1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/substring_set_matcher/substring_set_matcher.h"
#include <stddef.h>
#include <algorithm>
#include <queue>
#ifdef __SSE2__
#include <immintrin.h>
#include "base/bits.h"
#endif
#include "base/check_op.h"
#include "base/containers/contains.h"
#include "base/containers/queue.h"
#include "base/numerics/checked_math.h"
#include "base/trace_event/memory_usage_estimator.h" // no-presubmit-check
namespace base {
namespace {
// Compare MatcherStringPattern instances based on their string patterns.
bool ComparePatterns(const MatcherStringPattern* a,
const MatcherStringPattern* b) {
return a->pattern() < b->pattern();
}
std::vector<const MatcherStringPattern*> GetVectorOfPointers(
const std::vector<MatcherStringPattern>& patterns) {
std::vector<const MatcherStringPattern*> pattern_pointers;
pattern_pointers.reserve(patterns.size());
for (const MatcherStringPattern& pattern : patterns) {
pattern_pointers.push_back(&pattern);
}
return pattern_pointers;
}
} // namespace
bool SubstringSetMatcher::Build(
const std::vector<MatcherStringPattern>& patterns) {
return Build(GetVectorOfPointers(patterns));
}
bool SubstringSetMatcher::Build(
std::vector<const MatcherStringPattern*> patterns) {
// Ensure there are no duplicate IDs and all pattern strings are distinct.
#if DCHECK_IS_ON()
{
std::set<MatcherStringPattern::ID> ids;
std::set<std::string> pattern_strings;
for (const MatcherStringPattern* pattern : patterns) {
CHECK(!base::Contains(ids, pattern->id()));
CHECK(!base::Contains(pattern_strings, pattern->pattern()));
ids.insert(pattern->id());
pattern_strings.insert(pattern->pattern());
}
}
#endif
// Check that all the match labels fit into an edge.
for (const MatcherStringPattern* pattern : patterns) {
if (pattern->id() >= kInvalidNodeID) {
return false;
}
}
// Compute the total number of tree nodes needed.
std::sort(patterns.begin(), patterns.end(), ComparePatterns);
NodeID tree_size = GetTreeSize(patterns);
if (tree_size >= kInvalidNodeID) {
return false;
}
tree_.reserve(GetTreeSize(patterns));
BuildAhoCorasickTree(patterns);
// Sanity check that no new allocations happened in the tree and our computed
// size was correct.
DCHECK_EQ(tree_.size(), static_cast<size_t>(GetTreeSize(patterns)));
is_empty_ = patterns.empty() && tree_.size() == 1u;
return true;
}
SubstringSetMatcher::SubstringSetMatcher() = default;
SubstringSetMatcher::~SubstringSetMatcher() = default;
bool SubstringSetMatcher::Match(
const std::string& text,
std::set<MatcherStringPattern::ID>* matches) const {
const size_t old_number_of_matches = matches->size();
// Handle patterns matching the empty string.
const AhoCorasickNode* const root = &tree_[kRootID];
AccumulateMatchesForNode(root, matches);
const AhoCorasickNode* current_node = root;
for (const char c : text) {
NodeID child = current_node->GetEdge(static_cast<unsigned char>(c));
// If the child not can't be found, progressively iterate over the longest
// proper suffix of the string represented by the current node. In a sense
// we are pruning prefixes from the text.
while (child == kInvalidNodeID && current_node != root) {
current_node = &tree_[current_node->failure()];
child = current_node->GetEdge(static_cast<unsigned char>(c));
}
if (child != kInvalidNodeID) {
// The string represented by |child| is the longest possible suffix of the
// current position of |text| in the trie.
current_node = &tree_[child];
AccumulateMatchesForNode(current_node, matches);
} else {
// The empty string is the longest possible suffix of the current position
// of |text| in the trie.
