File: poisson_allocation_sampler_unittest.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (517 lines) | stat: -rw-r--r-- 20,944 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/sampling_heap_profiler/poisson_allocation_sampler.h"

#include <stdlib.h>

#include <array>
#include <atomic>
#include <bitset>
#include <memory>
#include <optional>
#include <utility>
#include <vector>

#include "base/allocator/dispatcher/notification_data.h"
#include "base/allocator/dispatcher/subsystem.h"
#include "base/barrier_closure.h"
#include "base/containers/extend.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/memory/scoped_refptr.h"
#include "base/run_loop.h"
#include "base/sampling_heap_profiler/lock_free_address_hash_set.h"
#include "base/synchronization/lock.h"
#include "base/task/bind_post_task.h"
#include "base/task/single_thread_task_runner.h"
#include "base/task/single_thread_task_runner_thread_mode.h"
#include "base/task/thread_pool.h"
#include "base/test/task_environment.h"
#include "build/build_config.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/abseil-cpp/absl/cleanup/cleanup.h"

namespace base {

namespace {

using allocator::dispatcher::AllocationNotificationData;
using allocator::dispatcher::AllocationSubsystem;
using allocator::dispatcher::FreeNotificationData;
using ::testing::AssertionFailure;
using ::testing::AssertionResult;
using ::testing::AssertionSuccess;

class DummySamplesObserver : public PoissonAllocationSampler::SamplesObserver {
 public:
  void SampleAdded(void* address,
                   size_t size,
                   size_t total,
                   AllocationSubsystem type,
                   const char* context) final {}
  void SampleRemoved(void* address) final {}
};

class AddRemoveObserversTester {
 public:
  AddRemoveObserversTester() = default;
  ~AddRemoveObserversTester() = default;

  // Posts tasks to add and remove observers to `task_runner_`. Invokes
  // `barrier_closure` if a task fails or after `num_repetitions`.
  void Start(base::RepeatingClosure* barrier_closure, int num_repetitions);

  // Gives the caller ownership of the observers so that they can be safely
  // deleted in single-threaded context once the PoissonAllocationSampler is not
  // running.
  std::vector<std::unique_ptr<DummySamplesObserver>> DetachObservers() {
    std::vector<std::unique_ptr<DummySamplesObserver>> observers;
    observers.push_back(std::move(observer1_));
    observers.push_back(std::move(observer2_));
    return observers;
  }

 private:
  // Posts tasks to add and remove observers to `task_runner_`. If they fail or
  // if this is the last repetition, invokes `barrier_closure`,  otherwise
  // schedules another repetition.
  void TestAddRemoveObservers(base::RepeatingClosure* barrier_closure,
                              int remaining_repetitions);

  // These observers must live until all threads are destroyed, because the
  // profiler might call into them racily after they're removed. (See the
  // comment on PoissonAllocationSampler::RemoveSamplesObserver().) They can
  // safely be destroyed on the main thread after the test is back in a
  // single-threaded context.
  std::unique_ptr<DummySamplesObserver> observer1_ =
      std::make_unique<DummySamplesObserver>();
  std::unique_ptr<DummySamplesObserver> observer2_ =
      std::make_unique<DummySamplesObserver>();

  scoped_refptr<base::SequencedTaskRunner> task_runner_ =
      base::ThreadPool::CreateSingleThreadTaskRunner(
          {},
          base::SingleThreadTaskRunnerThreadMode::DEDICATED);
};

class MuteHookedSamplesTester {
 public:
  MuteHookedSamplesTester() = default;
  ~MuteHookedSamplesTester() = default;

  // Posts tasks to mute and unmute samples to `task_runner_`. Invokes
  // `barrier_closure` if a task fails or after `num_repetitions`.
  void Start(base::RepeatingClosure* barrier_closure, int num_repetitions);

 private:
  // Posts tasks to mute and unmute samples to `task_runner_`. If they fail or
  // if this is the last repetition, invokes `barrier_closure`,  otherwise
  // schedules another repetition.
  void TestMuteUnmuteSamples(base::RepeatingClosure* barrier_closure,
                             int remaining_repetitions);

  base::OnceClosure unmute_samples_closure_;

  scoped_refptr<base::SequencedTaskRunner> task_runner_ =
      base::ThreadPool::CreateSingleThreadTaskRunner(
          {},
          base::SingleThreadTaskRunnerThreadMode::DEDICATED);
};

