1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
#define BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
// IWYU pragma: private, include "base/numerics/clamped_math.h"
#include <concepts>
#include <limits>
#include <type_traits>
#include "base/numerics/checked_math.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math_shared_impl.h" // IWYU pragma: export
namespace base {
namespace internal {
template <typename T>
requires(std::signed_integral<T>)
constexpr T SaturatedNegWrapper(T value) {
return std::is_constant_evaluated() || !ClampedNegFastOp<T>::is_supported
? (NegateWrapper(value) != std::numeric_limits<T>::lowest()
? NegateWrapper(value)
: std::numeric_limits<T>::max())
: ClampedNegFastOp<T>::Do(value);
}
template <typename T>
requires(std::unsigned_integral<T>)
constexpr T SaturatedNegWrapper(T value) {
return T(0);
}
template <typename T>
requires(std::floating_point<T>)
constexpr T SaturatedNegWrapper(T value) {
return -value;
}
template <typename T>
requires(std::integral<T>)
constexpr T SaturatedAbsWrapper(T value) {
// The calculation below is a static identity for unsigned types, but for
// signed integer types it provides a non-branching, saturated absolute value.
// This works because SafeUnsignedAbs() returns an unsigned type, which can
// represent the absolute value of all negative numbers of an equal-width
// integer type. The call to IsValueNegative() then detects overflow in the
// special case of numeric_limits<T>::min(), by evaluating the bit pattern as
// a signed integer value. If it is the overflow case, we end up subtracting
// one from the unsigned result, thus saturating to numeric_limits<T>::max().
return static_cast<T>(
SafeUnsignedAbs(value) -
IsValueNegative<T>(static_cast<T>(SafeUnsignedAbs(value))));
}
template <typename T>
requires(std::floating_point<T>)
constexpr T SaturatedAbsWrapper(T value) {
return value < 0 ? -value : value;
}
template <typename T, typename U>
struct ClampedAddOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedAddOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
requires(std::same_as<V, result_type> || kIsTypeInRangeForNumericType<U, V>)
static constexpr V Do(T x, U y) {
if (!std::is_constant_evaluated() && ClampedAddFastOp<T, U>::is_supported) {
return ClampedAddFastOp<T, U>::template Do<V>(x, y);
}
const V saturated = CommonMaxOrMin<V>(IsValueNegative(y));
V result = {};
if (CheckedAddOp<T, U>::Do(x, y, &result)) [[likely]] {
return result;
}
return saturated;
}
};
template <typename T, typename U>
struct ClampedSubOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedSubOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
requires(std::same_as<V, result_type> || kIsTypeInRangeForNumericType<U, V>)
static constexpr V Do(T x, U y) {
if (!std::is_constant_evaluated() && ClampedSubFastOp<T, U>::is_supported) {
return ClampedSubFastOp<T, U>::template Do<V>(x, y);
}
const V saturated = CommonMaxOrMin<V>(!IsValueNegative(y));
V result = {};
if (CheckedSubOp<T, U>::Do(x, y, &result)) [[likely]] {
return result;
}
return saturated;
}
};
template <typename T, typename U>
struct ClampedMulOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedMulOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
if (!std::is_constant_evaluated() && ClampedMulFastOp<T, U>::is_supported) {
return ClampedMulFastOp<T, U>::template Do<V>(x, y);
}
V result = {};
const V saturated =
CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y));
if (CheckedMulOp<T, U>::Do(x, y, &result)) [[likely]] {
return result;
}
return saturated;
}
};
template <typename T, typename U>
struct ClampedDivOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedDivOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
V result = {};
if ((CheckedDivOp<T, U>::Do(x, y, &result))) [[likely]] {
return result;
}
// Saturation goes to max, min, or NaN (if x is zero).
