1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_H_
#include <stddef.h>
#include <cmath>
#include <concepts>
#include <limits>
#include <type_traits>
#include "base/numerics/safe_conversions_impl.h" // IWYU pragma: export
#if defined(__ARMEL__) && !defined(__native_client__)
#include "base/numerics/safe_conversions_arm_impl.h" // IWYU pragma: export
#define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (1)
#else
#define BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS (0)
#endif
namespace base {
namespace internal {
#if !BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
template <typename Dst, typename Src>
struct SaturateFastAsmOp {
static constexpr bool is_supported = false;
static constexpr Dst Do(Src) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<Dst>();
}
};
#endif // BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
#undef BASE_HAS_OPTIMIZED_SAFE_CONVERSIONS
// The following special case a few specific integer conversions where we can
// eke out better performance than range checking.
template <typename Dst, typename Src>
struct IsValueInRangeFastOp {
static constexpr bool is_supported = false;
static constexpr bool Do(Src) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<bool>();
}
};
// Signed to signed range comparison.
template <typename Dst, typename Src>
requires(std::signed_integral<Dst> && std::signed_integral<Src> &&
!kIsTypeInRangeForNumericType<Dst, Src>)
struct IsValueInRangeFastOp<Dst, Src> {
static constexpr bool is_supported = true;
static constexpr bool Do(Src value) {
// Just downcast to the smaller type, sign extend it back to the original
// type, and then see if it matches the original value.
return value == static_cast<Dst>(value);
}
};
// Signed to unsigned range comparison.
template <typename Dst, typename Src>
requires(std::unsigned_integral<Dst> && std::signed_integral<Src> &&
!kIsTypeInRangeForNumericType<Dst, Src>)
struct IsValueInRangeFastOp<Dst, Src> {
static constexpr bool is_supported = true;
static constexpr bool Do(Src value) {
// We cast a signed as unsigned to overflow negative values to the top,
// then compare against whichever maximum is smaller, as our upper bound.
return as_unsigned(value) <= as_unsigned(kCommonMax<Src, Dst>);
}
};
// Convenience function that returns true if the supplied value is in range
// for the destination type.
template <typename Dst, typename Src>
requires(IsNumeric<Src> && std::is_arithmetic_v<Dst> &&
std::numeric_limits<Dst>::lowest() < std::numeric_limits<Dst>::max())
constexpr bool IsValueInRangeForNumericType(Src value) {
using SrcType = UnderlyingType<Src>;
const auto underlying_value = static_cast<SrcType>(value);
return internal::IsValueInRangeFastOp<Dst, SrcType>::is_supported
? internal::IsValueInRangeFastOp<Dst, SrcType>::Do(
underlying_value)
: internal::DstRangeRelationToSrcRange<Dst>(underlying_value)
.IsValid();
}
// checked_cast<> is analogous to static_cast<> for numeric types,
// except that it CHECKs that the specified numeric conversion will not
// overflow or underflow. NaN source will always trigger a CHECK.
template <typename Dst,
class CheckHandler = internal::CheckOnFailure,
typename Src>
requires(IsNumeric<Src> && std::is_arithmetic_v<Dst> &&
std::numeric_limits<Dst>::lowest() < std::numeric_limits<Dst>::max())
constexpr Dst checked_cast(Src value) {
// This throws a compile-time error on evaluating the constexpr if it can be
// determined at compile-time as failing, otherwise it will CHECK at runtime.
if (IsValueInRangeForNumericType<Dst>(value)) [[likely]] {
return static_cast<Dst>(static_cast<UnderlyingType<Src>>(value));
}
return CheckHandler::template HandleFailure<Dst>();
}
// Default boundaries for integral/float: max/infinity, lowest/-infinity, 0/NaN.
// You may provide your own limits (e.g. to saturated_cast) so long as you
// implement all of the static constexpr member functions in the class below.
template <typename T>
struct SaturationDefaultLimits : public std::numeric_limits<T> {
static constexpr T NaN() {
if constexpr (std::numeric_limits<T>::has_quiet_NaN) {
return std::numeric_limits<T>::quiet_NaN();
} else {
return T();
}
}
using std::numeric_limits<T>::max;
static constexpr T Overflow() {
if constexpr (std::numeric_limits<T>::has_infinity) {
return std::numeric_limits<T>::infinity();
} else {
return std::numeric_limits<T>::max();
}
}
using std::numeric_limits<T>::lowest;
static constexpr T Underflow() {
if constexpr (std::numeric_limits<T>::has_infinity) {
return std::numeric_limits<T>::infinity() * -1;
} else {
return std::numeric_limits<T>::lowest();
}
}
};
template <typename Dst, template <typename> class S, typename Src>
constexpr Dst saturated_cast_impl(Src value, RangeCheck constraint) {
// For some reason clang generates much better code when the branch is
// structured exactly this way, rather than a sequence of checks.
return !constraint.IsOverflowFlagSet()
? (!constraint.IsUnderflowFlagSet() ? static_cast<Dst>(value)
: S<Dst>::Underflow())
// Skip this check for integral Src, which cannot be NaN.