}  // namespace

// PoissonAllocationSamplerStateTest has access to read the state of
// PoissonAllocationSampler.
class PoissonAllocationSamplerStateTest : public ::testing::Test {
 public:
  static void AddSamplesObservers(DummySamplesObserver* observer1,
                                  DummySamplesObserver* observer2);

  static void RemoveSamplesObservers(DummySamplesObserver* observer1,
                                     DummySamplesObserver* observer2);

  // Creates a ScopedMuteHookedSamplesForTesting object and returns a closure
  // that will destroy it.
  static base::OnceClosure MuteHookedSamples();

  static void UnmuteHookedSamples(base::OnceClosure unmute_closure);

 protected:
  using ProfilingStateFlag = PoissonAllocationSampler::ProfilingStateFlag;
  using ProfilingStateFlagMask =
      PoissonAllocationSampler::ProfilingStateFlagMask;

  static AssertionResult HasAllStateFlags(ProfilingStateFlagMask flags) {
    const ProfilingStateFlagMask state =
        PoissonAllocationSampler::profiling_state_.load(
            std::memory_order_relaxed);
    AssertionResult result =
        (state & flags) == flags ? AssertionSuccess() : AssertionFailure();
    return result << "Expected all of " << std::bitset<4>(flags) << ", got "
                  << std::bitset<4>(state);
  }

  static AssertionResult HasAnyStateFlags(ProfilingStateFlagMask flags) {
    const ProfilingStateFlagMask state =
        PoissonAllocationSampler::profiling_state_.load(
            std::memory_order_relaxed);
    AssertionResult result =
        (state & flags) != 0 ? AssertionSuccess() : AssertionFailure();
    return result << "Expected any of " << std::bitset<4>(flags) << ", got "
                  << std::bitset<4>(state);
  }

  // This must come before `task_environment_` do that it's deleted afterward,
  // since DummySamplesObserver objects must be deleted in single-threaded
  // context.
  std::vector<std::unique_ptr<DummySamplesObserver>> observers_to_delete_;

  base::test::TaskEnvironment task_environment_;
};

void AddRemoveObserversTester::Start(base::RepeatingClosure* barrier_closure,
                                     int num_repetitions) {
  // Unretained is safe because `this` isn't deleted until the
  // `barrier_closure` is invoked often enough to quit the main RunLoop.
  task_runner_->PostTask(
      FROM_HERE,
      base::BindOnce(&AddRemoveObserversTester::TestAddRemoveObservers,
                     base::Unretained(this), barrier_closure, num_repetitions));
}

void AddRemoveObserversTester::TestAddRemoveObservers(
    base::RepeatingClosure* barrier_closure,
    int remaining_repetitions) {
  if (!remaining_repetitions || ::testing::Test::HasFailure()) {
    barrier_closure->Run();
    return;
  }
  auto add_observers =
      base::BindOnce(&PoissonAllocationSamplerStateTest::AddSamplesObservers,
                     observer1_.get(), observer2_.get());
  auto remove_observers = base::BindPostTask(
      task_runner_,
      base::BindOnce(&PoissonAllocationSamplerStateTest::RemoveSamplesObservers,
                     observer1_.get(), observer2_.get()));
  // Unretained is safe because `this` isn't deleted until the
  // `barrier_closure` is invoked often enough to quit the main RunLoop.
  auto next_repetition = base::BindPostTask(
      task_runner_,
      base::BindOnce(&AddRemoveObserversTester::TestAddRemoveObservers,
                     base::Unretained(this), barrier_closure,
                     remaining_repetitions - 1));
  task_runner_->PostTask(FROM_HERE, std::move(add_observers)
                                        .Then(std::move(remove_observers))
                                        .Then(std::move(next_repetition)));
}

void MuteHookedSamplesTester::Start(base::RepeatingClosure* barrier_closure,
                                    int num_repetitions) {
  // Unretained is safe because `this` isn't deleted until the
  // `barrier_closure` is invoked often enough to quit the main RunLoop.
  task_runner_->PostTask(
      FROM_HERE,
      base::BindOnce(&MuteHookedSamplesTester::TestMuteUnmuteSamples,
                     base::Unretained(this), barrier_closure, num_repetitions));
}

