File: lock_unittest.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (633 lines) | stat: -rw-r--r-- 20,323 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/synchronization/lock.h"

#include <stdint.h>

#include <algorithm>
#include <atomic>
#include <cmath>
#include <cstdint>
#include <memory>
#include <utility>

#include "base/android/background_thread_pool_field_trial.h"
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/dcheck_is_on.h"
#include "base/features.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/callback_helpers.h"
#include "base/functional/function_ref.h"
#include "base/location.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ref.h"
#include "base/profiler/thread_delegate.h"
#include "base/rand_util.h"
#include "base/synchronization/lock_impl.h"
#include "base/synchronization/lock_subtle.h"
#include "base/system/sys_info.h"
#include "base/test/bind.h"
#include "base/test/gtest_util.h"
#include "base/test/scoped_feature_list.h"
#include "base/thread_annotations.h"
#include "base/threading/platform_thread.h"
#include "base/time/time.h"
#include "base/timer/elapsed_timer.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"

using testing::UnorderedElementsAre;
using testing::UnorderedElementsAreArray;

namespace base {

// Basic test to make sure that Acquire()/Release()/Try() don't crash ----------

class BasicLockTestThread : public PlatformThread::Delegate {
 public:
  explicit BasicLockTestThread(Lock* lock) : lock_(lock) {}

  BasicLockTestThread(const BasicLockTestThread&) = delete;
  BasicLockTestThread& operator=(const BasicLockTestThread&) = delete;

  void ThreadMain() override {
    for (int i = 0; i < 10; i++) {
      lock_->Acquire();
      acquired_++;
      lock_->Release();
    }
    for (int i = 0; i < 10; i++) {
      lock_->Acquire();
      acquired_++;
      PlatformThread::Sleep(RandTimeDeltaUpTo(Milliseconds(20)));
      lock_->Release();
    }
    for (int i = 0; i < 10; i++) {
      if (lock_->Try()) {
        acquired_++;
        PlatformThread::Sleep(RandTimeDeltaUpTo(Milliseconds(20)));
        lock_->Release();
      }
    }
  }

  int acquired() const { return acquired_; }

 private:
  raw_ptr<Lock> lock_;
  int acquired_ = 0;
};

TEST(LockTest, Basic) {
  Lock lock;
  BasicLockTestThread thread(&lock);
  PlatformThreadHandle handle;

  ASSERT_TRUE(PlatformThread::Create(0, &thread, &handle));

  int acquired = 0;
  for (int i = 0; i < 5; i++) {
    lock.Acquire();
    acquired++;
    lock.Release();
  }
  for (int i = 0; i < 10; i++) {
    lock.Acquire();
    acquired++;
    PlatformThread::Sleep(RandTimeDeltaUpTo(Milliseconds(20)));
    lock.Release();
  }
  for (int i = 0; i < 10; i++) {
    if (lock.Try()) {
      acquired++;
      PlatformThread::Sleep(RandTimeDeltaUpTo(Milliseconds(20)));
      lock.Release();
    }
  }
  for (int i = 0; i < 5; i++) {
    lock.Acquire();
    acquired++;
    PlatformThread::Sleep(RandTimeDeltaUpTo(Milliseconds(20)));
    lock.Release();
  }

  PlatformThread::Join(handle);

  EXPECT_GE(acquired, 20);
  EXPECT_GE(thread.acquired(), 20);
}

// Test that Try() works as expected -------------------------------------------

class TryLockTestThread : public PlatformThread::Delegate {
 public:
  explicit TryLockTestThread(Lock* lock) : lock_(lock) {}

  TryLockTestThread(const TryLockTestThread&) = delete;
  TryLockTestThread& operator=(const TryLockTestThread&) = delete;

  void ThreadMain() override {
    // The local variable is required for the static analyzer to see that the
    // lock is properly released.
    bool got_lock = lock_->Try();
    got_lock_ = got_lock;
    if (got_lock) {
      lock_->Release();
    }
  }

  bool got_lock() const { return got_lock_; }

 private:
  raw_ptr<Lock> lock_;
  bool got_lock_ = false;
};

TEST(LockTest, TryLock) {
  Lock lock;

  ASSERT_TRUE(lock.Try());
  lock.AssertAcquired();

  // This thread will not be able to get the lock.
  {
    TryLockTestThread thread(&lock);
    PlatformThreadHandle handle;

