1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_TASK_SEQUENCE_MANAGER_TASK_QUEUE_SELECTOR_H_
#define BASE_TASK_SEQUENCE_MANAGER_TASK_QUEUE_SELECTOR_H_
#include <stddef.h>
#include <atomic>
#include <optional>
#include <vector>
#include "base/base_export.h"
#include "base/dcheck_is_on.h"
#include "base/memory/raw_ptr.h"
#include "base/pending_task.h"
#include "base/task/sequence_manager/sequence_manager.h"
#include "base/task/sequence_manager/sequenced_task_source.h"
#include "base/task/sequence_manager/task_order.h"
#include "base/task/sequence_manager/work_queue_sets.h"
#include "base/values.h"
namespace base {
namespace sequence_manager {
namespace internal {
class AssociatedThreadId;
// TaskQueueSelector is used by the SchedulerHelper to enable prioritization
// of particular task queues.
class BASE_EXPORT TaskQueueSelector : public WorkQueueSets::Observer {
public:
using SelectTaskOption = SequencedTaskSource::SelectTaskOption;
TaskQueueSelector(scoped_refptr<const AssociatedThreadId> associated_thread,
const SequenceManager::Settings& settings);
TaskQueueSelector(const TaskQueueSelector&) = delete;
TaskQueueSelector& operator=(const TaskQueueSelector&) = delete;
~TaskQueueSelector() override;
// Called to register a queue that can be selected. This function is called
// on the main thread.
void AddQueue(internal::TaskQueueImpl* queue,
TaskQueue::QueuePriority priority);
// The specified work will no longer be considered for selection. This
// function is called on the main thread.
void RemoveQueue(internal::TaskQueueImpl* queue);
// Make |queue| eligible for selection. This function is called on the main
// thread. Must only be called if |queue| is disabled.
void EnableQueue(internal::TaskQueueImpl* queue);
// Disable selection from |queue|. Must only be called if |queue| is enabled.
void DisableQueue(internal::TaskQueueImpl* queue);
// Called get or set the priority of |queue|.
void SetQueuePriority(internal::TaskQueueImpl* queue,
TaskQueue::QueuePriority priority);
// Called to choose the work queue from which the next task should be taken
// and run. Return the queue to service if there is one or null otherwise.
// This function is called on the main thread.
WorkQueue* SelectWorkQueueToService(
SelectTaskOption option = SelectTaskOption::kDefault);
// Serialize the selector state for tracing/debugging.
Value::Dict AsValue() const;
class BASE_EXPORT Observer {
public:
virtual ~Observer() = default;
// Called when |queue| transitions from disabled to enabled.
virtual void OnTaskQueueEnabled(internal::TaskQueueImpl* queue) = 0;
// Called when work becomes available.
virtual void OnWorkAvailable() = 0;
};
// Called once to set the Observer. This function is called
// on the main thread. If |observer| is null, then no callbacks will occur.
void SetTaskQueueSelectorObserver(Observer* observer);
// Returns the priority of the most important pending task if one exists.
// O(1).
std::optional<TaskQueue::QueuePriority> GetHighestPendingPriority(
SelectTaskOption option = SelectTaskOption::kDefault) const;
// WorkQueueSets::Observer implementation:
void WorkQueueSetBecameEmpty(size_t set_index) override;
void WorkQueueSetBecameNonEmpty(size_t set_index) override;
// Populates |result| with tasks with lower priority than the first task from
// |selected_work_queue| which could otherwise run now.
void CollectSkippedOverLowerPriorityTasks(
const internal::WorkQueue* selected_work_queue,
std::vector<const Task*>* result) const;
protected:
WorkQueueSets* delayed_work_queue_sets() { return &delayed_work_queue_sets_; }
WorkQueueSets* immediate_work_queue_sets() {
return &immediate_work_queue_sets_;
}
// This method will force select an immediate task if those are being
// starved by delayed tasks.
void SetImmediateStarvationCountForTest(int immediate_starvation_count);
// Tracks which priorities are currently active, meaning there are pending
// runnable tasks with that priority. Because there are only a handful of
// priorities, and because we always run tasks in order from highest to lowest
// priority, we can use a single integer to represent enabled priorities,
// using a bit per priority.
