1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/synchronization/waitable_event.h"
#include <stddef.h>
#include <algorithm>
#include <limits>
#include <optional>
#include <vector>
#include "base/check_op.h"
#include "base/memory/stack_allocated.h"
#include "base/synchronization/condition_variable.h"
#include "base/synchronization/lock.h"
#include "base/threading/scoped_blocking_call.h"
#include "base/threading/thread_restrictions.h"
#include "base/time/time.h"
#include "base/time/time_override.h"
// -----------------------------------------------------------------------------
// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
// support cross-process events (where one process can signal an event which
// others are waiting on). Because of this, we can avoid having one thread per
// listener in several cases.
//
// The WaitableEvent maintains a list of waiters, protected by a lock. Each
// waiter is either an async wait, in which case we have a Task and the
// MessageLoop to run it on, or a blocking wait, in which case we have the
// condition variable to signal.
//
// Waiting involves grabbing the lock and adding oneself to the wait list. Async
// waits can be canceled, which means grabbing the lock and removing oneself
// from the list.
//
// Waiting on multiple events is handled by adding a single, synchronous wait to
// the wait-list of many events. An event passes a pointer to itself when
// firing a waiter and so we can store that pointer to find out which event
// triggered.
// -----------------------------------------------------------------------------
namespace base {
// -----------------------------------------------------------------------------
// This is just an abstract base class for waking the two types of waiters
// -----------------------------------------------------------------------------
WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
InitialState initial_state)
: kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
void WaitableEvent::Reset() {
base::AutoLock locked(kernel_->lock_);
kernel_->signaled_ = false;
}
void WaitableEvent::SignalImpl() {
base::AutoLock locked(kernel_->lock_);
if (kernel_->signaled_) {
return;
}
if (kernel_->manual_reset_) {
SignalAll();
kernel_->signaled_ = true;
} else {
// In the case of auto reset, if no waiters were woken, we remain
// signaled.
if (!SignalOne()) {
kernel_->signaled_ = true;
}
}
}
bool WaitableEvent::IsSignaled() const {
base::AutoLock locked(kernel_->lock_);
const bool result = kernel_->signaled_;
if (result && !kernel_->manual_reset_) {
kernel_->signaled_ = false;
}
return result;
}
// -----------------------------------------------------------------------------
// Synchronous waits
// -----------------------------------------------------------------------------
// This is a synchronous waiter. The thread is waiting on the given condition
// variable and the fired flag in this object.
// -----------------------------------------------------------------------------
class SyncWaiter : public WaitableEvent::Waiter {
STACK_ALLOCATED();
public:
SyncWaiter() : cv_(&lock_) {}
bool Fire(WaitableEvent* signaling_event) override {
base::AutoLock locked(lock_);
if (fired_) {
return false;
}
fired_ = true;
signaling_event_ = signaling_event;
cv_.Broadcast();
// Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
// the blocking thread's stack. There is no |delete this;| in Fire. The
// SyncWaiter object is destroyed when it goes out of scope.
return true;
}
WaitableEvent* signaling_event() const { return signaling_event_; }
// ---------------------------------------------------------------------------
// These waiters are always stack allocated and don't delete themselves. Thus
// there's no problem and the ABA tag is the same as the object pointer.
// ---------------------------------------------------------------------------
bool Compare(void* tag) override { return this == tag; }
// ---------------------------------------------------------------------------
// Called with lock held.
// ---------------------------------------------------------------------------
bool fired() const { return fired_; }
// ---------------------------------------------------------------------------
// During a TimedWait, we need a way to make sure that an auto-reset
// WaitableEvent doesn't think that this event has been signaled between
// unlocking it and removing it from the wait-list. Called with lock held.
// ---------------------------------------------------------------------------
void Disable() { fired_ = true; }
base::Lock* lock() { return &lock_; }
base::ConditionVariable* cv() { return &cv_; }
private:
bool fired_ = false;
WaitableEvent* signaling_event_ = nullptr; // The WaitableEvent which woke us
base::Lock lock_;
base::ConditionVariable cv_;
};
bool WaitableEvent::TimedWaitImpl(TimeDelta wait_delta) {
kernel_->lock_.Acquire();
if (kernel_->signaled_) {
if (!kernel_->manual_reset_) {
// In this case we were signaled when we had no waiters. Now that
// someone has waited upon us, we can automatically reset.
kernel_->signaled_ = false;
}
kernel_->lock_.Release();
return true;
}
SyncWaiter sw;
if (only_used_while_idle_) {
sw.cv()->declare_only_used_while_idle();
}
sw.lock()->Acquire();
Enqueue(&sw);
kernel_->lock_.Release();
// We are violating locking order here by holding the SyncWaiter lock but not
// the WaitableEvent lock. However, this is safe because we don't lock |lock_|
// again before unlocking it.