    ASSERT_TRUE(PlatformThread::Create(0, &thread, &handle));

    PlatformThread::Join(handle);

    ASSERT_FALSE(thread.got_lock());
  }

  lock.Release();

  // This thread will....
  {
    TryLockTestThread thread(&lock);
    PlatformThreadHandle handle;

    ASSERT_TRUE(PlatformThread::Create(0, &thread, &handle));

    PlatformThread::Join(handle);

    ASSERT_TRUE(thread.got_lock());
    // But it released it....
    ASSERT_TRUE(lock.Try());
    lock.AssertAcquired();
  }

  lock.Release();
}

// Tests that locks actually exclude -------------------------------------------

class MutexLockTestThread : public PlatformThread::Delegate {
 public:
  MutexLockTestThread(Lock* lock, int* value) : lock_(lock), value_(value) {}

  MutexLockTestThread(const MutexLockTestThread&) = delete;
  MutexLockTestThread& operator=(const MutexLockTestThread&) = delete;

  // Static helper which can also be called from the main thread.
  static void DoStuff(Lock* lock, int* value) {
    for (int i = 0; i < 40; i++) {
      lock->Acquire();
      int v = *value;
      PlatformThread::Sleep(RandTimeDeltaUpTo(Milliseconds(10)));
      *value = v + 1;
      lock->Release();
    }
  }

  void ThreadMain() override { DoStuff(lock_, value_); }

 private:
  raw_ptr<Lock> lock_;
  raw_ptr<int> value_;
};

TEST(LockTest, MutexTwoThreads) {
  Lock lock;
  int value = 0;

  MutexLockTestThread thread(&lock, &value);
  PlatformThreadHandle handle;

  ASSERT_TRUE(PlatformThread::Create(0, &thread, &handle));

  MutexLockTestThread::DoStuff(&lock, &value);

  PlatformThread::Join(handle);

  EXPECT_EQ(2 * 40, value);
}

TEST(LockTest, MutexFourThreads) {
  Lock lock;
  int value = 0;

  MutexLockTestThread thread1(&lock, &value);
  MutexLockTestThread thread2(&lock, &value);
  MutexLockTestThread thread3(&lock, &value);
  PlatformThreadHandle handle1;
  PlatformThreadHandle handle2;
  PlatformThreadHandle handle3;

  ASSERT_TRUE(PlatformThread::Create(0, &thread1, &handle1));
  ASSERT_TRUE(PlatformThread::Create(0, &thread2, &handle2));
  ASSERT_TRUE(PlatformThread::Create(0, &thread3, &handle3));

  MutexLockTestThread::DoStuff(&lock, &value);

  PlatformThread::Join(handle1);
  PlatformThread::Join(handle2);
  PlatformThread::Join(handle3);

  EXPECT_EQ(4 * 40, value);
}

// Test invariant checking -----------------------------------------------------

TEST(LockTest, InvariantIsCalled) {
  // This test should compile and execute safely regardless of invariant
  // checking, but if `kInvariantsActive` is false, we don't expect the
  // invariant to be checked when the lock state changes.
  constexpr bool kInvariantsActive = DCHECK_IS_ON();

  class InvariantChecker {
   public:
    explicit InvariantChecker(const Lock& lock LIFETIME_BOUND) : lock(lock) {}
    void Check() ASSERT_EXCLUSIVE_LOCK(lock) {
      lock->AssertAcquired();
      invariant_called = true;
    }
    bool TestAndReset() { return std::exchange(invariant_called, false); }

   private:
    const raw_ref<const Lock> lock;
    bool invariant_called = false;
  };

  // Awkward construction order here allows `checker` to refer to `lock`, which
  // refers to `check_ref`, which refers to `check`, which refers to `checker`.
  std::unique_ptr<InvariantChecker> checker;
  auto check = [&] { checker->Check(); };
  auto check_ref = base::FunctionRef<void()>(check);
  Lock lock([&](Lock* lp) {
    checker = std::make_unique<InvariantChecker>(*lp);
    return check_ref;
  }(&lock));

  EXPECT_FALSE(checker->TestAndReset());

  lock.Acquire();
  EXPECT_EQ(kInvariantsActive, checker->TestAndReset());

  lock.Release();
  EXPECT_EQ(kInvariantsActive, checker->TestAndReset());
}

// AutoLock tests --------------------------------------------------------------

TEST(LockTest, AutoLockMaybe) {
  Lock lock;
  {
    AutoLockMaybe auto_lock(&lock);
    lock.AssertAcquired();
  }
  EXPECT_DCHECK_DEATH(lock.AssertAcquired());
}