return x ? CommonMaxOrMin<V>(IsValueNegative(x) ^ IsValueNegative(y))
: SaturationDefaultLimits<V>::NaN();
}
};
template <typename T, typename U>
struct ClampedModOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedModOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
V result = {};
if (CheckedModOp<T, U>::Do(x, y, &result)) [[likely]] {
return result;
}
return x;
}
};
template <typename T, typename U>
struct ClampedLshOp {};
// Left shift. Non-zero values saturate in the direction of the sign. A zero
// shifted by any value always results in zero.
template <typename T, typename U>
requires(std::integral<T> && std::unsigned_integral<U>)
struct ClampedLshOp<T, U> {
using result_type = T;
template <typename V = result_type>
static constexpr V Do(T x, U shift) {
if (shift < std::numeric_limits<T>::digits) [[likely]] {
// Shift as unsigned to avoid undefined behavior.
V result = static_cast<V>(as_unsigned(x) << shift);
// If the shift can be reversed, we know it was valid.
if (result >> shift == x) [[likely]] {
return result;
}
}
return x ? CommonMaxOrMin<V>(IsValueNegative(x)) : 0;
}
};
template <typename T, typename U>
struct ClampedRshOp {};
// Right shift. Negative values saturate to -1. Positive or 0 saturates to 0.
template <typename T, typename U>
requires(std::integral<T> && std::unsigned_integral<U>)
struct ClampedRshOp<T, U> {
using result_type = T;
template <typename V = result_type>
static constexpr V Do(T x, U shift) {
// Signed right shift is odd, because it saturates to -1 or 0.
const V saturated = as_unsigned(V(0)) - IsValueNegative(x);
if (shift < kIntegerBitsPlusSign<T>) [[likely]] {
return saturated_cast<V>(x >> shift);
}
return saturated;
}
};
template <typename T, typename U>
struct ClampedAndOp {};
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedAndOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) & static_cast<result_type>(y);
}
};
template <typename T, typename U>
struct ClampedOrOp {};
// For simplicity we promote to unsigned integers.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedOrOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) | static_cast<result_type>(y);
}
};
template <typename T, typename U>
struct ClampedXorOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
requires(std::integral<T> && std::integral<U>)
struct ClampedXorOp<T, U> {
using result_type = std::make_unsigned_t<MaxExponentPromotion<T, U>>;
template <typename V>
static constexpr V Do(T x, U y) {
return static_cast<result_type>(x) ^ static_cast<result_type>(y);
}
};
template <typename T, typename U>
struct ClampedMaxOp {};
template <typename T, typename U>
requires(std::is_arithmetic_v<T> && std::is_arithmetic_v<U>)
struct ClampedMaxOp<T, U> {
using result_type = MaxExponentPromotion<T, U>;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
return IsGreater<T, U>::Test(x, y) ? saturated_cast<V>(x)
: saturated_cast<V>(y);
}
};
template <typename T, typename U>
struct ClampedMinOp {};
template <typename T, typename U>
requires(std::is_arithmetic_v<T> && std::is_arithmetic_v<U>)
struct ClampedMinOp<T, U> {
using result_type = LowestValuePromotion<T, U>;
template <typename V = result_type>
static constexpr V Do(T x, U y) {
return IsLess<T, U>::Test(x, y) ? saturated_cast<V>(x)
: saturated_cast<V>(y);
}
};
// This is just boilerplate that wraps the standard floating point arithmetic.
// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
template <typename T, typename U> \
requires(std::floating_point<T> || std::floating_point<U>) \
struct Clamped##NAME##Op<T, U> { \
using result_type = MaxExponentPromotion<T, U>; \
template <typename V = result_type> \
static constexpr V Do(T x, U y) { \
return saturated_cast<V>(x OP y); \
} \
};
BASE_FLOAT_ARITHMETIC_OPS(Add, +)
BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
BASE_FLOAT_ARITHMETIC_OPS(Div, /)
#undef BASE_FLOAT_ARITHMETIC_OPS
} // namespace internal
} // namespace base
#endif // BASE_NUMERICS_CLAMPED_MATH_IMPL_H_
|