integral");
// Since the value of x*y is potentially undefined if we have a signed type,
// we compute it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
const UnsignedDst ux = SafeUnsignedAbs(x);
const UnsignedDst uy = SafeUnsignedAbs(y);
const UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy);
const bool is_negative =
std::is_signed_v<T> && static_cast<SignedDst>(x ^ y) < 0;
// We have a fast out for unsigned identity or zero on the second operand.
// After that it's an unsigned overflow check on the absolute value, with
// a +1 bound for a negative result.
if (uy > UnsignedDst(!std::is_signed_v<T> || is_negative) &&
ux > (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy) {
return false;
}
*result = static_cast<T>(is_negative ? 0 - uresult : uresult);
return true;
}
template <typename T, typename U>
struct CheckedMulOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedMulOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if constexpr (CheckedMulFastOp<T, U>::is_supported) {
return CheckedMulFastOp<T, U>::Do(x, y, result);
}
using Promotion = FastIntegerArithmeticPromotion<T, U>;
// Verify the destination type can hold the result (always true for 0).
if ((!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) &&
x && y) [[unlikely]] {
return false;
}
Promotion presult = {};
bool is_valid = true;
if constexpr (CheckedMulFastOp<Promotion, Promotion>::is_supported) {
// The fast op may be available with the promoted type.
// The casts here are safe because of the "value in range" conditional
// above.
is_valid = CheckedMulFastOp<Promotion, Promotion>::Do(
static_cast<Promotion>(x), static_cast<Promotion>(y), &presult);
} else if constexpr (kIsIntegerArithmeticSafe<Promotion, T, U>) {
presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
} else {
is_valid = CheckedMulImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
if (!is_valid || !IsValueInRangeForNumericType<V>(presult)) {
return false;
}
*result = static_cast<V>(presult);
return true;
}
};
// Division just requires a check for a zero denominator or an invalid negation
// on signed min/-1.
template <typename T, typename U>
struct CheckedDivOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedDivOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if (!y) [[unlikely]] {
return false;
}
// The overflow check can be compiled away if we don't have the exact
// combination of types needed to trigger this case.
using Promotion = BigEnoughPromotion<T, U>;
if (std::is_signed_v<T> && std::is_signed_v<U> &&
kIsTypeInRangeForNumericType<T, Promotion> &&
static_cast<Promotion>(x) == std::numeric_limits<Promotion>::lowest() &&
y == static_cast<U>(-1)) [[unlikely]] {
return false;
}
// This branch always compiles away if the above branch wasn't removed.
if ((!IsValueInRangeForNumericType<Promotion>(x) ||
!IsValueInRangeForNumericType<Promotion>(y)) &&
x) [[unlikely]] {
return false;
}
const Promotion presult = Promotion(x) / Promotion(y);
if (!IsValueInRangeForNumericType<V>(presult)) {
return false;
}
*result = static_cast<V>(presult);
return true;
}
};
template <typename T, typename U>
struct CheckedModOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedModOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
if (!y) [[unlikely]] {
return false;
}
using Promotion = BigEnoughPromotion<T, U>;
if (std::is_signed_v<T> && std::is_signed_v<U> &&
kIsTypeInRangeForNumericType<T, Promotion> &&
static_cast<Promotion>(x) == std::numeric_limits<Promotion>::lowest() &&
y == static_cast<U>(-1)) [[unlikely]] {
*result = 0;
return true;
}
const Promotion presult =
static_cast<Promotion>(x) % static_cast<Promotion>(y);
if (!IsValueInRangeForNumericType<V>(presult)) {
return false;
}
*result = static_cast<Promotion>(presult);
return true;
}
};
template <typename T, typename U>
struct CheckedLshOp {};
// Left shift. Shifts less than 0 or greater than or equal to the number
// of bits in the promoted type are undefined. Shifts of negative values
// are undefined. Otherwise it is defined when the result fits.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedLshOp<T, U> {
using result_type = T;
template <typename V>
static constexpr bool Do(T x, U shift, V* result) {
// Disallow negative numbers and verify the shift is in bounds.
if (!IsValueNegative(x) &&
as_unsigned(shift) < as_unsigned(std::numeric_limits<T>::digits))
[[likely]] {
// Shift as unsigned to avoid undefined behavior.