: (std::is_integral_v<Src> || !constraint.IsUnderflowFlagSet()
? S<Dst>::Overflow()
: S<Dst>::NaN());
}
// We can reduce the number of conditions and get slightly better performance
// for normal signed and unsigned integer ranges. And in the specific case of
// Arm, we can use the optimized saturation instructions.
template <typename Dst, typename Src>
struct SaturateFastOp {
static constexpr bool is_supported = false;
static constexpr Dst Do(Src) {
// Force a compile failure if instantiated.
return CheckOnFailure::template HandleFailure<Dst>();
}
};
template <typename Dst, typename Src>
requires(std::integral<Src> && std::integral<Dst> &&
SaturateFastAsmOp<Dst, Src>::is_supported)
struct SaturateFastOp<Dst, Src> {
static constexpr bool is_supported = true;
static constexpr Dst Do(Src value) {
return SaturateFastAsmOp<Dst, Src>::Do(value);
}
};
template <typename Dst, typename Src>
requires(std::integral<Src> && std::integral<Dst> &&
!SaturateFastAsmOp<Dst, Src>::is_supported)
struct SaturateFastOp<Dst, Src> {
static constexpr bool is_supported = true;
static constexpr Dst Do(Src value) {
// The exact order of the following is structured to hit the correct
// optimization heuristics across compilers. Do not change without
// checking the emitted code.
const Dst saturated = CommonMaxOrMin<Dst, Src>(
kIsMaxInRangeForNumericType<Dst, Src> ||
(!kIsMinInRangeForNumericType<Dst, Src> && IsValueNegative(value)));
if (IsValueInRangeForNumericType<Dst>(value)) [[likely]] {
return static_cast<Dst>(value);
}
return saturated;
}
};
// saturated_cast<> is analogous to static_cast<> for numeric types, except
// that the specified numeric conversion will saturate by default rather than
// overflow or underflow, and NaN assignment to an integral will return 0.
// All boundary condition behaviors can be overridden with a custom handler.
template <typename Dst,
template <typename> class SaturationHandler = SaturationDefaultLimits,
typename Src>
constexpr Dst saturated_cast(Src value) {
using SrcType = UnderlyingType<Src>;
const auto underlying_value = static_cast<SrcType>(value);
return !std::is_constant_evaluated() &&
SaturateFastOp<Dst, SrcType>::is_supported &&
std::is_same_v<SaturationHandler<Dst>,
SaturationDefaultLimits<Dst>>
? SaturateFastOp<Dst, SrcType>::Do(underlying_value)
: saturated_cast_impl<Dst, SaturationHandler, SrcType>(
underlying_value,
DstRangeRelationToSrcRange<Dst, SaturationHandler, SrcType>(
underlying_value));
}
// strict_cast<> is analogous to static_cast<> for numeric types, except that
// it will cause a compile failure if the destination type is not large enough
// to contain any value in the source type. It performs no runtime checking.
template <typename Dst, typename Src, typename SrcType = UnderlyingType<Src>>
requires(
IsNumeric<Src> && std::is_arithmetic_v<Dst> &&
// If you got here from a compiler error, it's because you tried to assign
// from a source type to a destination type that has insufficient range.
// The solution may be to change the destination type you're assigning to,
// and use one large enough to represent the source.
// Alternatively, you may be better served with the checked_cast<> or
// saturated_cast<> template functions for your particular use case.
kStaticDstRangeRelationToSrcRange<Dst, SrcType> ==
NumericRangeRepresentation::kContained)
constexpr Dst strict_cast(Src value) {
return static_cast<Dst>(static_cast<SrcType>(value));
}
// Some wrappers to statically check that a type is in range.
template <typename Dst, typename Src>
inline constexpr bool kIsNumericRangeContained = false;
template <typename Dst, typename Src>
requires(std::is_arithmetic_v<ArithmeticOrUnderlyingEnum<Dst>> &&
std::is_arithmetic_v<ArithmeticOrUnderlyingEnum<Src>>)
inline constexpr bool kIsNumericRangeContained<Dst, Src> =
kStaticDstRangeRelationToSrcRange<Dst, Src> ==
NumericRangeRepresentation::kContained;
// StrictNumeric implements compile time range checking between numeric types by
// wrapping assignment operations in a strict_cast. This class is intended to be
// used for function arguments and return types, to ensure the destination type
// can always contain the source type. This is essentially the same as enforcing
// -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied
// incrementally at API boundaries, making it easier to convert code so that it
// compiles cleanly with truncation warnings enabled.