DCHECK_EQ(root, current_node);
}
}
return old_number_of_matches != matches->size();
}
bool SubstringSetMatcher::AnyMatch(const std::string& text) const {
// Handle patterns matching the empty string.
const AhoCorasickNode* const root = &tree_[kRootID];
if (root->has_outputs()) {
return true;
}
const AhoCorasickNode* current_node = root;
for (const char c : text) {
NodeID child = current_node->GetEdge(static_cast<unsigned char>(c));
// If the child not can't be found, progressively iterate over the longest
// proper suffix of the string represented by the current node. In a sense
// we are pruning prefixes from the text.
while (child == kInvalidNodeID && current_node != root) {
current_node = &tree_[current_node->failure()];
child = current_node->GetEdge(static_cast<unsigned char>(c));
}
if (child != kInvalidNodeID) {
// The string represented by |child| is the longest possible suffix of the
// current position of |text| in the trie.
current_node = &tree_[child];
if (current_node->has_outputs()) {
return true;
}
} else {
// The empty string is the longest possible suffix of the current position
// of |text| in the trie.
DCHECK_EQ(root, current_node);
}
}
return false;
}
size_t SubstringSetMatcher::EstimateMemoryUsage() const {
return base::trace_event::EstimateMemoryUsage(tree_);
}
// static
constexpr SubstringSetMatcher::NodeID SubstringSetMatcher::kInvalidNodeID;
constexpr SubstringSetMatcher::NodeID SubstringSetMatcher::kRootID;
SubstringSetMatcher::NodeID SubstringSetMatcher::GetTreeSize(
const std::vector<const MatcherStringPattern*>& patterns) const {
DCHECK(std::is_sorted(patterns.begin(), patterns.end(), ComparePatterns));
base::CheckedNumeric<NodeID> result = 1u; // 1 for the root node.
if (patterns.empty()) {
return result.ValueOrDie();
}
auto last = patterns.begin();
auto current = last + 1;
// For the first pattern, each letter is a label of an edge to a new node.
result += (*last)->pattern().size();
// For the subsequent patterns, only count the edges which were not counted
// yet. For this it suffices to test against the previous pattern, because the
// patterns are sorted.
for (; current != patterns.end(); ++last, ++current) {
const std::string& last_pattern = (*last)->pattern();
const std::string& current_pattern = (*current)->pattern();
size_t prefix_bound = std::min(last_pattern.size(), current_pattern.size());
size_t common_prefix = 0;
while (common_prefix < prefix_bound &&
last_pattern[common_prefix] == current_pattern[common_prefix]) {
++common_prefix;
}
result -= common_prefix;
result += current_pattern.size();
}
return result.ValueOrDie();
}
void SubstringSetMatcher::BuildAhoCorasickTree(
const SubstringPatternVector& patterns) {
DCHECK(tree_.empty());
// Initialize root node of tree.
tree_.emplace_back();
// Build the initial trie for all the patterns.
for (const MatcherStringPattern* pattern : patterns) {
InsertPatternIntoAhoCorasickTree(pattern);
}
CreateFailureAndOutputEdges();
}
void SubstringSetMatcher::InsertPatternIntoAhoCorasickTree(
const MatcherStringPattern* pattern) {
const std::string& text = pattern->pattern();
const std::string::const_iterator text_end = text.end();
// Iterators on the tree and the text.
AhoCorasickNode* current_node = &tree_[kRootID];
std::string::const_iterator i = text.begin();
// Follow existing paths for as long as possible.
while (i != text_end) {
NodeID child = current_node->GetEdge(static_cast<unsigned char>(*i));
if (child == kInvalidNodeID) {
break;
}
current_node = &tree_[child];
++i;
}
// Create new nodes if necessary.
while (i != text_end) {
tree_.emplace_back();
current_node->SetEdge(static_cast<unsigned char>(*i),
static_cast<NodeID>(tree_.size() - 1));
current_node = &tree_.back();
++i;
}
// Register match.
current_node->SetMatchID(pattern->id());
}
void SubstringSetMatcher::CreateFailureAndOutputEdges() {
base::queue<AhoCorasickNode*> queue;
// Initialize the failure edges for |root| and its children.