void MuteHookedSamplesTester::TestMuteUnmuteSamples(
    base::RepeatingClosure* barrier_closure,
    int remaining_repetitions) {
  if (!remaining_repetitions || ::testing::Test::HasFailure()) {
    barrier_closure->Run();
    return;
  }
  auto mute_samples =
      base::BindOnce(&PoissonAllocationSamplerStateTest::MuteHookedSamples);
  auto unmute_samples = base::BindPostTask(
      task_runner_,
      base::BindOnce(&PoissonAllocationSamplerStateTest::UnmuteHookedSamples));
  // Unretained is safe because `this` isn't deleted until the
  // `barrier_closure` is invoked often enough to quit the main RunLoop.
  auto next_repetition = base::BindPostTask(
      task_runner_,
      base::BindOnce(&MuteHookedSamplesTester::TestMuteUnmuteSamples,
                     base::Unretained(this), barrier_closure,
                     remaining_repetitions - 1));
  task_runner_->PostTask(FROM_HERE, std::move(mute_samples)
                                        .Then(std::move(unmute_samples))
                                        .Then(std::move(next_repetition)));
}

// static
void PoissonAllocationSamplerStateTest::AddSamplesObservers(
    DummySamplesObserver* observer1,
    DummySamplesObserver* observer2) {
  // The first observer should start the profiler running if it isn't already.
  // The second should not change the state.
  PoissonAllocationSampler::Get()->AddSamplesObserver(observer1);
  EXPECT_TRUE(HasAllStateFlags(ProfilingStateFlag::kIsRunning |
                               ProfilingStateFlag::kWasStarted));
  PoissonAllocationSampler::Get()->AddSamplesObserver(observer2);
  EXPECT_TRUE(HasAllStateFlags(ProfilingStateFlag::kIsRunning |
                               ProfilingStateFlag::kWasStarted));
}

// static
void PoissonAllocationSamplerStateTest::RemoveSamplesObservers(
    DummySamplesObserver* observer1,
    DummySamplesObserver* observer2) {
  // Removing the first observer should leave the profiler running. Removing the
  // second might leave it running, or might stop it. It should never remove the
  // kWasStarted flag.
  EXPECT_TRUE(HasAllStateFlags(ProfilingStateFlag::kIsRunning |
                               ProfilingStateFlag::kWasStarted));
  PoissonAllocationSampler::Get()->RemoveSamplesObserver(observer1);
  EXPECT_TRUE(HasAllStateFlags(ProfilingStateFlag::kIsRunning |
                               ProfilingStateFlag::kWasStarted));
  PoissonAllocationSampler::Get()->RemoveSamplesObserver(observer2);
  EXPECT_TRUE(HasAllStateFlags(ProfilingStateFlag::kWasStarted));
}

// static
base::OnceClosure PoissonAllocationSamplerStateTest::MuteHookedSamples() {
  using ScopedMuteHookedSamplesForTesting =
      PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting;
  EXPECT_FALSE(
      HasAllStateFlags(ProfilingStateFlag::kHookedSamplesMutedForTesting));
  auto scoped_mute_hooked_samples =
      std::make_unique<ScopedMuteHookedSamplesForTesting>();
  EXPECT_TRUE(
      HasAllStateFlags(ProfilingStateFlag::kHookedSamplesMutedForTesting));
  auto unmute_closure = base::BindOnce(
      [](std::unique_ptr<ScopedMuteHookedSamplesForTesting> p) { p.reset(); },
      std::move(scoped_mute_hooked_samples));
  return unmute_closure;
}

// static
void PoissonAllocationSamplerStateTest::UnmuteHookedSamples(
    base::OnceClosure unmute_closure) {
  EXPECT_TRUE(
      HasAllStateFlags(ProfilingStateFlag::kHookedSamplesMutedForTesting));
  std::move(unmute_closure).Run();
  EXPECT_FALSE(
      HasAllStateFlags(ProfilingStateFlag::kHookedSamplesMutedForTesting));
}

TEST(PoissonAllocationSamplerTest, MuteHooksWithoutInit) {
  // Make sure it's safe to create a ScopedMuteHookedSamplesForTesting from
  // tests that might not call PoissonAllocationSampler::Get() to initialize the
  // rest of the PoissonAllocationSampler.
  EXPECT_FALSE(PoissonAllocationSampler::AreHookedSamplesMuted());
  void* volatile p = nullptr;
  {
    PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting mute_hooks;
    EXPECT_TRUE(PoissonAllocationSampler::AreHookedSamplesMuted());
    p = malloc(10000);
  }
  EXPECT_FALSE(PoissonAllocationSampler::AreHookedSamplesMuted());
  free(p);
}

TEST(PoissonAllocationSamplerTest, NestedScopedMuteThreadSamples) {
  PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting mute_hooks;