*result = static_cast<V>(as_unsigned(x) << shift);
// If the shift can be reversed, we know it was valid.
return *result >> shift == x;
}
// Handle the legal corner-case of a full-width signed shift of zero.
if (!std::is_signed_v<T> || x ||
as_unsigned(shift) != as_unsigned(std::numeric_limits<T>::digits)) {
return false;
}
*result = 0;
return true;
}
};
template <typename T, typename U>
struct CheckedRshOp {};
// Right shift. Shifts less than 0 or greater than or equal to the number
// of bits in the promoted type are undefined. Otherwise, it is always defined,
// but a right shift of a negative value is implementation-dependent.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedRshOp<T, U> {
using result_type = T;
template <typename V>
static constexpr bool Do(T x, U shift, V* result) {
// Use sign conversion to push negative values out of range.
if (as_unsigned(shift) >= kIntegerBitsPlusSign<T>) [[unlikely]] {
return false;
}
const T tmp = x >> shift;
if (!IsValueInRangeForNumericType<V>(tmp)) {
return false;
}
*result = static_cast<V>(tmp);
return true;
}
};
template <typename T, typename U>
struct CheckedAndOp {};
// For simplicity we support only unsigned integer results.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedAndOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
const result_type tmp =
static_cast<result_type>(x) & static_cast<result_type>(y);
if (!IsValueInRangeForNumericType<V>(tmp)) {
return false;
}
*result = static_cast<V>(tmp);
return true;
}
};
template <typename T, typename U>
struct CheckedOrOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedOrOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
const result_type tmp =
static_cast<result_type>(x) | static_cast<result_type>(y);
if (!IsValueInRangeForNumericType<V>(tmp)) {
return false;
}
*result = static_cast<V>(tmp);
return true;
}
};
template <typename T, typename U>
struct CheckedXorOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct CheckedXorOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
const result_type tmp =
static_cast<result_type>(x) ^ static_cast<result_type>(y);
if (!IsValueInRangeForNumericType<V>(tmp)) {
return false;
}
*result = static_cast<V>(tmp);
return true;
}
};
// Max doesn't really need to be implemented this way because it can't fail,
// but it makes the code much cleaner to use the MathOp wrappers.
template <typename T, typename U>
struct CheckedMaxOp {};
template <typename T, typename U>
requires(std::is_arithmetic_v<T> && std::is_arithmetic_v<U>)
struct CheckedMaxOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
const result_type tmp = IsGreater<T, U>::Test(x, y)
? static_cast<result_type>(x)
: static_cast<result_type>(y);
if (!IsValueInRangeForNumericType<V>(tmp)) {
return false;
}
*result = static_cast<V>(tmp);
return true;
}
};
// Min doesn't really need to be implemented this way because it can't fail,
// but it makes the code much cleaner to use the MathOp wrappers.
template <typename T, typename U>
struct CheckedMinOp {};
template <typename T, typename U>
requires(std::is_arithmetic_v<T> && std::is_arithmetic_v<U>)
struct CheckedMinOp<T, U> {
using result_type = LowestValuePromotion<T, U>;
template <typename V>
static constexpr bool Do(T x, U y, V* result) {
const result_type tmp = IsLess<T, U>::Test(x, y)
? static_cast<result_type>(x)
: static_cast<result_type>(y);
if (!IsValueInRangeForNumericType<V>(tmp)) {
return false;
}
*result = static_cast<V>(tmp);
return true;
}
};
// This is just boilerplate that wraps the standard floating point arithmetic.
// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
template <typename T, typename U> \
requires(std::floating_point<T> || std::floating_point<U>) \
struct Checked##NAME##Op<T, U> { \
using result_type = MaxExponentPromotion<T, U>; \
template <typename V> \
static constexpr bool Do(T x, U y, V* result) { \
const result_type presult = x OP y; \
if (!IsValueInRangeForNumericType<V>(presult)) \
return false; \
*result = static_cast<V>(presult); \
return true; \
} \
};
BASE_FLOAT_ARITHMETIC_OPS(Add, +)
BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
BASE_FLOAT_ARITHMETIC_OPS(Div, /)
#undef BASE_FLOAT_ARITHMETIC_OPS
// Floats carry around their validity state with them, but integers do not. So,
// we wrap the underlying value in a specialization in order to hide that detail
// and expose an interface via accessors.
enum NumericRepresentation {
NUMERIC_INTEGER,
NUMERIC_FLOATING,
NUMERIC_UNKNOWN
};
template <typename NumericType>
struct GetNumericRepresentation {
static const NumericRepresentation value =
std::integral<NumericType>
? NUMERIC_INTEGER
: (std::floating_point<NumericType> ? NUMERIC_FLOATING
: NUMERIC_UNKNOWN);
};
template <typename T,
NumericRepresentation type = GetNumericRepresentation<T>::value>
class CheckedNumericState {};
// Integrals require quite a bit of additional housekeeping to manage state.
template <typename T>
class CheckedNumericState<T, NUMERIC_INTEGER> {
public:
template <typename Src = int>
constexpr explicit CheckedNumericState(Src value = 0, bool is_valid = true)
: is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)),
value_(WellDefinedConversionOrZero(value, is_valid_)) {
static_assert(std::is_arithmetic_v<Src>, "Argument must be numeric.");
}
template <typename Src>
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
: CheckedNumericState(rhs.value(), rhs.is_valid()) {}
constexpr bool is_valid() const { return is_valid_; }
constexpr T value() const { return value_; }
private:
// Ensures that a type conversion does not trigger undefined behavior.
template <typename Src>
static constexpr T WellDefinedConversionOrZero(Src value, bool is_valid) {
return (std::integral<UnderlyingType<Src>> || is_valid)
? static_cast<T>(value)
: 0;
}
// is_valid_ precedes value_ because member initializers in the constructors
// are evaluated in field order, and is_valid_ must be read when initializing
// value_.
bool is_valid_;
T value_;
};
// Floating points maintain their own validity, but need translation wrappers.
template <typename T>
class CheckedNumericState<T, NUMERIC_FLOATING> {
public:
template <typename Src = double>
constexpr explicit CheckedNumericState(Src value = 0.0, bool is_valid = true)
: value_(WellDefinedConversionOrNaN(
value,
is_valid && IsValueInRangeForNumericType<T>(value))) {}
template <typename Src>
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
: CheckedNumericState(rhs.value(), rhs.is_valid()) {}
constexpr bool is_valid() const {
// Written this way because std::isfinite is not constexpr before C++23.
// TODO(C++23): Use `std::isfinite()` unconditionally.
return std::is_constant_evaluated()
? value_ <= std::numeric_limits<T>::max() &&
value_ >= std::numeric_limits<T>::lowest()
: std::isfinite(value_);
}
constexpr T value() const { return value_; }
private:
// Ensures that a type conversion does not trigger undefined behavior.
template <typename Src>
static constexpr T WellDefinedConversionOrNaN(Src value, bool is_valid) {
return (kStaticDstRangeRelationToSrcRange<T, UnderlyingType<Src>> ==
NumericRangeRepresentation::kContained ||
is_valid)
? static_cast<T>(value)
: std::numeric_limits<T>::quiet_NaN();
}
T value_;
};
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_CHECKED_MATH_IMPL_H_
|