TEST(LockTest, AutoLockMaybeNull) {
  AutoLockMaybe auto_lock(nullptr);
}

TEST(LockTest, ReleasableAutoLockExplicitRelease) {
  Lock lock;
  ReleasableAutoLock auto_lock(&lock);
  lock.AssertAcquired();
  auto_lock.Release();
  EXPECT_DCHECK_DEATH(lock.AssertAcquired());
}

TEST(LockTest, ReleasableAutoLockImplicitRelease) {
  Lock lock;
  {
    ReleasableAutoLock auto_lock(&lock);
    lock.AssertAcquired();
  }
  EXPECT_DCHECK_DEATH(lock.AssertAcquired());
}

class TryLockTest : public testing::Test {
 protected:
  Lock lock_;
  int x_ GUARDED_BY(lock_) = 0;
};

// Verifies thread safety annotations do not prevent correct `AutoTryLock` usage
// from compiling. A dual of this test exists in lock_nocompile.nc. For more
// context, see <https://crbug.com/340196356>.
TEST_F(TryLockTest, CorrectlyCheckIsAcquired) {
  AutoTryLock maybe(lock_);
  // Should compile because we correctly check whether the lock is acquired
  // before writing to `x_`.
  if (maybe.is_acquired()) {
    x_ = 5;
  }
}

#if DCHECK_IS_ON()

TEST(LockTest, GetTrackedLocksHeldByCurrentThread) {
  Lock lock_a;
  Lock lock_b;
  Lock lock_c;
  const uintptr_t lock_a_ptr = reinterpret_cast<uintptr_t>(&lock_a);
  const uintptr_t lock_b_ptr = reinterpret_cast<uintptr_t>(&lock_b);
  const uintptr_t lock_c_ptr = reinterpret_cast<uintptr_t>(&lock_c);

  EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
              UnorderedElementsAre());
  ReleasableAutoLock auto_lock_a(&lock_a, subtle::LockTracking::kEnabled);
  EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
              UnorderedElementsAre(lock_a_ptr));
  ReleasableAutoLock auto_lock_b(&lock_b, subtle::LockTracking::kEnabled);
  EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
              UnorderedElementsAre(lock_a_ptr, lock_b_ptr));
  auto_lock_a.Release();
  EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
              UnorderedElementsAre(lock_b_ptr));
  ReleasableAutoLock auto_lock_c(&lock_c, subtle::LockTracking::kEnabled);
  EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
              UnorderedElementsAre(lock_b_ptr, lock_c_ptr));
  auto_lock_c.Release();
  EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
              UnorderedElementsAre(lock_b_ptr));
  auto_lock_b.Release();
  EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
              UnorderedElementsAre());
}

TEST(LockTest, GetTrackedLocksHeldByCurrentThread_AutoLock) {
  Lock lock;
  const uintptr_t lock_ptr = reinterpret_cast<uintptr_t>(&lock);
  AutoLock auto_lock(lock, subtle::LockTracking::kEnabled);
  EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
              UnorderedElementsAre(lock_ptr));
}

TEST(LockTest, GetTrackedLocksHeldByCurrentThread_MovableAutoLock) {
  Lock lock;
  const uintptr_t lock_ptr = reinterpret_cast<uintptr_t>(&lock);
  MovableAutoLock auto_lock(lock, subtle::LockTracking::kEnabled);
  EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
              UnorderedElementsAre(lock_ptr));
}

TEST(LockTest, GetTrackedLocksHeldByCurrentThread_AutoTryLock) {
  Lock lock;
  const uintptr_t lock_ptr = reinterpret_cast<uintptr_t>(&lock);
  AutoTryLock auto_lock(lock, subtle::LockTracking::kEnabled);
  EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
              UnorderedElementsAre(lock_ptr));
}

TEST(LockTest, GetTrackedLocksHeldByCurrentThread_AutoLockMaybe) {
  Lock lock;
  const uintptr_t lock_ptr = reinterpret_cast<uintptr_t>(&lock);
  AutoLockMaybe auto_lock(&lock, subtle::LockTracking::kEnabled);
  EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
              UnorderedElementsAre(lock_ptr));
}

