1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
#define BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
// IWYU pragma: private, include "base/numerics/safe_conversions.h"
#include <stddef.h>
#include <stdint.h>
#include <concepts>
#include <limits>
#include <type_traits>
#include <utility>
#include "base/numerics/integral_constant_like.h"
namespace base::internal {
// The std library doesn't provide a binary max_exponent for integers, however
// we can compute an analog using std::numeric_limits<>::digits.
template <typename NumericType>
inline constexpr int kMaxExponent =
std::is_floating_point_v<NumericType>
? std::numeric_limits<NumericType>::max_exponent
: std::numeric_limits<NumericType>::digits + 1;
// The number of bits (including the sign) in an integer. Eliminates sizeof
// hacks.
template <typename NumericType>
inline constexpr int kIntegerBitsPlusSign =
std::numeric_limits<NumericType>::digits + std::is_signed_v<NumericType>;
// Determines if a numeric value is negative without throwing compiler
// warnings on: unsigned(value) < 0.
template <typename T>
requires(std::is_arithmetic_v<T>)
constexpr bool IsValueNegative(T value) {
if constexpr (std::is_signed_v<T>) {
return value < 0;
} else {
return false;
}
}
// This performs a fast negation, returning a signed value. It works on unsigned
// arguments, but probably doesn't do what you want for any unsigned value
// larger than max / 2 + 1 (i.e. signed min cast to unsigned).
template <typename T>
requires std::is_integral_v<T>
constexpr auto ConditionalNegate(T x, bool is_negative) {
using SignedT = std::make_signed_t<T>;
using UnsignedT = std::make_unsigned_t<T>;
return static_cast<SignedT>((static_cast<UnsignedT>(x) ^
static_cast<UnsignedT>(-SignedT(is_negative))) +
is_negative);
}
// This performs a safe, absolute value via unsigned overflow.
template <typename T>
requires std::is_integral_v<T>
constexpr auto SafeUnsignedAbs(T value) {
using UnsignedT = std::make_unsigned_t<T>;
return IsValueNegative(value)
? static_cast<UnsignedT>(0u - static_cast<UnsignedT>(value))
: static_cast<UnsignedT>(value);
}
// TODO(jschuh): Debug builds don't reliably propagate constants, so we restrict
// some accelerated runtime paths to release builds until this can be forced
// with consteval support in C++20 or C++23.
#if defined(NDEBUG)
inline constexpr bool kEnableAsmCode = true;
#else
inline constexpr bool kEnableAsmCode = false;
#endif
// Forces a crash, like a NOTREACHED(). Used for numeric boundary errors.
// Also used in a constexpr template to trigger a compilation failure on
// an error condition.
struct CheckOnFailure {
template <typename T>
static T HandleFailure() {
#if defined(_MSC_VER)
__debugbreak();
#elif defined(__GNUC__) || defined(__clang__)
__builtin_trap();
#else
((void)(*(volatile char*)0 = 0));
#endif
return T();
}
};
enum class IntegerRepresentation { kUnsigned, kSigned };
// A range for a given nunmeric Src type is contained for a given numeric Dst
// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and
// numeric_limits<Src>::lowest() >= numeric_limits<Dst>::lowest() are true.
// We implement this as template specializations rather than simple static
// comparisons to ensure type correctness in our comparisons.
enum class NumericRangeRepresentation { kNotContained, kContained };
// Helper templates to statically determine if our destination type can contain
// maximum and minimum values represented by the source type.
// Default case, used for same sign: Dst is guaranteed to contain Src only if
// its range is equal or larger.
template <typename Dst,
typename Src,
IntegerRepresentation DstSign =
std::is_signed_v<Dst> ? IntegerRepresentation::kSigned
: IntegerRepresentation::kUnsigned,
IntegerRepresentation SrcSign =
std::is_signed_v<Src> ? IntegerRepresentation::kSigned
: IntegerRepresentation::kUnsigned>
inline constexpr auto kStaticDstRangeRelationToSrcRange =
kMaxExponent<Dst> >= kMaxExponent<Src>
? NumericRangeRepresentation::kContained
: NumericRangeRepresentation::kNotContained;
// Unsigned to signed: Dst is guaranteed to contain source only if its range is
// larger.
