1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/rand_util.h"
#include <limits.h>
#include <math.h>
#include <stdint.h>
#include <algorithm>
#include <atomic>
#include <limits>
#include "base/check.h"
#include "base/check_op.h"
#include "base/containers/span.h"
#include "base/time/time.h"
namespace base {
namespace {
// A MetricSubsampler instance is not thread-safe. However, the global
// sampling state may be read concurrently with writing it via testing
// scopers, hence the need to use atomics. All operations use
// memory_order_relaxed because there are no dependent memory accesses.
std::atomic<bool> g_subsampling_always_sample = false;
std::atomic<bool> g_subsampling_never_sample = false;
MetricsSubSampler* GetSharedSubsampler() {
static thread_local MetricsSubSampler g_shared_subsampler;
return &g_shared_subsampler;
}
} // namespace
uint64_t RandUint64() {
uint64_t number;
RandBytes(base::byte_span_from_ref(number));
return number;
}
int RandInt(int min, int max) {
DCHECK_LE(min, max);
uint64_t range = static_cast<uint64_t>(max) - static_cast<uint64_t>(min) + 1;
// |range| is at most UINT_MAX + 1, so the result of RandGenerator(range)
// is at most UINT_MAX. Hence it's safe to cast it from uint64_t to int64_t.
int result =
static_cast<int>(min + static_cast<int64_t>(base::RandGenerator(range)));
DCHECK_GE(result, min);
DCHECK_LE(result, max);
return result;
}
double RandDouble() {
return BitsToOpenEndedUnitInterval(base::RandUint64());
}
float RandFloat() {
return BitsToOpenEndedUnitIntervalF(base::RandUint64());
}
bool RandBool() {
uint8_t number;
RandBytes(span_from_ref(number));
return number & 1;
}
TimeDelta RandTimeDelta(TimeDelta start, TimeDelta limit) {
// We must have a finite, non-empty, non-reversed interval.
CHECK_LT(start, limit);
CHECK(!start.is_min());
CHECK(!limit.is_max());
const int64_t range = (limit - start).InMicroseconds();
// Because of the `CHECK_LT()` above, range > 0, so this cast is safe.
const uint64_t delta_us = base::RandGenerator(static_cast<uint64_t>(range));
// ...and because `range` fit in an `int64_t`, so will `delta_us`.
return start + Microseconds(static_cast<int64_t>(delta_us));
}
TimeDelta RandTimeDeltaUpTo(TimeDelta limit) {
return RandTimeDelta(TimeDelta(), limit);
}
double BitsToOpenEndedUnitInterval(uint64_t bits) {
// We try to get maximum precision by masking out as many bits as will fit
// in the target type's mantissa, and raising it to an appropriate power to
// produce output in the range [0, 1). For IEEE 754 doubles, the mantissa
// is expected to accommodate 53 bits (including the implied bit).
static_assert(std::numeric_limits<double>::radix == 2,
"otherwise use scalbn");
constexpr int kBits = std::numeric_limits<double>::digits;
return ldexp(bits & ((UINT64_C(1) << kBits) - 1u), -kBits);
}
float BitsToOpenEndedUnitIntervalF(uint64_t bits) {
// We try to get maximum precision by masking out as many bits as will fit
// in the target type's mantissa, and raising it to an appropriate power to
// produce output in the range [0, 1). For IEEE 754 floats, the mantissa is
// expected to accommodate 12 bits (including the implied bit).
static_assert(std::numeric_limits<float>::radix == 2, "otherwise use scalbn");
constexpr int kBits = std::numeric_limits<float>::digits;
return ldexpf(bits & ((UINT64_C(1) << kBits) - 1u), -kBits);
}
uint64_t RandGenerator(uint64_t range) {
DCHECK_GT(range, 0u);
// We must discard random results above this number, as they would
// make the random generator non-uniform (consider e.g. if
// MAX_UINT64 was 7 and |range| was 5, then a result of 1 would be twice
// as likely as a result of 3 or 4).