TEST(LockTest, GetTrackedLocksHeldByCurrentThreadOverCapacity)
// Thread-safety analysis doesn't handle the array of locks properly.
NO_THREAD_SAFETY_ANALYSIS {
  constexpr size_t kHeldLocksCapacity = 10;
  std::array<Lock, kHeldLocksCapacity + 1> locks;

  for (size_t i = 0; i < kHeldLocksCapacity; ++i) {
    locks[i].Acquire(subtle::LockTracking::kEnabled);
  }

  EXPECT_CHECK_DEATH({
    locks[kHeldLocksCapacity].Acquire(subtle::LockTracking::kEnabled);
    locks[kHeldLocksCapacity].Release();
  });

  for (size_t i = 0; i < kHeldLocksCapacity; ++i) {
    locks[i].Release();

    std::vector<uintptr_t> expected_locks;
    for (size_t j = i + 1; j < kHeldLocksCapacity; ++j) {
      expected_locks.push_back(reinterpret_cast<uintptr_t>(&locks[j]));
    }

    EXPECT_THAT(subtle::GetTrackedLocksHeldByCurrentThread(),
                UnorderedElementsAreArray(expected_locks));
  }
}

TEST(LockTest, TrackingDisabled) {
  Lock lock;
  AutoLock auto_lock(lock, subtle::LockTracking::kDisabled);
  EXPECT_TRUE(subtle::GetTrackedLocksHeldByCurrentThread().empty());
}

// Priority Inheritance Tests --------------------------------------------------

#if BUILDFLAG(ENABLE_MUTEX_PRIORITY_INHERITANCE)
namespace {
class PriorityInheritanceTest {
 public:
  // The average value of MeasureRunTime() over |num_samples| iterations.
  static TimeDelta MeasureAverageRunTime(int num_samples = 10) {
    TimeDelta total_runtime;
    for (int i = 0; i < num_samples; i++) {
      total_runtime += MeasureRunTime();
    }

    return total_runtime / num_samples;
  }

  // Measure the time taken for a low-priority thread (kBackground) to perform
  // CPU bound work when it holds a lock that is awaited by a high-priority
  // thread (kRealtimeAudio).
  static TimeDelta MeasureRunTime() {
    Lock lock;
    TimeDelta test_run_time;
    std::atomic<bool> signal_cpu_bound_worker_threads_shutdown{false},
        signal_thread_a_will_lock{false};

    // Keep all the cores busy with a workload of CPU bound thread to reduce
    // flakiness in the test by skewing the CPU time between the high-priority
    // and low-priority measurement threads.
    std::vector<TestThread> cpu_bound_worker_threads;
    for (int i = 0; i < 15; i++) {
      cpu_bound_worker_threads.emplace_back(
          ThreadType::kDefault, base::BindLambdaForTesting([&]() {
            while (!signal_cpu_bound_worker_threads_shutdown.load(
                std::memory_order_relaxed)) {
              BusyLoop(10);
            }
          }));
    }

    for (auto& worker_thread : cpu_bound_worker_threads) {
      worker_thread.Create();
    }

    TestThread thread_a(
        ThreadType::kRealtimeAudio, base::BindLambdaForTesting([&]() {
          // Signal to thread B that the current thread will acquire the lock
          // next, so that it can to start its CPU bound work.
          signal_thread_a_will_lock.store(true, std::memory_order_relaxed);

          // Wait on the lock to be released once the low-priority thread is
          // done. In the case when priority inheritance mutexes are enabled,
          // this should boost the priority of the low-priority thread to the
          // priority of the highest priority waiter (i.e. the current thread).
          AutoLock auto_lock(lock);
          BusyLoop(10);
        }));

    TestThread thread_b(
        ThreadType::kBackground, base::BindLambdaForTesting([&]() {
          // Acquire the lock before creating the high-priority thread, so that
          // the higher priority thread is blocked on the current thread while
          // the current thread performs CPU-bound work.
          AutoLock auto_lock(lock);
          thread_a.Create();

          // Before performing the CPU bound work, wait for the thread A to
          // signal that it has started running and will acquire the lock next.
          // While it is not a perfectly reliable signal (thread A may get
          // descheduled immediately after signalling), given the relative
          // priorities of the two threads it is good enough to reduce large
          // variations due to latencies in thread bring up.
          while (!signal_thread_a_will_lock.load(std::memory_order_relaxed)) {
            usleep(10);
          }

          ElapsedTimer timer;
          BusyLoop(1000000);
          test_run_time = timer.Elapsed();
        }));

