1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/strings/pattern.h"
#include <string_view>
#include "base/compiler_specific.h"
#include "base/third_party/icu/icu_utf.h"
namespace base {
namespace {
constexpr bool IsWildcard(base_icu::UChar32 character) {
return character == '*' || character == '?';
}
// Searches for the next subpattern of |pattern| in |string|, up to the given
// |maximum_distance|. The subpattern extends from the start of |pattern| up to
// the first wildcard character (or the end of the string). If the value of
// |maximum_distance| is negative, the maximum distance is considered infinite.
template <typename CHAR, typename NEXT>
constexpr bool SearchForChars(const CHAR** pattern,
const CHAR* pattern_end,
const CHAR** string,
const CHAR* string_end,
int maximum_distance,
NEXT next) {
const CHAR* pattern_start = *pattern;
const CHAR* string_start = *string;
bool escape = false;
while (true) {
if (*pattern == pattern_end) {
// If this is the end of the pattern, only accept the end of the string;
// anything else falls through to the mismatch case.
if (*string == string_end) {
return true;
}
} else {
// If we have found a wildcard, we're done.
if (!escape && IsWildcard(**pattern)) {
return true;
}
// Check if the escape character is found. If so, skip it and move to the
// next character.
if (!escape && **pattern == '\\') {
escape = true;
next(pattern, pattern_end);
continue;
}
escape = false;
if (*string == string_end) {
return false;
}
// Check if the chars match, if so, increment the ptrs.
const CHAR* pattern_next = *pattern;
const CHAR* string_next = *string;
base_icu::UChar32 pattern_char = next(&pattern_next, pattern_end);
if (pattern_char == next(&string_next, string_end) &&
pattern_char != CBU_SENTINEL) {
*pattern = pattern_next;
*string = string_next;
continue;
}
}
// Mismatch. If we have reached the maximum distance, return false,
// otherwise restart at the beginning of the pattern with the next character
// in the string.
// TODO(bauerb): This is a naive implementation of substring search, which
// could be implemented with a more efficient algorithm, e.g.
// Knuth-Morris-Pratt (at the expense of requiring preprocessing).
if (maximum_distance == 0) {
return false;
}
// Because unlimited distance is represented as -1, this will never reach 0
// and therefore fail the match above.
maximum_distance--;
*pattern = pattern_start;
next(&string_start, string_end);
*string = string_start;
}
}
// Consumes consecutive wildcard characters (? or *). Returns the maximum number
// of characters matched by the sequence of wildcards, or -1 if the wildcards
// match an arbitrary number of characters (which is the case if it contains at
// least one *).
template <typename CHAR, typename NEXT>
constexpr int EatWildcards(const CHAR** pattern, const CHAR* end, NEXT next) {
int num_question_marks = 0;
bool has_asterisk = false;
while (*pattern != end) {
if (**pattern == '?') {
num_question_marks++;
} else if (**pattern == '*') {
has_asterisk = true;
} else {
break;
}
next(pattern, end);
}
return has_asterisk ? -1 : num_question_marks;
}
template <typename CHAR, typename NEXT>
constexpr bool MatchPatternT(const CHAR* eval,
const CHAR* eval_end,
const CHAR* pattern,
const CHAR* pattern_end,
NEXT next) {
do {
int maximum_wildcard_length = EatWildcards(&pattern, pattern_end, next);
if (!SearchForChars(&pattern, pattern_end, &eval, eval_end,
maximum_wildcard_length, next)) {
return false;
}
} while (pattern != pattern_end);
return true;
}
struct NextCharUTF8 {
base_icu::UChar32 operator()(const char** p, const char* end) {
base_icu::UChar32 c;
int offset = 0;
UNSAFE_TODO({
CBU8_NEXT(reinterpret_cast<const uint8_t*>(*p), offset, end - *p, c);
*p += offset;
});
return c;
}
};
struct NextCharUTF16 {
base_icu::UChar32 operator()(const char16_t** p, const char16_t* end) {
base_icu::UChar32 c;
int offset = 0;
UNSAFE_TODO({
CBU16_NEXT(*p, offset, end - *p, c);
*p += offset;
});
return c;
}
};
} // namespace
bool MatchPattern(std::string_view eval, std::string_view pattern) {
return MatchPatternT(
eval.data(), UNSAFE_TODO(eval.data() + eval.size()), pattern.data(),
UNSAFE_TODO(pattern.data() + pattern.size()), NextCharUTF8());
}
bool MatchPattern(std::u16string_view eval, std::u16string_view pattern) {
return MatchPatternT(
eval.data(), UNSAFE_TODO(eval.data() + eval.size()), pattern.data(),
UNSAFE_TODO(pattern.data() + pattern.size()), NextCharUTF16());
}
} // namespace base
|