// TimeTicks takes care of overflow but we special case is_max() nonetheless
// to avoid invoking TimeTicksNowIgnoringOverride() unnecessarily (same for
// the increment step of the for loop if the condition variable returns
// early). Ref: https://crbug.com/910524#c7
const TimeTicks end_time =
wait_delta.is_max() ? TimeTicks::Max()
: subtle::TimeTicksNowIgnoringOverride() + wait_delta;
for (TimeDelta remaining = wait_delta; remaining.is_positive() && !sw.fired();
remaining = end_time.is_max()
? TimeDelta::Max()
: end_time - subtle::TimeTicksNowIgnoringOverride()) {
if (end_time.is_max()) {
sw.cv()->Wait();
} else {
sw.cv()->TimedWait(remaining);
}
}
// Get the SyncWaiter signaled state before releasing the lock.
const bool return_value = sw.fired();
// We can't acquire |lock_| before releasing the SyncWaiter lock (because of
// locking order), however, in between the two a signal could be fired and
// |sw| would accept it, however we will still return false, so the signal
// would be lost on an auto-reset WaitableEvent. Thus we call Disable which
// makes sw::Fire return false.
sw.Disable();
sw.lock()->Release();
// This is a bug that has been enshrined in the interface of WaitableEvent
// now: |Dequeue| is called even when |sw.fired()| is true, even though it'll
// always return false in that case. However, taking the lock ensures that
// |Signal| has completed before we return and means that a WaitableEvent can
// synchronise its own destruction.
kernel_->lock_.Acquire();
kernel_->Dequeue(&sw, &sw);
kernel_->lock_.Release();
return return_value;
}
// -----------------------------------------------------------------------------
// Synchronous waiting on multiple objects.
static bool // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent*, unsigned>& a,
const std::pair<WaitableEvent*, unsigned>& b) {
return a.first < b.first;
}
// static
// NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
size_t WaitableEvent::WaitManyImpl(WaitableEvent** raw_waitables,
size_t count) NO_THREAD_SAFETY_ANALYSIS {
// We need to acquire the locks in a globally consistent order. Thus we sort
// the array of waitables by address. We actually sort a pairs so that we can
// map back to the original index values later.
std::vector<std::pair<WaitableEvent*, size_t>> waitables;
waitables.reserve(count);
for (size_t i = 0; i < count; ++i) {
waitables.emplace_back(raw_waitables[i], i);
}
DCHECK_EQ(count, waitables.size());
std::ranges::sort(waitables, cmp_fst_addr);
// The set of waitables must be distinct. Since we have just sorted by
// address, we can check this cheaply by comparing pairs of consecutive
// elements.
for (size_t i = 0; i < waitables.size() - 1; ++i) {
DCHECK(waitables[i].first != waitables[i + 1].first);
}
SyncWaiter sw;
const size_t r = EnqueueMany(&waitables[0], count, &sw);
if (r < count) {
// One of the events is already signaled. The SyncWaiter has not been
// enqueued anywhere.
return waitables[r].second;
}
// At this point, we hold the locks on all the WaitableEvents and we have
// enqueued our waiter in them all.
sw.lock()->Acquire();
// Release the WaitableEvent locks in the reverse order
for (size_t i = 0; i < count; ++i) {
waitables[count - (1 + i)].first->kernel_->lock_.Release();
}
for (;;) {
if (sw.fired()) {
break;
}
sw.cv()->Wait();
}
sw.lock()->Release();
// The address of the WaitableEvent which fired is stored in the SyncWaiter.