uint64_t max_acceptable_value =
(std::numeric_limits<uint64_t>::max() / range) * range - 1;
uint64_t value;
do {
value = base::RandUint64();
} while (value > max_acceptable_value);
return value % range;
}
std::string RandBytesAsString(size_t length) {
std::string result(length, '\0');
RandBytes(as_writable_byte_span(result));
return result;
}
std::vector<uint8_t> RandBytesAsVector(size_t length) {
std::vector<uint8_t> result(length);
RandBytes(result);
return result;
}
InsecureRandomGenerator::InsecureRandomGenerator() {
a_ = base::RandUint64();
b_ = base::RandUint64();
}
void InsecureRandomGenerator::ReseedForTesting(uint64_t seed) {
a_ = seed;
b_ = seed;
}
uint64_t InsecureRandomGenerator::RandUint64() const {
// Using XorShift128+, which is simple and widely used. See
// https://en.wikipedia.org/wiki/Xorshift#xorshift+ for details.
uint64_t t = a_;
const uint64_t s = b_;
a_ = s;
t ^= t << 23;
t ^= t >> 17;
t ^= s ^ (s >> 26);
b_ = t;
return t + s;
}
uint32_t InsecureRandomGenerator::RandUint32() const {
// The generator usually returns an uint64_t, truncate it.
//
// It is noted in this paper (https://arxiv.org/abs/1810.05313) that the
// lowest 32 bits fail some statistical tests from the Big Crush
// suite. Use the higher ones instead.
return this->RandUint64() >> 32;
}
double InsecureRandomGenerator::RandDouble() const {
uint64_t x = RandUint64();
// From https://vigna.di.unimi.it/xorshift/.
// 53 bits of mantissa, hence the "hexadecimal exponent" 1p-53.
return (x >> 11) * 0x1.0p-53;
}
MetricsSubSampler::MetricsSubSampler() = default;
bool MetricsSubSampler::ShouldSample(double probability) const {
if (g_subsampling_always_sample.load(std::memory_order_relaxed)) {
return true;
}
if (g_subsampling_never_sample.load(std::memory_order_relaxed)) {
return false;
}
DCHECK(probability >= 0 && probability <= 1);
return generator_.RandDouble() < probability;
}
void MetricsSubSampler::Reseed() {
generator_ = InsecureRandomGenerator();
}
MetricsSubSampler::ScopedAlwaysSampleForTesting::
ScopedAlwaysSampleForTesting() {
DCHECK(!g_subsampling_always_sample.load(std::memory_order_relaxed));
DCHECK(!g_subsampling_never_sample.load(std::memory_order_relaxed));
g_subsampling_always_sample.store(true, std::memory_order_relaxed);
}
MetricsSubSampler::ScopedAlwaysSampleForTesting::
~ScopedAlwaysSampleForTesting() {
DCHECK(g_subsampling_always_sample.load(std::memory_order_relaxed));
DCHECK(!g_subsampling_never_sample.load(std::memory_order_relaxed));
g_subsampling_always_sample.store(false, std::memory_order_relaxed);
}
MetricsSubSampler::ScopedNeverSampleForTesting::ScopedNeverSampleForTesting() {
DCHECK(!g_subsampling_always_sample.load(std::memory_order_relaxed));
DCHECK(!g_subsampling_never_sample.load(std::memory_order_relaxed));
g_subsampling_never_sample.store(true, std::memory_order_relaxed);
}
MetricsSubSampler::ScopedNeverSampleForTesting::~ScopedNeverSampleForTesting() {
DCHECK(!g_subsampling_always_sample);
DCHECK(g_subsampling_never_sample);
g_subsampling_never_sample.store(false, std::memory_order_relaxed);
}
bool ShouldRecordSubsampledMetric(double probability) {
return GetSharedSubsampler()->ShouldSample(probability);
}
void ReseedSharedMetricsSubsampler() {
GetSharedSubsampler()->Reseed();
}
} // namespace base
|