AhoCorasickNode* const root = &tree_[0];
root->SetOutputLink(kInvalidNodeID);
NodeID root_output_link = root->IsEndOfPattern() ? kRootID : kInvalidNodeID;
for (unsigned edge_idx = 0; edge_idx < root->num_edges(); ++edge_idx) {
const AhoCorasickEdge& edge = root->edges()[edge_idx];
if (edge.label >= kFirstSpecialLabel) {
continue;
}
AhoCorasickNode* child = &tree_[edge.node_id];
// Failure node is kept as the root.
child->SetOutputLink(root_output_link);
queue.push(child);
}
// Do a breadth first search over the trie to create failure edges. We
// maintain the invariant that any node in |queue| has had its |failure_| and
// |output_link_| edge already initialized.
while (!queue.empty()) {
AhoCorasickNode* current_node = queue.front();
queue.pop();
// Compute the failure and output edges of children using the failure edges
// of the current node.
for (unsigned edge_idx = 0; edge_idx < current_node->num_edges();
++edge_idx) {
const AhoCorasickEdge& edge = current_node->edges()[edge_idx];
if (edge.label >= kFirstSpecialLabel) {
continue;
}
AhoCorasickNode* child = &tree_[edge.node_id];
const AhoCorasickNode* failure_candidate_parent =
&tree_[current_node->failure()];
NodeID failure_candidate_id =
failure_candidate_parent->GetEdge(edge.label);
while (failure_candidate_id == kInvalidNodeID &&
failure_candidate_parent != root) {
failure_candidate_parent = &tree_[failure_candidate_parent->failure()];
failure_candidate_id = failure_candidate_parent->GetEdge(edge.label);
}
if (failure_candidate_id == kInvalidNodeID) {
DCHECK_EQ(root, failure_candidate_parent);
// |failure_candidate| is invalid and we can't proceed further since we
// have reached the root. Hence the longest proper suffix of this string
// represented by this node is the empty string (represented by root).
failure_candidate_id = kRootID;
} else {
child->SetFailure(failure_candidate_id);
}
const AhoCorasickNode* failure_candidate = &tree_[failure_candidate_id];
// Now |failure_candidate| is |child|'s longest possible proper suffix in
// the trie. We also know that since we are doing a breadth first search,
// we would have established |failure_candidate|'s output link by now.
// Hence we can define |child|'s output link as follows:
child->SetOutputLink(failure_candidate->IsEndOfPattern()
? failure_candidate_id
: failure_candidate->output_link());
queue.push(child);
}
}
}
void SubstringSetMatcher::AccumulateMatchesForNode(
const AhoCorasickNode* node,
std::set<MatcherStringPattern::ID>* matches) const {
DCHECK(matches);
if (!node->has_outputs()) {
// Fast reject.
return;
}
if (node->IsEndOfPattern()) {
matches->insert(node->GetMatchID());
}
NodeID node_id = node->output_link();
while (node_id != kInvalidNodeID) {
node = &tree_[node_id];
matches->insert(node->GetMatchID());
node_id = node->output_link();
}
}
SubstringSetMatcher::AhoCorasickNode::AhoCorasickNode() {
static_assert(kNumInlineEdges == 2, "Code below needs updating");
edges_.inline_edges[0].label = kEmptyLabel;
edges_.inline_edges[1].label = kEmptyLabel;
}
SubstringSetMatcher::AhoCorasickNode::~AhoCorasickNode() {
if (edges_capacity_ != 0) {
delete[] edges_.edges;
}
}
SubstringSetMatcher::AhoCorasickNode::AhoCorasickNode(AhoCorasickNode&& other) {
*this = std::move(other);
}
SubstringSetMatcher::AhoCorasickNode&
SubstringSetMatcher::AhoCorasickNode::operator=(AhoCorasickNode&& other) {
if (edges_capacity_ != 0) {
// Delete the old heap allocation if needed.
delete[] edges_.edges;
}
if (other.edges_capacity_ == 0) {
static_assert(kNumInlineEdges == 2, "Code below needs updating");
edges_.inline_edges[0] = other.edges_.inline_edges[0];
edges_.inline_edges[1] = other.edges_.inline_edges[1];
} else {
// Move over the heap allocation.