template <typename Dst, typename Src>
inline constexpr auto
kStaticDstRangeRelationToSrcRange<Dst,
Src,
IntegerRepresentation::kSigned,
IntegerRepresentation::kUnsigned> =
kMaxExponent<Dst> > kMaxExponent<Src>
? NumericRangeRepresentation::kContained
: NumericRangeRepresentation::kNotContained;
// Signed to unsigned: Dst cannot be statically determined to contain Src.
template <typename Dst, typename Src>
inline constexpr auto
kStaticDstRangeRelationToSrcRange<Dst,
Src,
IntegerRepresentation::kUnsigned,
IntegerRepresentation::kSigned> =
NumericRangeRepresentation::kNotContained;
// This class wraps the range constraints as separate booleans so the compiler
// can identify constants and eliminate unused code paths.
class RangeCheck {
public:
constexpr RangeCheck() = default;
constexpr RangeCheck(bool is_in_lower_bound, bool is_in_upper_bound)
: is_underflow_(!is_in_lower_bound), is_overflow_(!is_in_upper_bound) {}
constexpr bool operator==(const RangeCheck& rhs) const = default;
constexpr bool IsValid() const { return !is_overflow_ && !is_underflow_; }
constexpr bool IsInvalid() const { return is_overflow_ && is_underflow_; }
constexpr bool IsOverflow() const { return is_overflow_ && !is_underflow_; }
constexpr bool IsUnderflow() const { return !is_overflow_ && is_underflow_; }
constexpr bool IsOverflowFlagSet() const { return is_overflow_; }
constexpr bool IsUnderflowFlagSet() const { return is_underflow_; }
private:
// Do not change the order of these member variables. The integral conversion
// optimization depends on this exact order.
const bool is_underflow_ = false;
const bool is_overflow_ = false;
};
// The following helper template addresses a corner case in range checks for
// conversion from a floating-point type to an integral type of smaller range
// but larger precision (e.g. float -> unsigned). The problem is as follows:
// 1. Integral maximum is always one less than a power of two, so it must be
// truncated to fit the mantissa of the floating point. The direction of
// rounding is implementation defined, but by default it's always IEEE
// floats, which round to nearest and thus result in a value of larger
// magnitude than the integral value.
// Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX
// // is 4294967295u.
// 2. If the floating point value is equal to the promoted integral maximum
// value, a range check will erroneously pass.
// Example: (4294967296f <= 4294967295u) // This is true due to a precision
// // loss in rounding up to float.
// 3. When the floating point value is then converted to an integral, the
// resulting value is out of range for the target integral type and
// thus is implementation defined.
// Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0.
// To fix this bug we manually truncate the maximum value when the destination
// type is an integral of larger precision than the source floating-point type,
// such that the resulting maximum is represented exactly as a floating point.
template <typename Dst, typename Src, template <typename> class Bounds>
struct NarrowingRange {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = std::numeric_limits<Dst>;
// Computes the mask required to make an accurate comparison between types.
static constexpr int kShift = (kMaxExponent<Src> > kMaxExponent<Dst> &&
SrcLimits::digits < DstLimits::digits)
? (DstLimits::digits - SrcLimits::digits)
: 0;
template <typename T>
requires(std::same_as<T, Dst> &&
((std::integral<T> && kShift < DstLimits::digits) ||
(std::floating_point<T> && kShift == 0)))
// Masks out the integer bits that are beyond the precision of the
// intermediate type used for comparison.
static constexpr T Adjust(T value) {
if constexpr (std::integral<T>) {
using UnsignedDst = typename std::make_unsigned_t<T>;
return static_cast<T>(
ConditionalNegate(SafeUnsignedAbs(value) &
~((UnsignedDst{1} << kShift) - UnsignedDst{1}),
IsValueNegative(value)));
} else {
return value;
}
}
static constexpr Dst max() { return Adjust(Bounds<Dst>::max()); }
static constexpr Dst lowest() { return Adjust(Bounds<Dst>::lowest()); }
};
// The following templates are for ranges that must be verified at runtime. We
// split it into checks based on signedness to avoid confusing casts and
// compiler warnings on signed an unsigned comparisons.