  EXPECT_FALSE(PoissonAllocationSampler::ScopedMuteThreadSamples::IsMuted());
  intptr_t accumulated_bytes_snapshot =
      PoissonAllocationSampler::GetAccumulatedBytesForTesting();

  {
    PoissonAllocationSampler::ScopedMuteThreadSamples nesting_level1;
    EXPECT_TRUE(PoissonAllocationSampler::ScopedMuteThreadSamples::IsMuted());
    // When first muted, `accumulated_bytes` should be swizzled to avoid bias.
    intptr_t accumulated_bytes =
        PoissonAllocationSampler::GetAccumulatedBytesForTesting();
    EXPECT_NE(accumulated_bytes, accumulated_bytes_snapshot);

    {
      PoissonAllocationSampler::ScopedMuteThreadSamples nesting_level2;
      EXPECT_TRUE(PoissonAllocationSampler::ScopedMuteThreadSamples::IsMuted());
      // `accumulated_bytes` should only be modified when the state changes.
      EXPECT_EQ(PoissonAllocationSampler::GetAccumulatedBytesForTesting(),
                accumulated_bytes);
    }

    EXPECT_TRUE(PoissonAllocationSampler::ScopedMuteThreadSamples::IsMuted());
    EXPECT_EQ(PoissonAllocationSampler::GetAccumulatedBytesForTesting(),
              accumulated_bytes);
  }

  // `accumulated_bytes` should be restored when no longer muted.
  EXPECT_FALSE(PoissonAllocationSampler::ScopedMuteThreadSamples::IsMuted());
  EXPECT_EQ(PoissonAllocationSampler::GetAccumulatedBytesForTesting(),
            accumulated_bytes_snapshot);
}

TEST_F(PoissonAllocationSamplerStateTest, UpdateProfilingState) {
  constexpr int kNumObserverThreads = 100;
  constexpr int kNumRepetitions = 100;

  base::RunLoop run_loop;

  // Quit the run loop once all AddRemoveObserversTesters and the
  // MuteUnmuteSamplesTester signal that they're done.
  auto barrier_closure =
      base::BarrierClosure(kNumObserverThreads + 1, run_loop.QuitClosure());

  // No observers or ScopedMuteHookedSamplesForTesting objects exist.
  // The kWasStarted flag may or may not be set depending on whether other tests
  // have changed the singleton state.
  ASSERT_FALSE(
      HasAnyStateFlags(ProfilingStateFlag::kIsRunning |
                       ProfilingStateFlag::kHookedSamplesMutedForTesting));

  std::array<std::unique_ptr<AddRemoveObserversTester>, kNumObserverThreads>
      observer_testers;
  for (int i = 0; i < kNumObserverThreads; ++i) {
    // Start a thread to add and remove observers, toggling the kIsRunning and
    // kHookedSamplesMutedForTesting state flags.
    observer_testers[i] = std::make_unique<AddRemoveObserversTester>();
    observer_testers[i]->Start(&barrier_closure, kNumRepetitions);
  }

  // There can only be one ScopedMuteHookedSamplesForTesting object at a time so
  // test them on only one thread.
  MuteHookedSamplesTester mute_samples_tester;
  mute_samples_tester.Start(&barrier_closure, kNumRepetitions);

  run_loop.Run();

  // No observers or ScopedMuteHookedSamplesForTesting objects exist again.
  EXPECT_FALSE(
      HasAnyStateFlags(ProfilingStateFlag::kIsRunning |
                       ProfilingStateFlag::kHookedSamplesMutedForTesting));

  // Move the observers into `observers_to_delete_` to be destroyed during
  // teardown, in single-threaded context.
  for (int i = 0; i < kNumObserverThreads; ++i) {
    base::Extend(observers_to_delete_, observer_testers[i]->DetachObservers());
  }
}

class PoissonAllocationSamplerLoadFactorTest
    : public ::testing::TestWithParam<float> {};

INSTANTIATE_TEST_SUITE_P(All,
                         PoissonAllocationSamplerLoadFactorTest,
                         ::testing::Values(0, 0.5, 1.5));

// TODO(crbug.com/383374205): This test flakily crashes on iOS without leaving
// any logs.
#if BUILDFLAG(IS_IOS)
#define MAYBE_BalanceSampledAddressesSet DISABLED_BalanceSampledAddressesSet
#else
#define MAYBE_BalanceSampledAddressesSet BalanceSampledAddressesSet
#endif