    // Create the low-priority thread which is responsible for creating the
    // high-priority thread. Wait for both threads to finish before recording
    // the elapsed time.
    thread_b.Create();
    thread_b.Join();
    thread_a.Join();

    signal_cpu_bound_worker_threads_shutdown.store(true,
                                                   std::memory_order_relaxed);
    for (auto& worker_thread : cpu_bound_worker_threads) {
      worker_thread.Join();
    }

    return test_run_time;
  }

 private:
  // CPU bound work for the threads to eat up CPU cycles.
  static void BusyLoop(size_t n) {
    __unused int sum = 0;
    for (int i = 0; i < n; i++) {
      if (base::ShouldRecordSubsampledMetric(0.5)) {
        sum += 1;
      }
    }
  }

  class TestThread : public PlatformThread::Delegate {
   public:
    explicit TestThread(ThreadType thread_type, base::OnceClosure body)
        : thread_type_(thread_type), body_(std::move(body)) {}

    void Create() {
      ASSERT_TRUE(
          PlatformThread::CreateWithType(0, this, &handle_, thread_type_));
    }

    void ThreadMain() override { std::move(body_).Run(); }

    void Join() { PlatformThread::Join(handle_); }

   private:
    ThreadType thread_type_;
    PlatformThreadHandle handle_;
    base::OnceClosure body_;
  };
};

}  // namespace

// Tests that the time taken by a higher-priority thread to acquire a lock held
// by a lower-priority thread is indeed reduced by priority inheritance.
TEST(LockTest, PriorityIsInherited) {
  TimeDelta avg_test_run_time_with_pi, avg_test_run_time_without_pi;

  // Priority inheritance mutexes are not supported on Android kernels < 6.1
  if (!base::KernelSupportsPriorityInheritanceFutex()) {
    GTEST_SKIP() << "base::Lock does not handle multiple thread priorities "
                 << "(Kernel version: "
                 << base::SysInfo::KernelVersionNumber::Current() << ")";
  }

  {
    base::android::ScopedUsePriorityInheritanceLocksForTesting use_pi_locks;
    ASSERT_TRUE(base::android::BackgroundThreadPoolFieldTrial::
               ShouldUsePriorityInheritanceLocks());
    avg_test_run_time_with_pi =
        PriorityInheritanceTest::MeasureAverageRunTime();
  }

  {
    ASSERT_TRUE(!base::android::BackgroundThreadPoolFieldTrial::
               ShouldUsePriorityInheritanceLocks());
    avg_test_run_time_without_pi =
        PriorityInheritanceTest::MeasureAverageRunTime();
  }

  // During the time in which the thread A is waiting on the lock to be released
  // by the thread B, the thread B runs at kBackground priority in the non-PI
  // case and at kRealtimeAudio priority in the PI case.
  //
  // Based on the Linux kernel's allocation of CPU shares documented in
  // https://elixir.bootlin.com/linux/v6.12.5/source/kernel/sched/core.c#L9998,
  // a thread running at kRealtimeAudio (nice value = -16) gets 36291 shares
  // of the CPU, a thread at kDefault (nice value = 0) get 1024 shares and a
  // thread at kBackground (nice value = 10) gets 110 shares of the CPU.
  //
  // Assuming no other threads except the ones created by this test are running,
  // during the time in which thread A is waiting on the lock to be released by
  // thread B, thread B gets 110/(15*1024 + 110) ≈ 0.7% of the CPU time in the
  // non-PI case and 36291/(36291 + 15*1024) ≈ 70% of the CPU time in the PI
  // case. This is approximately a 100x difference in CPU shares allocated to
  // the thread B when it is doing CPU-bound work.
  //
  // The test is thus designed such that the measured run time is thread B's CPU
  // bound work. While there are other factors at play that determine the
  // measured run time such as the frequency at which the CPU is running, we can
  // expect that there will be at least an order of magnitude of disparity in
  // the test run times with and without PI.
  //
  // In order to reduce test flakiness while still eliminating the possibility
  // of variance in measurements accounting for the test results, we
  // conservatively expect a 3x improvement.
  EXPECT_GT(avg_test_run_time_without_pi, 3 * avg_test_run_time_with_pi);
}
#endif  // BUILDFLAG(ENABLE_MUTEX_PRIORITY_INHERITANCE)

#endif  // DCHECK_IS_ON()

}  // namespace base