1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <atomic>
#include <optional>
#include <utility>
#include <vector>
#include "base/containers/queue.h"
#include "base/containers/stack.h"
#include "base/functional/callback_helpers.h"
#include "base/synchronization/lock.h"
#include "base/task/post_job.h"
#include "base/task/thread_pool.h"
#include "base/test/bind.h"
#include "base/test/task_environment.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_result_reporter.h"
namespace base {
namespace {
// The perftest implements the following assignment strategy:
// - Naive: See RunJobWithNaiveAssignment().
// - Dynamic: See RunJobWithDynamicAssignment().
// - Loop around: See RunJobWithLoopAround().
// The following test setups exists for different strategies, although
// not every combination is performed:
// - No-op: Work items are no-op tasks.
// - No-op + disrupted: 10 disruptive tasks are posted every 1ms.
// - Busy wait: Work items are busy wait for 5us.
// - Busy wait + disrupted
constexpr char kMetricPrefixJob[] = "Job.";
constexpr char kMetricWorkThroughput[] = "work_throughput";
constexpr char kStoryNoOpNaive[] = "noop_naive";
constexpr char kStoryBusyWaitNaive[] = "busy_wait_naive";
constexpr char kStoryNoOpAtomic[] = "noop_atomic";
constexpr char kStoryNoOpAtomicDisrupted[] = "noop_atomic_disrupted";
constexpr char kStoryBusyWaitAtomic[] = "busy_wait_atomic";
constexpr char kStoryBusyWaitAtomicDisrupted[] = "busy_wait_atomic_disrupted";
constexpr char kStoryNoOpDynamic[] = "noop_dynamic";
constexpr char kStoryNoOpDynamicDisrupted[] = "noop_dynamic_disrupted";
constexpr char kStoryBusyWaitDynamic[] = "busy_wait_dynamic";
constexpr char kStoryBusyWaitDynamicDisrupted[] = "busy_wait_dynamic_disrupted";
constexpr char kStoryNoOpLoopAround[] = "noop_loop_around";
constexpr char kStoryNoOpLoopAroundDisrupted[] = "noop_loop_around_disrupted";
constexpr char kStoryBusyWaitLoopAround[] = "busy_wait_loop_around";
constexpr char kStoryBusyWaitLoopAroundDisrupted[] =
"busy_wait_loop_around_disrupted";
perf_test::PerfResultReporter SetUpReporter(const std::string& story_name) {
perf_test::PerfResultReporter reporter(kMetricPrefixJob, story_name);
reporter.RegisterImportantMetric(kMetricWorkThroughput, "tasks/ms");
return reporter;
}
// A thread-safe data structure that generates heuristic starting points in a
// range to process items in parallel.
// Note: we could expose this atomic-binary-search-index-generator in
// //base/util if it's useful for real-world use cases.
class IndexGenerator {
public:
explicit IndexGenerator(size_t size) : size_(size) {
AutoLock auto_lock(lock_);
pending_indices_.push(0);
ranges_to_split_.emplace(0, size_);
}
IndexGenerator(const IndexGenerator&) = delete;
IndexGenerator& operator=(const IndexGenerator&) = delete;
std::optional<size_t> GetNext() {
AutoLock auto_lock(lock_);
if (!pending_indices_.empty()) {
// Return any pending index first.
auto index = pending_indices_.top();
pending_indices_.pop();
return index;
}
if (ranges_to_split_.empty()) {
return std::nullopt;
}
// Split the oldest running range in 2 and return the middle index as
// starting point.
auto range = ranges_to_split_.front();
ranges_to_split_.pop();
size_t size = range.second - range.first;
size_t mid = range.first + size / 2;
// Both sides of the range are added to |ranges_to_split_| so they may be
// further split if possible.
if (mid - range.first > 1) {
ranges_to_split_.emplace(range.first, mid);
}
if (range.second - mid > 1) {
ranges_to_split_.emplace(mid, range.second);
}
return mid;
}
void GiveBack(size_t index) {
AutoLock auto_lock(lock_);
// Add |index| to pending indices so GetNext() may return it before anything
// else.
pending_indices_.push(index);
}
private:
base::Lock lock_;
// Pending indices that are ready to be handed out, prioritized over
// |pending_ranges_| when non-empty.
base::stack<size_t> pending_indices_ GUARDED_BY(lock_);
// Pending [start, end] (exclusive) ranges to split and hand out indices from.