// Default case, used for same sign narrowing: The range is contained for normal
// limits.
template <typename Dst,
typename Src,
template <typename>
class Bounds,
IntegerRepresentation DstSign =
std::is_signed_v<Dst> ? IntegerRepresentation::kSigned
: IntegerRepresentation::kUnsigned,
IntegerRepresentation SrcSign =
std::is_signed_v<Src> ? IntegerRepresentation::kSigned
: IntegerRepresentation::kUnsigned,
NumericRangeRepresentation DstRange =
kStaticDstRangeRelationToSrcRange<Dst, Src>>
struct DstRangeRelationToSrcRangeImpl {
static constexpr RangeCheck Check(Src value) {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(
static_cast<Dst>(SrcLimits::lowest()) >= DstLimits::lowest() ||
static_cast<Dst>(value) >= DstLimits::lowest(),
static_cast<Dst>(SrcLimits::max()) <= DstLimits::max() ||
static_cast<Dst>(value) <= DstLimits::max());
}
};
// Signed to signed narrowing: Both the upper and lower boundaries may be
// exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
Dst,
Src,
Bounds,
IntegerRepresentation::kSigned,
IntegerRepresentation::kSigned,
NumericRangeRepresentation::kNotContained> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(value >= DstLimits::lowest(), value <= DstLimits::max());
}
};
// Unsigned to unsigned narrowing: Only the upper bound can be exceeded for
// standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
Dst,
Src,
Bounds,
IntegerRepresentation::kUnsigned,
IntegerRepresentation::kUnsigned,
NumericRangeRepresentation::kNotContained> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(
DstLimits::lowest() == Dst{0} || value >= DstLimits::lowest(),
value <= DstLimits::max());
}
};
// Unsigned to signed: Only the upper bound can be exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
Dst,
Src,
Bounds,
IntegerRepresentation::kSigned,
IntegerRepresentation::kUnsigned,
NumericRangeRepresentation::kNotContained> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
return RangeCheck(DstLimits::lowest() <= Dst{0} ||
static_cast<Promotion>(value) >=
static_cast<Promotion>(DstLimits::lowest()),
static_cast<Promotion>(value) <=
static_cast<Promotion>(DstLimits::max()));
}
};
// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst,
// and any negative value exceeds the lower boundary for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<
Dst,
Src,
Bounds,
IntegerRepresentation::kUnsigned,
IntegerRepresentation::kSigned,
NumericRangeRepresentation::kNotContained> {
static constexpr RangeCheck Check(Src value) {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
bool ge_zero;
// Converting floating-point to integer will discard fractional part, so
// values in (-1.0, -0.0) will truncate to 0 and fit in Dst.
if constexpr (std::is_floating_point_v<Src>) {
ge_zero = value > Src{-1};
} else {
ge_zero = value >= Src{0};
}
return RangeCheck(
ge_zero && (DstLimits::lowest() == 0 ||
static_cast<Dst>(value) >= DstLimits::lowest()),
static_cast<Promotion>(SrcLimits::max()) <=
static_cast<Promotion>(DstLimits::max()) ||
static_cast<Promotion>(value) <=
static_cast<Promotion>(DstLimits::max()));
}
};
// Simple wrapper for statically checking if a type's range is contained.
template <typename Dst, typename Src>
inline constexpr bool kIsTypeInRangeForNumericType =
kStaticDstRangeRelationToSrcRange<Dst, Src> ==
NumericRangeRepresentation::kContained;
template <typename Dst,
template <typename> class Bounds = std::numeric_limits,
typename Src>
requires(std::is_arithmetic_v<Src> && std::is_arithmetic_v<Dst> &&
Bounds<Dst>::lowest() < Bounds<Dst>::max())
constexpr RangeCheck DstRangeRelationToSrcRange(Src value) {
return DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds>::Check(value);
}
// Integer promotion templates used by the portable checked integer arithmetic.