// This template should introduce no runtime overhead, but it also provides no
// runtime checking of any of the associated mathematical operations. Use
// CheckedNumeric for runtime range checks of the actual value being assigned.
template <typename T>
requires std::is_arithmetic_v<T>
class StrictNumeric {
public:
using type = T;
constexpr StrictNumeric() : value_(0) {}
// Copy constructor.
template <typename Src>
constexpr StrictNumeric(const StrictNumeric<Src>& rhs)
: value_(strict_cast<T>(rhs.value_)) {}
// This is not an explicit constructor because we implicitly upgrade regular
// numerics to StrictNumerics to make them easier to use.
template <typename Src>
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr StrictNumeric(Src value) : value_(strict_cast<T>(value)) {}
// If you got here from a compiler error, it's because you tried to assign
// from a source type to a destination type that has insufficient range.
// The solution may be to change the destination type you're assigning to,
// and use one large enough to represent the source.
// If you're assigning from a CheckedNumeric<> class, you may be able to use
// the AssignIfValid() member function, specify a narrower destination type to
// the member value functions (e.g. val.template ValueOrDie<Dst>()), use one
// of the value helper functions (e.g. ValueOrDieForType<Dst>(val)).
// If you've encountered an _ambiguous overload_ you can use a static_cast<>
// to explicitly cast the result to the destination type.
// If none of that works, you may be better served with the checked_cast<> or
// saturated_cast<> template functions for your particular use case.
template <typename Dst>
requires(kIsNumericRangeContained<Dst, T>)
constexpr operator Dst() const { // NOLINT(google-explicit-constructor)
return static_cast<ArithmeticOrUnderlyingEnum<Dst>>(value_);
}
// Unary negation does not require any conversions.
constexpr bool operator!() const { return !value_; }
private:
template <typename U>
requires std::is_arithmetic_v<U>
friend class StrictNumeric;
T value_;
};
template <typename T>
StrictNumeric(T) -> StrictNumeric<T>;
// Convenience wrapper returns a StrictNumeric from the provided arithmetic
// type.
template <typename T>
constexpr StrictNumeric<UnderlyingType<T>> MakeStrictNum(const T value) {
return value;
}
#define BASE_NUMERIC_COMPARISON_OPERATORS(CLASS, NAME, OP) \
template <typename L, typename R> \
requires(internal::Is##CLASS##Op<L, R>) \
constexpr bool operator OP(L lhs, R rhs) { \
return SafeCompare<NAME, UnderlyingType<L>, UnderlyingType<R>>(lhs, rhs); \
}
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLess, <)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsLessOrEqual, <=)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreater, >)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsGreaterOrEqual, >=)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsEqual, ==)
BASE_NUMERIC_COMPARISON_OPERATORS(Strict, IsNotEqual, !=)
} // namespace internal
using internal::as_signed;
using internal::as_unsigned;
using internal::checked_cast;
using internal::IsValueInRangeForNumericType;
using internal::IsValueNegative;
using internal::kIsTypeInRangeForNumericType;
using internal::MakeStrictNum;
using internal::SafeUnsignedAbs;
using internal::saturated_cast;
using internal::strict_cast;
using internal::StrictNumeric;
// Explicitly make a shorter size_t alias for convenience.
using SizeT = StrictNumeric<size_t>;
// floating -> integral conversions that saturate and thus can actually return
// an integral type.
//
// Generally, what you want is saturated_cast<Dst>(std::nearbyint(x)), which
// rounds correctly according to IEEE-754 (round to nearest, ties go to nearest
// even number; this avoids bias). If your code is performance-critical
// and you are sure that you will never overflow, you can use std::lrint()
// or std::llrint(), which return a long or long long directly.
//
// Below are convenience functions around similar patterns, except that
// they round in nonstandard directions and will generally be slower.
// Rounds towards negative infinity (i.e., down).
template <typename Dst = int, typename Src>
requires(std::integral<Dst> && std::floating_point<Src>)
Dst ClampFloor(Src value) {
return saturated_cast<Dst>(std::floor(value));
}
// Rounds towards positive infinity (i.e., up).
template <typename Dst = int, typename Src>
requires(std::integral<Dst> && std::floating_point<Src>)
Dst ClampCeil(Src value) {
return saturated_cast<Dst>(std::ceil(value));
}
// Rounds towards nearest integer, with ties away from zero.
// This means that 0.5 will be rounded to 1 and 1.5 will be rounded to 2.
// Similarly, -0.5 will be rounded to -1 and -1.5 will be rounded to -2.
//
// This is normally not what you want accuracy-wise (it introduces a small bias
// away from zero), and it is not the fastest option, but it is frequently what
// existing code expects. Compare with saturated_cast<Dst>(std::nearbyint(x))
// or std::lrint(x), which would round 0.5 and -0.5 to 0 but 1.5 to 2 and
// -1.5 to -2.
template <typename Dst = int, typename Src>
requires(std::integral<Dst> && std::floating_point<Src>)
Dst ClampRound(Src value) {
const Src rounded = std::round(value);
return saturated_cast<Dst>(rounded);
}
} // namespace base
#endif // BASE_NUMERICS_SAFE_CONVERSIONS_H_
|