WaitableEvent* const signaled_event = sw.signaling_event();
// This will store the index of the raw_waitables which fired.
size_t signaled_index = 0;
// Take the locks of each WaitableEvent in turn (except the signaled one) and
// remove our SyncWaiter from the wait-list
for (size_t i = 0; i < count; ++i) {
if (raw_waitables[i] != signaled_event) {
raw_waitables[i]->kernel_->lock_.Acquire();
// There's no possible ABA issue with the address of the SyncWaiter here
// because it lives on the stack. Thus the tag value is just the pointer
// value again.
raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
raw_waitables[i]->kernel_->lock_.Release();
} else {
// By taking this lock here we ensure that |Signal| has completed by the
// time we return, because |Signal| holds this lock. This matches the
// behaviour of |Wait| and |TimedWait|.
raw_waitables[i]->kernel_->lock_.Acquire();
raw_waitables[i]->kernel_->lock_.Release();
signaled_index = i;
}
}
return signaled_index;
}
// -----------------------------------------------------------------------------
// If return value == count:
// The locks of the WaitableEvents have been taken in order and the Waiter has
// been enqueued in the wait-list of each. None of the WaitableEvents are
// currently signaled
// else:
// None of the WaitableEvent locks are held. The Waiter has not been enqueued
// in any of them and the return value is the index of the WaitableEvent which
// was signaled with the lowest input index from the original WaitMany call.
// -----------------------------------------------------------------------------
// static
// NO_THREAD_SAFETY_ANALYSIS: Complex control flow.
size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
size_t count,
Waiter* waiter) NO_THREAD_SAFETY_ANALYSIS {
size_t winner = count;
size_t winner_index = count;
for (size_t i = 0; i < count; ++i) {
auto& kernel = waitables[i].first->kernel_;
kernel->lock_.Acquire();
if (kernel->signaled_ && waitables[i].second < winner) {
winner = waitables[i].second;
winner_index = i;
}
}
// No events signaled. All locks acquired. Enqueue the Waiter on all of them
// and return.
if (winner == count) {
for (size_t i = 0; i < count; ++i) {
waitables[i].first->Enqueue(waiter);
}
return count;
}
// Unlock in reverse order and possibly clear the chosen winner's signal
// before returning its index.
for (auto* w = waitables + count - 1; w >= waitables; --w) {
auto& kernel = w->first->kernel_;
if (w->second == winner) {
if (!kernel->manual_reset_) {
kernel->signaled_ = false;
}
}
kernel->lock_.Release();
}
return winner_index;
}
// -----------------------------------------------------------------------------
// -----------------------------------------------------------------------------
// Private functions...
WaitableEvent::WaitableEventKernel::WaitableEventKernel(
ResetPolicy reset_policy,
InitialState initial_state)
: manual_reset_(reset_policy == ResetPolicy::MANUAL),
signaled_(initial_state == InitialState::SIGNALED) {}
WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
// -----------------------------------------------------------------------------
// Wake all waiting waiters. Called with lock held.
// -----------------------------------------------------------------------------
bool WaitableEvent::SignalAll() {
bool signaled_at_least_one = false;
for (Waiter* i : kernel_->waiters_) {
if (i->Fire(this)) {
signaled_at_least_one = true;
}
}
kernel_->waiters_.clear();
return signaled_at_least_one;
}
// ---------------------------------------------------------------------------
// Try to wake a single waiter. Return true if one was woken. Called with lock
// held.
// ---------------------------------------------------------------------------
bool WaitableEvent::SignalOne() {
for (;;) {
if (kernel_->waiters_.empty()) {
return false;
}
const bool r = (*kernel_->waiters_.begin())->Fire(this);
kernel_->waiters_.pop_front();
if (r) {
return true;
}
}
}
// -----------------------------------------------------------------------------
// Add a waiter to the list of those waiting. Called with lock held.
// -----------------------------------------------------------------------------
void WaitableEvent::Enqueue(Waiter* waiter) {
kernel_->waiters_.push_back(waiter);
}
// -----------------------------------------------------------------------------
// Remove a waiter from the list of those waiting. Return true if the waiter was
// actually removed. Called with lock held.
// -----------------------------------------------------------------------------
bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
for (auto i = waiters_.begin(); i != waiters_.end(); ++i) {
if (*i == waiter && (*i)->Compare(tag)) {
waiters_.erase(i);
return true;
}
}
return false;
}
// -----------------------------------------------------------------------------
} // namespace base
|