template <size_t Size, bool IsSigned>
struct IntegerForDigitsAndSignImpl;
#define INTEGER_FOR_DIGITS_AND_SIGN(I) \
template <> \
struct IntegerForDigitsAndSignImpl<kIntegerBitsPlusSign<I>, \
std::is_signed_v<I>> { \
using type = I; \
}
INTEGER_FOR_DIGITS_AND_SIGN(int8_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint8_t);
INTEGER_FOR_DIGITS_AND_SIGN(int16_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint16_t);
INTEGER_FOR_DIGITS_AND_SIGN(int32_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint32_t);
INTEGER_FOR_DIGITS_AND_SIGN(int64_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint64_t);
#undef INTEGER_FOR_DIGITS_AND_SIGN
template <size_t Size, bool IsSigned>
using IntegerForDigitsAndSign =
IntegerForDigitsAndSignImpl<Size, IsSigned>::type;
// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
// support 128-bit math, then the ArithmeticPromotion template below will need
// to be updated (or more likely replaced with a decltype expression).
static_assert(kIntegerBitsPlusSign<intmax_t> == 64,
"Max integer size not supported for this toolchain.");
template <typename Integer, bool IsSigned = std::is_signed_v<Integer>>
using TwiceWiderInteger =
IntegerForDigitsAndSign<kIntegerBitsPlusSign<Integer> * 2, IsSigned>;
// Determines the type that can represent the largest positive value.
template <typename Lhs, typename Rhs>
using MaxExponentPromotion =
std::conditional_t<(kMaxExponent<Lhs> > kMaxExponent<Rhs>), Lhs, Rhs>;
// Determines the type that can represent the lowest arithmetic value.
template <typename Lhs, typename Rhs>
using LowestValuePromotion = std::conditional_t<
std::is_signed_v<Lhs>
? (!std::is_signed_v<Rhs> || kMaxExponent<Lhs> > kMaxExponent<Rhs>)
: (!std::is_signed_v<Rhs> && kMaxExponent<Lhs> < kMaxExponent<Rhs>),
Lhs,
Rhs>;
// Determines the type that is best able to represent an arithmetic result.
// Default case, used when the side with the max exponent is big enough.
template <typename Lhs,
typename Rhs = Lhs,
bool is_intmax_type =
std::is_integral_v<MaxExponentPromotion<Lhs, Rhs>> &&
kIntegerBitsPlusSign<MaxExponentPromotion<Lhs, Rhs>> ==
kIntegerBitsPlusSign<intmax_t>,
bool is_max_exponent =
kStaticDstRangeRelationToSrcRange<MaxExponentPromotion<Lhs, Rhs>,
Lhs> ==
NumericRangeRepresentation::kContained &&
kStaticDstRangeRelationToSrcRange<MaxExponentPromotion<Lhs, Rhs>,
Rhs> ==
NumericRangeRepresentation::kContained>
struct BigEnoughPromotionImpl {
using type = MaxExponentPromotion<Lhs, Rhs>;
static constexpr bool kContained = true;
};
// We can use a twice wider type to fit.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotionImpl<Lhs, Rhs, false, false> {
using type =
TwiceWiderInteger<MaxExponentPromotion<Lhs, Rhs>,
std::is_signed_v<Lhs> || std::is_signed_v<Rhs>>;
static constexpr bool kContained = true;
};
// No type is large enough.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotionImpl<Lhs, Rhs, true, false> {
using type = MaxExponentPromotion<Lhs, Rhs>;
static constexpr bool kContained = false;
};
template <typename Lhs, typename Rhs>
using BigEnoughPromotion = BigEnoughPromotionImpl<Lhs, Rhs>::type;
template <typename Lhs, typename Rhs>
inline constexpr bool kIsBigEnoughPromotionContained =
BigEnoughPromotionImpl<Lhs, Rhs>::kContained;
// We can statically check if operations on the provided types can wrap, so we
// can skip the checked operations if they're not needed. So, for an integer we
// care if the destination type preserves the sign and is twice the width of
// the source.
template <typename T, typename Lhs, typename Rhs = Lhs>
inline constexpr bool kIsIntegerArithmeticSafe =
!std::is_floating_point_v<T> && !std::is_floating_point_v<Lhs> &&
!std::is_floating_point_v<Rhs> &&
std::is_signed_v<T> >= std::is_signed_v<Lhs> &&
kIntegerBitsPlusSign<T> >=
(2 * kIntegerBitsPlusSign<Lhs>)&&std::is_signed_v<T> >=
std::is_signed_v<Rhs> &&
kIntegerBitsPlusSign<T> >= (2 * kIntegerBitsPlusSign<Rhs>);
// Promotes to a type that can represent any possible result of a binary
// arithmetic operation with the source types.