base::queue<std::pair<size_t, size_t>> ranges_to_split_ GUARDED_BY(lock_);
const size_t size_;
};
struct WorkItem {
std::atomic_bool acquire{false};
bool TryAcquire() {
// memory_order_relaxed is sufficient as the WorkItem's state itself hasn't
// been modified since the beginning of its associated job. This is only
// atomically acquiring the right to work on it.
return acquire.exchange(true, std::memory_order_relaxed) == false;
}
};
class WorkList {
public:
WorkList(size_t num_work_items, RepeatingCallback<void(size_t)> process_item)
: num_incomplete_items_(num_work_items),
items_(num_work_items),
process_item_(std::move(process_item)) {}
WorkList(const WorkList&) = delete;
WorkList& operator=(const WorkList&) = delete;
// Acquires work item at |index|. Returns true if successful, or false if the
// item was already acquired.
bool TryAcquire(size_t index) { return items_[index].TryAcquire(); }
// Processes work item at |index|. Returns true if there are more work items
// to process, or false if all items were processed.
bool ProcessWorkItem(size_t index) {
process_item_.Run(index);
return num_incomplete_items_.fetch_sub(1, std::memory_order_relaxed) > 1;
}
size_t NumIncompleteWorkItems(size_t /*worker_count*/) const {
// memory_order_relaxed is sufficient since this is not synchronized with
// other state.
return num_incomplete_items_.load(std::memory_order_relaxed);
}
size_t NumWorkItems() const { return items_.size(); }
private:
std::atomic_size_t num_incomplete_items_;
std::vector<WorkItem> items_;
RepeatingCallback<void(size_t)> process_item_;
};
RepeatingCallback<void(size_t)> BusyWaitCallback(TimeDelta delta) {
return base::BindRepeating(
[](base::TimeDelta duration, size_t index) {
const base::TimeTicks end_time = base::TimeTicks::Now() + duration;
while (base::TimeTicks::Now() < end_time)
;
},
delta);
}
// Posts |task_count| no-op tasks every |delay|.
void DisruptivePostTasks(size_t task_count, TimeDelta delay) {
for (size_t i = 0; i < task_count; ++i) {
ThreadPool::PostTask(FROM_HERE, {TaskPriority::USER_BLOCKING}, DoNothing());
}
ThreadPool::PostDelayedTask(FROM_HERE, {TaskPriority::USER_BLOCKING},
BindOnce(&DisruptivePostTasks, task_count, delay),
delay);
}
class JobPerfTest : public testing::Test {
public:
JobPerfTest() = default;
JobPerfTest(const JobPerfTest&) = delete;
JobPerfTest& operator=(const JobPerfTest&) = delete;
// Process |num_work_items| items with |process_item| in parallel. Work is
// assigned by having each worker sequentially traversing all items and
// acquiring unvisited ones.
void RunJobWithNaiveAssignment(const std::string& story_name,
size_t num_work_items,
RepeatingCallback<void(size_t)> process_item) {
WorkList work_list(num_work_items, std::move(process_item));
const TimeTicks job_run_start = TimeTicks::Now();
WaitableEvent complete;
auto handle = PostJob(
FROM_HERE, {TaskPriority::USER_VISIBLE},
BindRepeating(
[](WorkList* work_list, WaitableEvent* complete,
JobDelegate* delegate) {
for (size_t i = 0; i < work_list->NumWorkItems() &&
work_list->NumIncompleteWorkItems(0) != 0 &&
!delegate->ShouldYield();
++i) {
if (!work_list->TryAcquire(i)) {
continue;
}
if (!work_list->ProcessWorkItem(i)) {
complete->Signal();
return;
}
}
},
Unretained(&work_list), Unretained(&complete)),
BindRepeating(&WorkList::NumIncompleteWorkItems,
Unretained(&work_list)));
complete.Wait();
handle.Join();
const TimeDelta job_duration = TimeTicks::Now() - job_run_start;
EXPECT_EQ(0U, work_list.NumIncompleteWorkItems(0));
auto reporter = SetUpReporter(story_name);
reporter.AddResult(kMetricWorkThroughput,
size_t(num_work_items / job_duration.InMilliseconds()));
}
// Process |num_work_items| items with |process_item| in parallel. Work is
// assigned by having each worker sequentially traversing all items
// synchronized with an atomic variable.
void RunJobWithAtomicAssignment(const std::string& story_name,
size_t num_work_items,
RepeatingCallback<void(size_t)> process_item,
bool disruptive_post_tasks = false) {
WorkList work_list(num_work_items, std::move(process_item));
std::atomic_size_t index{0};
// Post extra tasks to disrupt Job execution and cause workers to yield.