TEST_P(PoissonAllocationSamplerLoadFactorTest,
       MAYBE_BalanceSampledAddressesSet) {
  PoissonAllocationSampler::ScopedMuteHookedSamplesForTesting mute_hooks;
  PoissonAllocationSampler::ScopedSuppressRandomnessForTesting
      suppress_randomness;

  auto* sampler = PoissonAllocationSampler::Get();

  // Validate the starting state of the hash set.
  size_t starting_buckets;
  float last_load_factor;
  {
    base::AutoLock lock(sampler->mutex_);
    starting_buckets = sampler->sampled_addresses_set().buckets_count();
    EXPECT_EQ(sampler->sampled_addresses_set().size(), 0);
    last_load_factor = sampler->sampled_addresses_set().load_factor();
    EXPECT_EQ(last_load_factor, 0.0);
  }

  size_t target_load_factor = GetParam();
  if (target_load_factor == 0) {
    // Use the default load factor.
    target_load_factor = 1.0;
  } else {
    sampler->SetTargetHashSetLoadFactor(target_load_factor);
  }

  // Adding an observer starts the profiler.
  DummySamplesObserver observer;
  sampler->AddSamplesObserver(&observer);

  absl::Cleanup reset_singleton_state = [&] {
    sampler->RemoveSamplesObserver(&observer);
    sampler->SetTargetHashSetLoadFactor(std::nullopt);
  };

  // Helper to dump the hash set state to the test output.
  auto dump_hash_set_state = [sampler] {
    base::AutoLock lock(sampler->mutex_);
    return ::testing::Message()
           << "hash set size " << sampler->sampled_addresses_set().size()
           << ", bucket count "
           << sampler->sampled_addresses_set().buckets_count()
           << ", load factor "
           << sampler->sampled_addresses_set().load_factor();
  };

  // Allocations that keep the load factor below target should not rebalance.
  const size_t target_allocations = starting_buckets * target_load_factor;
  SCOPED_TRACE(::testing::Message()
               << "target_allocations " << target_allocations);
  for (uintptr_t i = 1; i < target_allocations; ++i) {
    SCOPED_TRACE(::testing::Message() << "allocation " << i);
    sampler->OnAllocation(AllocationNotificationData(
        reinterpret_cast<void*>(i), sampler->SamplingInterval(), "dummy",
        AllocationSubsystem::kManualForTesting));

    SCOPED_TRACE(dump_hash_set_state());
    base::AutoLock lock(sampler->mutex_);
    EXPECT_EQ(sampler->sampled_addresses_set().size(), i);
    EXPECT_EQ(sampler->sampled_addresses_set().buckets_count(),
              starting_buckets);

    float load_factor = sampler->sampled_addresses_set().load_factor();
    EXPECT_GT(load_factor, last_load_factor);
    EXPECT_LT(load_factor, target_load_factor);
    last_load_factor = load_factor;
  }

  // Next allocation should rebalance: number of buckets goes up, load factor
  // goes down.
  sampler->OnAllocation(AllocationNotificationData(
      reinterpret_cast<void*>(target_allocations), sampler->SamplingInterval(),
      "dummy", AllocationSubsystem::kManualForTesting));

  size_t rebalanced_buckets;
  {
    SCOPED_TRACE(dump_hash_set_state());
    base::AutoLock lock(sampler->mutex_);
    EXPECT_EQ(sampler->sampled_addresses_set().size(), target_allocations);
    rebalanced_buckets = sampler->sampled_addresses_set().buckets_count();
    EXPECT_GT(rebalanced_buckets, starting_buckets);

    float load_factor = sampler->sampled_addresses_set().load_factor();
    EXPECT_LT(load_factor, last_load_factor);
    last_load_factor = load_factor;
  }

  // Deallocating should not rebalance.
  for (uintptr_t i = target_allocations; i > 0; --i) {
    SCOPED_TRACE(::testing::Message() << "deallocation " << i);
    sampler->OnFree(FreeNotificationData(
        reinterpret_cast<void*>(i), AllocationSubsystem::kManualForTesting));

    SCOPED_TRACE(dump_hash_set_state());
    base::AutoLock lock(sampler->mutex_);
    EXPECT_EQ(sampler->sampled_addresses_set().size(), i - 1);
    EXPECT_EQ(sampler->sampled_addresses_set().buckets_count(),
              rebalanced_buckets);

    float load_factor = sampler->sampled_addresses_set().load_factor();
    EXPECT_LT(load_factor, last_load_factor);
    last_load_factor = load_factor;
  }
}

}  // namespace base