template <typename Lhs, typename Rhs>
struct FastIntegerArithmeticPromotionImpl {
using type = BigEnoughPromotion<Lhs, Rhs>;
static constexpr bool kContained = false;
};
template <typename Lhs, typename Rhs>
requires(kIsIntegerArithmeticSafe<
std::conditional_t<std::is_signed_v<Lhs> || std::is_signed_v<Rhs>,
intmax_t,
uintmax_t>,
MaxExponentPromotion<Lhs, Rhs>>)
struct FastIntegerArithmeticPromotionImpl<Lhs, Rhs> {
using type =
TwiceWiderInteger<MaxExponentPromotion<Lhs, Rhs>,
std::is_signed_v<Lhs> || std::is_signed_v<Rhs>>;
static_assert(kIsIntegerArithmeticSafe<type, Lhs, Rhs>);
static constexpr bool kContained = true;
};
template <typename Lhs, typename Rhs>
using FastIntegerArithmeticPromotion =
FastIntegerArithmeticPromotionImpl<Lhs, Rhs>::type;
template <typename Lhs, typename Rhs>
inline constexpr bool kIsFastIntegerArithmeticPromotionContained =
FastIntegerArithmeticPromotionImpl<Lhs, Rhs>::kContained;
template <typename T>
struct ArithmeticOrIntegralConstant {
using type = T;
};
template <typename T>
requires IntegralConstantLike<T>
struct ArithmeticOrIntegralConstant<T> {
using type = T::value_type;
};
// Extracts the underlying type from an enum.
template <typename T>
using ArithmeticOrUnderlyingEnum =
typename std::conditional_t<std::is_enum_v<T>,
std::underlying_type<T>,
ArithmeticOrIntegralConstant<T>>::type;
// The following are helper templates used in the CheckedNumeric class.
template <typename T>
requires std::is_arithmetic_v<T>
class CheckedNumeric;
template <typename T>
requires std::is_arithmetic_v<T>
class ClampedNumeric;
template <typename T>
requires std::is_arithmetic_v<T>
class StrictNumeric;
// Used to treat CheckedNumeric and arithmetic underlying types the same.
template <typename T>
inline constexpr bool kIsCheckedNumeric = false;
template <typename T>
inline constexpr bool kIsCheckedNumeric<CheckedNumeric<T>> = true;
template <typename T>
concept IsCheckedNumeric = kIsCheckedNumeric<T>;
template <typename T>
inline constexpr bool kIsClampedNumeric = false;
template <typename T>
inline constexpr bool kIsClampedNumeric<ClampedNumeric<T>> = true;
template <typename T>
concept IsClampedNumeric = kIsClampedNumeric<T>;
template <typename T>
inline constexpr bool kIsStrictNumeric = false;
template <typename T>
inline constexpr bool kIsStrictNumeric<StrictNumeric<T>> = true;
template <typename T>
concept IsStrictNumeric = kIsStrictNumeric<T>;
template <typename T>
struct UnderlyingTypeImpl {
using type = ArithmeticOrUnderlyingEnum<T>;
};
template <typename T>
struct UnderlyingTypeImpl<CheckedNumeric<T>> {
using type = T;
};
template <typename T>
struct UnderlyingTypeImpl<ClampedNumeric<T>> {
using type = T;
};
template <typename T>
struct UnderlyingTypeImpl<StrictNumeric<T>> {
using type = T;
};
template <typename T>
using UnderlyingType = UnderlyingTypeImpl<T>::type;
template <typename T>
inline constexpr bool kIsNumeric = std::is_arithmetic_v<UnderlyingType<T>>;
template <typename T>
requires(IsCheckedNumeric<T> || IsClampedNumeric<T> || IsStrictNumeric<T>)
inline constexpr bool kIsNumeric<T> = true;
template <typename T>
concept IsNumeric = kIsNumeric<T>;
template <typename L, typename R>
concept IsCheckedOp = (IsCheckedNumeric<L> && IsNumeric<R>) ||
(IsCheckedNumeric<R> && IsNumeric<L>);
template <typename L, typename R>
concept IsClampedOp =
!IsCheckedOp<L, R> && ((IsClampedNumeric<L> && IsNumeric<R>) ||
(IsClampedNumeric<R> && IsNumeric<L>));
template <typename L, typename R>
concept IsStrictOp = !IsCheckedOp<L, R> && !IsClampedOp<L, R> &&
((IsStrictNumeric<L> && IsNumeric<R>) ||
(IsStrictNumeric<R> && IsNumeric<L>));
// as_signed<> returns the supplied integral value (or integral castable
// Numeric template) cast as a signed integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_signed<T>::type>(t)
template <typename Src, typename Dst = std::make_signed_t<UnderlyingType<Src>>>
requires std::integral<Dst>
constexpr auto as_signed(Src value) {
return static_cast<Dst>(value);
}
// as_unsigned<> returns the supplied integral value (or integral castable
// Numeric template) cast as an unsigned integral of equivalent precision.