if (disruptive_post_tasks) {
DisruptivePostTasks(10, Milliseconds(1));
}
const TimeTicks job_run_start = TimeTicks::Now();
WaitableEvent complete;
auto handle = PostJob(
FROM_HERE, {TaskPriority::USER_VISIBLE},
BindRepeating(
[](WorkList* work_list, WaitableEvent* complete,
std::atomic_size_t* index, JobDelegate* delegate) {
while (!delegate->ShouldYield()) {
const size_t i = index->fetch_add(1, std::memory_order_relaxed);
if (i >= work_list->NumWorkItems() ||
!work_list->ProcessWorkItem(i)) {
complete->Signal();
return;
}
}
},
Unretained(&work_list), Unretained(&complete), Unretained(&index)),
BindRepeating(&WorkList::NumIncompleteWorkItems,
Unretained(&work_list)));
complete.Wait();
handle.Join();
const TimeDelta job_duration = TimeTicks::Now() - job_run_start;
EXPECT_EQ(0U, work_list.NumIncompleteWorkItems(0));
auto reporter = SetUpReporter(story_name);
reporter.AddResult(kMetricWorkThroughput,
size_t(num_work_items / job_duration.InMilliseconds()));
}
// Process |num_work_items| items with |process_item| in parallel. Work is
// assigned dynamically having each new worker given a different point far
// from other workers until all work is done. This is achieved by recursively
// splitting each range that was previously given in half.
void RunJobWithDynamicAssignment(const std::string& story_name,
size_t num_work_items,
RepeatingCallback<void(size_t)> process_item,
bool disruptive_post_tasks = false) {
WorkList work_list(num_work_items, std::move(process_item));
IndexGenerator generator(num_work_items);
// Post extra tasks to disrupt Job execution and cause workers to yield.
if (disruptive_post_tasks) {
DisruptivePostTasks(10, Milliseconds(1));
}
const TimeTicks job_run_start = TimeTicks::Now();
WaitableEvent complete;
auto handle = PostJob(
FROM_HERE, {TaskPriority::USER_VISIBLE},
BindRepeating(
[](IndexGenerator* generator, WorkList* work_list,
WaitableEvent* complete, JobDelegate* delegate) {
while (work_list->NumIncompleteWorkItems(0) != 0 &&
!delegate->ShouldYield()) {
std::optional<size_t> index = generator->GetNext();
if (!index) {
return;
}
for (size_t i = *index; i < work_list->NumWorkItems(); ++i) {
if (delegate->ShouldYield()) {
generator->GiveBack(i);
return;
}
if (!work_list->TryAcquire(i)) {
// If this was touched already, get a new starting point.
break;
}
if (!work_list->ProcessWorkItem(i)) {
complete->Signal();
return;
}
}
}
},
Unretained(&generator), Unretained(&work_list),
Unretained(&complete)),
BindRepeating(&WorkList::NumIncompleteWorkItems,
Unretained(&work_list)));
complete.Wait();
handle.Join();
const TimeDelta job_duration = TimeTicks::Now() - job_run_start;
EXPECT_EQ(0U, work_list.NumIncompleteWorkItems(0));
auto reporter = SetUpReporter(story_name);
reporter.AddResult(kMetricWorkThroughput,
size_t(num_work_items / job_duration.InMilliseconds()));
}
// Process |num_work_items| items with |process_item| in parallel. Work is
// assigned having each new worker given a different starting point far from
// other workers and loop over all work items from there. This is achieved by
// recursively splitting each range that was previously given in half.
void RunJobWithLoopAround(const std::string& story_name,
size_t num_work_items,
RepeatingCallback<void(size_t)> process_item,
bool disruptive_post_tasks = false) {
WorkList work_list(num_work_items, std::move(process_item));
IndexGenerator generator(num_work_items);
// Post extra tasks to disrupt Job execution and cause workers to yield.
if (disruptive_post_tasks) {
DisruptivePostTasks(10, Milliseconds(1));
}
const TimeTicks job_run_start = TimeTicks::Now();
WaitableEvent complete;
auto handle =
PostJob(FROM_HERE, {TaskPriority::USER_VISIBLE},
BindRepeating(
[](IndexGenerator* generator, WorkList* work_list,
WaitableEvent* complete, JobDelegate* delegate) {
std::optional<size_t> index = generator->GetNext();
if (!index) {
return;
}
size_t i = *index;
while (true) {
if (delegate->ShouldYield()) {
generator->GiveBack(i);
return;
}
if (!work_list->TryAcquire(i)) {
// If this was touched already, skip.