edges_.edges = other.edges_.edges;
other.edges_.edges = nullptr;
}
num_free_edges_ = other.num_free_edges_;
edges_capacity_ = other.edges_capacity_;
return *this;
}
SubstringSetMatcher::NodeID
SubstringSetMatcher::AhoCorasickNode::GetEdgeNoInline(uint32_t label) const {
DCHECK(edges_capacity_ != 0);
#ifdef __SSE2__
const __m128i lbl = _mm_set1_epi32(static_cast<int>(label));
const __m128i mask = _mm_set1_epi32(0x1ff);
for (unsigned edge_idx = 0; edge_idx < num_edges(); edge_idx += 4) {
const __m128i four = _mm_loadu_si128(
reinterpret_cast<const __m128i*>(&edges_.edges[edge_idx]));
const __m128i match = _mm_cmpeq_epi32(_mm_and_si128(four, mask), lbl);
const uint32_t match_mask = static_cast<uint32_t>(_mm_movemask_epi8(match));
if (match_mask != 0) {
if (match_mask & 0x1u) {
return edges_.edges[edge_idx].node_id;
}
if (match_mask & 0x10u) {
return edges_.edges[edge_idx + 1].node_id;
}
if (match_mask & 0x100u) {
return edges_.edges[edge_idx + 2].node_id;
}
DCHECK(match_mask & 0x1000u);
return edges_.edges[edge_idx + 3].node_id;
}
}
#else
for (unsigned edge_idx = 0; edge_idx < num_edges(); ++edge_idx) {
const AhoCorasickEdge& edge = edges_.edges[edge_idx];
if (edge.label == label) {
return edge.node_id;
}
}
#endif
return kInvalidNodeID;
}
void SubstringSetMatcher::AhoCorasickNode::SetEdge(uint32_t label,
NodeID node) {
DCHECK_LT(node, kInvalidNodeID);
#if DCHECK_IS_ON()
// We don't support overwriting existing edges.
for (unsigned edge_idx = 0; edge_idx < num_edges(); ++edge_idx) {
DCHECK_NE(label, edges()[edge_idx].label);
}
#endif
if (edges_capacity_ == 0 && num_free_edges_ > 0) {
// Still space in the inline storage, so use that.
edges_.inline_edges[num_edges()] = AhoCorasickEdge{label, node};
if (label == kFailureNodeLabel) {
// Make sure that kFailureNodeLabel is first.
// NOTE: We don't use std::swap here, because the compiler doesn't
// understand that inline_edges[] is 4-aligned and can give
// a warning or error.
AhoCorasickEdge temp = edges_.inline_edges[0];
edges_.inline_edges[0] = edges_.inline_edges[num_edges()];
edges_.inline_edges[num_edges()] = temp;
}
--num_free_edges_;
return;
}
if (num_free_edges_ == 0) {
// We are out of space, so double our capacity (unless that would cause
// num_free_edges_ to overflow). This can either be because we are
// converting from inline to heap storage, or because we are increasing the
// size of our heap storage.
unsigned old_capacity =
edges_capacity_ == 0 ? kNumInlineEdges : edges_capacity_;
unsigned new_capacity = std::min(old_capacity * 2, kEmptyLabel + 1);
DCHECK_EQ(0u, new_capacity % 4);
AhoCorasickEdge* new_edges = new AhoCorasickEdge[new_capacity];
memcpy(new_edges, edges(), sizeof(AhoCorasickEdge) * old_capacity);
for (unsigned edge_idx = old_capacity; edge_idx < new_capacity;
++edge_idx) {
new_edges[edge_idx].label = kEmptyLabel;
}
if (edges_capacity_ != 0) {
delete[] edges_.edges;
}
edges_.edges = new_edges;
// These casts are safe due to the DCHECK above.
edges_capacity_ = static_cast<uint16_t>(new_capacity);
num_free_edges_ = static_cast<uint8_t>(new_capacity - old_capacity);
}
// Insert the new edge at the end of our heap storage.
edges_.edges[num_edges()] = AhoCorasickEdge{label, node};
if (label == kFailureNodeLabel) {
// Make sure that kFailureNodeLabel is first.
std::swap(edges_.edges[0], edges_.edges[num_edges()]);
}
--num_free_edges_;
}
void SubstringSetMatcher::AhoCorasickNode::SetFailure(NodeID node) {
DCHECK_NE(kInvalidNodeID, node);
if (node != kRootID) {
SetEdge(kFailureNodeLabel, node);
}
}
size_t SubstringSetMatcher::AhoCorasickNode::EstimateMemoryUsage() const {
if (edges_capacity_ == 0) {
return 0;
} else {
return base::trace_event::EstimateMemoryUsage(
base::span<const AhoCorasickEdge>(edges_.edges, edges_capacity_));
}
}
} // namespace base
|