class BASE_EXPORT ActivePriorityTracker {
public:
ActivePriorityTracker();
bool HasActivePriority() const { return active_priorities_ != 0; }
bool IsActive(TaskQueue::QueuePriority priority) const {
return active_priorities_ & (size_t{1} << static_cast<size_t>(priority));
}
void SetActive(TaskQueue::QueuePriority priority, bool is_active);
TaskQueue::QueuePriority HighestActivePriority() const;
private:
static_assert(SequenceManager::PrioritySettings::kMaxPriorities <
sizeof(size_t) * 8,
"The number of priorities must be strictly less than the "
"number of bits of |active_priorities_|!");
size_t active_priorities_ = 0;
};
/*
* SetOperation is used to configure ChooseWithPriority() and must have:
*
* static std::optional<WorkQueueAndTaskOrder>
* GetWithPriority(const WorkQueueSets& sets,
* TaskQueue::QueuePriority priority);
*/
// The default
struct SetOperationOldest {
static std::optional<WorkQueueAndTaskOrder> GetWithPriority(
const WorkQueueSets& sets,
TaskQueue::QueuePriority priority) {
return sets.GetOldestQueueAndTaskOrderInSet(priority);
}
};
#if DCHECK_IS_ON()
struct SetOperationRandom {
static std::optional<WorkQueueAndTaskOrder> GetWithPriority(
const WorkQueueSets& sets,
TaskQueue::QueuePriority priority) {
return sets.GetRandomQueueAndTaskOrderInSet(priority);
}
};
#endif // DCHECK_IS_ON()
template <typename SetOperation>
WorkQueue* ChooseWithPriority(TaskQueue::QueuePriority priority) const {
// Maximum number of delayed tasks tasks which can be run while there's a
// waiting non-delayed task.
static const int kMaxDelayedStarvationTasks = 3;
// Select an immediate work queue if we are starving immediate tasks.
if (immediate_starvation_count_ >= kMaxDelayedStarvationTasks) {
WorkQueue* queue =
ChooseImmediateOnlyWithPriority<SetOperation>(priority);
if (queue) {
return queue;
}
return ChooseDelayedOnlyWithPriority<SetOperation>(priority);
}
return ChooseImmediateOrDelayedTaskWithPriority<SetOperation>(priority);
}
template <typename SetOperation>
WorkQueue* ChooseImmediateOnlyWithPriority(
TaskQueue::QueuePriority priority) const {
if (auto queue_and_order = SetOperation::GetWithPriority(
immediate_work_queue_sets_, priority)) {
return queue_and_order->queue;
}
return nullptr;
}
template <typename SetOperation>
WorkQueue* ChooseDelayedOnlyWithPriority(
TaskQueue::QueuePriority priority) const {
if (auto queue_and_order =
SetOperation::GetWithPriority(delayed_work_queue_sets_, priority)) {
return queue_and_order->queue;
}
return nullptr;
}
private:
size_t priority_count() const { return non_empty_set_counts_.size(); }
void ChangeSetIndex(internal::TaskQueueImpl* queue,
TaskQueue::QueuePriority priority);
void AddQueueImpl(internal::TaskQueueImpl* queue,
TaskQueue::QueuePriority priority);
void RemoveQueueImpl(internal::TaskQueueImpl* queue);
#if DCHECK_IS_ON() || !defined(NDEBUG)
bool CheckContainsQueueForTest(const internal::TaskQueueImpl* queue) const;
#endif
template <typename SetOperation>
WorkQueue* ChooseImmediateOrDelayedTaskWithPriority(
TaskQueue::QueuePriority priority) const {
if (auto immediate_queue_and_order = SetOperation::GetWithPriority(
immediate_work_queue_sets_, priority)) {
if (auto delayed_queue_and_order = SetOperation::GetWithPriority(
delayed_work_queue_sets_, priority)) {
return immediate_queue_and_order->order < delayed_queue_and_order->order
? immediate_queue_and_order->queue
: delayed_queue_and_order->queue;
}
return immediate_queue_and_order->queue;
}
return ChooseDelayedOnlyWithPriority<SetOperation>(priority);
}
// Returns true if there are pending tasks with priority |priority|.
bool HasTasksWithPriority(TaskQueue::QueuePriority priority) const;
const scoped_refptr<const AssociatedThreadId> associated_thread_;
#if DCHECK_IS_ON()
const bool random_task_selection_ = false;
#endif
// Count of the number of sets (delayed or immediate) for each priority.
// Should only contain 0, 1 or 2.
std::vector<int> non_empty_set_counts_;
static constexpr const int kMaxNonEmptySetCount = 2;
// An atomic is used here because InitializeFeatures() can race with
// SequenceManager reading this.
static std::atomic_int g_max_delayed_starvation_tasks;
// List of active priorities, which is used to work out which priority to run
// next.
ActivePriorityTracker active_priority_tracker_;
WorkQueueSets delayed_work_queue_sets_;
WorkQueueSets immediate_work_queue_sets_;
int immediate_starvation_count_ = 0;
raw_ptr<Observer> task_queue_selector_observer_ = nullptr; // Not owned.
};
} // namespace internal
} // namespace sequence_manager
} // namespace base
#endif // BASE_TASK_SEQUENCE_MANAGER_TASK_QUEUE_SELECTOR_H_
|