continue;
}
if (!work_list->ProcessWorkItem(i)) {
// This will cause the loop to exit if there's no work
// left.
complete->Signal();
return;
}
++i;
if (i == work_list->NumWorkItems()) {
i = 0;
}
}
},
Unretained(&generator), Unretained(&work_list),
Unretained(&complete)),
BindRepeating(&WorkList::NumIncompleteWorkItems,
Unretained(&work_list)));
complete.Wait();
handle.Join();
const TimeDelta job_duration = TimeTicks::Now() - job_run_start;
EXPECT_EQ(0U, work_list.NumIncompleteWorkItems(0));
auto reporter = SetUpReporter(story_name);
reporter.AddResult(kMetricWorkThroughput,
size_t(num_work_items / job_duration.InMilliseconds()));
}
private:
test::TaskEnvironment task_environment;
};
} // namespace
TEST_F(JobPerfTest, NoOpWorkNaiveAssignment) {
RunJobWithNaiveAssignment(kStoryNoOpNaive, 10000000, DoNothing());
}
TEST_F(JobPerfTest, BusyWaitNaiveAssignment) {
RepeatingCallback<void(size_t)> callback = BusyWaitCallback(Microseconds(5));
RunJobWithNaiveAssignment(kStoryBusyWaitNaive, 500000, std::move(callback));
}
TEST_F(JobPerfTest, NoOpWorkAtomicAssignment) {
RunJobWithAtomicAssignment(kStoryNoOpAtomic, 10000000, DoNothing());
}
TEST_F(JobPerfTest, NoOpDisruptedWorkAtomicAssignment) {
RunJobWithAtomicAssignment(kStoryNoOpAtomicDisrupted, 10000000, DoNothing(),
true);
}
TEST_F(JobPerfTest, BusyWaitAtomicAssignment) {
RepeatingCallback<void(size_t)> callback = BusyWaitCallback(Microseconds(5));
RunJobWithAtomicAssignment(kStoryBusyWaitAtomic, 500000, std::move(callback));
}
TEST_F(JobPerfTest, BusyWaitDisruptedWorkAtomicAssignment) {
RepeatingCallback<void(size_t)> callback = BusyWaitCallback(Microseconds(5));
RunJobWithAtomicAssignment(kStoryBusyWaitAtomicDisrupted, 500000,
std::move(callback), true);
}
TEST_F(JobPerfTest, NoOpWorkDynamicAssignment) {
RunJobWithDynamicAssignment(kStoryNoOpDynamic, 10000000, DoNothing());
}
TEST_F(JobPerfTest, NoOpDisruptedWorkDynamicAssignment) {
RunJobWithDynamicAssignment(kStoryNoOpDynamicDisrupted, 10000000, DoNothing(),
true);
}
TEST_F(JobPerfTest, BusyWaitWorkDynamicAssignment) {
RepeatingCallback<void(size_t)> callback = BusyWaitCallback(Microseconds(5));
RunJobWithDynamicAssignment(kStoryBusyWaitDynamic, 500000,
std::move(callback));
}
TEST_F(JobPerfTest, BusyWaitDisruptedWorkDynamicAssignment) {
RepeatingCallback<void(size_t)> callback = BusyWaitCallback(Microseconds(5));
RunJobWithDynamicAssignment(kStoryBusyWaitDynamicDisrupted, 500000,
std::move(callback), true);
}
TEST_F(JobPerfTest, NoOpWorkLoopAround) {
RunJobWithLoopAround(kStoryNoOpLoopAround, 10000000, DoNothing());
}
TEST_F(JobPerfTest, NoOpDisruptedWorkLoopAround) {
RunJobWithLoopAround(kStoryNoOpLoopAroundDisrupted, 10000000, DoNothing(),
true);
}
TEST_F(JobPerfTest, BusyWaitWorkLoopAround) {
RepeatingCallback<void(size_t)> callback = BusyWaitCallback(Microseconds(5));
RunJobWithLoopAround(kStoryBusyWaitLoopAround, 500000, std::move(callback));
}
TEST_F(JobPerfTest, BusyWaitDisruptedWorkLoopAround) {
RepeatingCallback<void(size_t)> callback = BusyWaitCallback(Microseconds(5));
RunJobWithLoopAround(kStoryBusyWaitLoopAroundDisrupted, 500000,
std::move(callback), true);
}
} // namespace base
|