// I.e. it's mostly an alias for: static_cast<std::make_unsigned<T>::type>(t)
template <typename Src,
typename Dst = std::make_unsigned_t<UnderlyingType<Src>>>
requires std::integral<Dst>
constexpr auto as_unsigned(Src value) {
return static_cast<Dst>(value);
}
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsLess {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<SumT>(lhs) < static_cast<SumT>(rhs));
}
};
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsLessOrEqual {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<SumT>(lhs) <= static_cast<SumT>(rhs));
}
};
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsGreater {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<SumT>(lhs) > static_cast<SumT>(rhs));
}
};
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsGreaterOrEqual {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
const RangeCheck l_range = DstRangeRelationToSrcRange<R>(lhs);
const RangeCheck r_range = DstRangeRelationToSrcRange<L>(rhs);
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<SumT>(lhs) >= static_cast<SumT>(rhs));
}
};
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsEqual {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
return DstRangeRelationToSrcRange<R>(lhs) ==
DstRangeRelationToSrcRange<L>(rhs) &&
static_cast<SumT>(lhs) == static_cast<SumT>(rhs);
}
};
template <typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
struct IsNotEqual {
using SumT = decltype(std::declval<L>() + std::declval<R>());
static constexpr bool Test(L lhs, R rhs) {
return DstRangeRelationToSrcRange<R>(lhs) !=
DstRangeRelationToSrcRange<L>(rhs) ||
static_cast<SumT>(lhs) != static_cast<SumT>(rhs);
}
};
// These perform the actual math operations on the CheckedNumerics.
// Binary arithmetic operations.
template <template <typename, typename> typename C, typename L, typename R>
requires std::is_arithmetic_v<L> && std::is_arithmetic_v<R>
constexpr bool SafeCompare(L lhs, R rhs) {
using BigType = BigEnoughPromotion<L, R>;
return kIsBigEnoughPromotionContained<L, R>
// Force to a larger type for speed if both are contained.
? C<BigType, BigType>::Test(static_cast<BigType>(lhs),
static_cast<BigType>(rhs))
// Let the template functions figure it out for mixed types.
: C<L, R>::Test(lhs, rhs);
}
template <typename Dst, typename Src>
inline constexpr bool kIsMaxInRangeForNumericType =
IsGreaterOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::max(),
std::numeric_limits<Src>::max());
template <typename Dst, typename Src>
inline constexpr bool kIsMinInRangeForNumericType =
IsLessOrEqual<Dst, Src>::Test(std::numeric_limits<Dst>::lowest(),
std::numeric_limits<Src>::lowest());
template <typename Dst, typename Src>
inline constexpr Dst kCommonMax =
kIsMaxInRangeForNumericType<Dst, Src>
? static_cast<Dst>(std::numeric_limits<Src>::max())
: std::numeric_limits<Dst>::max();
template <typename Dst, typename Src>
inline constexpr Dst kCommonMin =
kIsMinInRangeForNumericType<Dst, Src>
? static_cast<Dst>(std::numeric_limits<Src>::lowest())
: std::numeric_limits<Dst>::lowest();
// This is a wrapper to generate return the max or min for a supplied type.
// If the argument is false, the returned value is the maximum. If true the
// returned value is the minimum.
template <typename Dst, typename Src = Dst>
constexpr Dst CommonMaxOrMin(bool is_min) {
return is_min ? kCommonMin<Dst, Src> : kCommonMax<Dst, Src>;
}
} // namespace base::internal
#endif // BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
|