1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_TASK_SEQUENCE_MANAGER_THREAD_CONTROLLER_H_
#define BASE_TASK_SEQUENCE_MANAGER_THREAD_CONTROLLER_H_
#include <array>
#include <optional>
#include <stack>
#include <string>
#include <string_view>
#include <vector>
#include "base/base_export.h"
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/features.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ref.h"
#include "base/memory/scoped_refptr.h"
#include "base/message_loop/message_pump.h"
#include "base/profiler/sample_metadata.h"
#include "base/rand_util.h"
#include "base/run_loop.h"
#include "base/task/common/lazy_now.h"
#include "base/task/sequence_manager/associated_thread_id.h"
#include "base/task/sequence_manager/tasks.h"
#include "base/task/single_thread_task_runner.h"
#include "base/thread_annotations.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "base/tracing_buildflags.h"
#include "build/build_config.h"
namespace base {
class HistogramBase;
class MessageLoopBase;
class TickClock;
struct PendingTask;
namespace sequence_manager {
namespace internal {
class SequencedTaskSource;
// Implementation of this interface is used by SequenceManager to schedule
// actual work to be run. Hopefully we can stop using MessageLoop and this
// interface will become more concise.
class BASE_EXPORT ThreadController {
public:
// Phases the top-RunLevel can go through. While these are more precise than
// RunLevelTracker::State, unlike it: phases are determined retrospectively
// as we often only find out the type of work that was just performed at the
// end of a phase. Or even find out about past phases later in the timeline
// (i.e. kScheduled is only known after the first kSelectingApplicationTask
// phase out-of-idle).
// Public for unit tests.
// These values are logged to UMA. Entries should not be renumbered and
// numeric values should never be reused. Please keep in sync
// with "MessagePumpPhases" in src/tools/metrics/histograms/enums.xml.
enum Phase {
kScheduled = 1,
kPumpOverhead = 2,
// Any work item, in practice application tasks are mapped to
// kApplicationTask so this only accounts for native work.
kWorkItem = 3,
kNativeWork = kWorkItem,
kSelectingApplicationTask = 4,
kApplicationTask = 5,
kIdleWork = 6,
kNested = 7,
kLastPhase = kNested,
// Reported as a kWorkItem but doesn't clear state relevant to the ongoing
// work item as it isn't finished (will resume after nesting).
kWorkItemSuspendedOnNested,
};
explicit ThreadController(const TickClock* time_source);
virtual ~ThreadController();
// Sets the number of tasks executed in a single invocation of DoWork.
// Increasing the batch size can reduce the overhead of yielding back to the
// main message loop.
virtual void SetWorkBatchSize(int work_batch_size = 1) = 0;
// Notifies that |pending_task| is about to be enqueued. Needed for tracing
// purposes. The impl may use this opportunity add metadata to |pending_task|
// before it is moved into the queue.
virtual void WillQueueTask(PendingTask* pending_task) = 0;
// Notify the controller that its associated sequence has immediate work
// to run. Shortly after this is called, the thread associated with this
// controller will run a task returned by sequence->TakeTask(). Can be called
// from any sequence.
//
// TODO(altimin): Change this to "the thread associated with this
// controller will run tasks returned by sequence->TakeTask() until it
// returns null or sequence->DidRunTask() returns false" once the
// code is changed to work that way.
virtual void ScheduleWork() = 0;
// Notify the controller that SequencedTaskSource will have a delayed work
// ready to be run at |wake_up|. This call cancels any previously
// scheduled delayed work. Can only be called from the main sequence.
// NOTE: GetPendingWakeUp might return a different value as it also takes
// immediate work into account.
// TODO(kraynov): Remove |lazy_now| parameter.
virtual void SetNextDelayedDoWork(LazyNow* lazy_now,
std::optional<WakeUp> wake_up) = 0;
// Sets the sequenced task source from which to take tasks after
// a Schedule*Work() call is made.
// Must be called before the first call to Schedule*Work().
virtual void SetSequencedTaskSource(SequencedTaskSource*) = 0;
// Completes delayed initialization of unbound ThreadControllers.
// BindToCurrentThread(MessageLoopBase*) or BindToCurrentThread(MessagePump*)
// may only be called once.
virtual void BindToCurrentThread(
std::unique_ptr<MessagePump> message_pump) = 0;
// Explicitly allow or disallow task execution. Implicitly disallowed when
// entering a nested runloop.
virtual void SetTaskExecutionAllowedInNativeNestedLoop(bool allowed) = 0;
// Whether task execution is allowed or not.
virtual bool IsTaskExecutionAllowed() const = 0;
// Returns the MessagePump we're bound to if any.
virtual MessagePump* GetBoundMessagePump() const = 0;
// Returns true if the current run loop should quit when idle.
virtual bool ShouldQuitRunLoopWhenIdle() = 0;
#if BUILDFLAG(IS_IOS) || BUILDFLAG(IS_ANDROID)
// On iOS, the main message loop cannot be Run(). Instead call
// AttachToMessagePump(), which connects this ThreadController to the
// UI thread's CFRunLoop and allows PostTask() to work.
virtual void AttachToMessagePump() = 0;
#endif
#if BUILDFLAG(IS_IOS)
// Detaches this ThreadController from the message pump, allowing the
// controller to be shut down cleanly.
virtual void DetachFromMessagePump() = 0;
#endif
// Initializes features for this class. See `base::features::Init()`.
static void InitializeFeatures(
features::EmitThreadControllerProfilerMetadata emit_profiler_metadata);
// Enables TimeKeeper metrics. `thread_name` will be used as a suffix.
// Setting `wall_time_based_metrics_enabled_for_testing` adds wall-time
// based metrics for this thread. It also also disables subsampling.
void EnableMessagePumpTimeKeeperMetrics(
const char* thread_name,
bool wall_time_based_metrics_enabled_for_testing);
// Sets the SingleThreadTaskRunner that will be returned by
// SingleThreadTaskRunner::GetCurrentDefault on the thread controlled by this
// ThreadController.
virtual void SetDefaultTaskRunner(scoped_refptr<SingleThreadTaskRunner>) = 0;
// TODO(altimin): Get rid of the methods below.
// These methods exist due to current integration of SequenceManager
// with MessageLoop.
virtual bool RunsTasksInCurrentSequence() = 0;
void SetTickClock(const TickClock* clock);
virtual scoped_refptr<SingleThreadTaskRunner> GetDefaultTaskRunner() = 0;
virtual void RestoreDefaultTaskRunner() = 0;
virtual void AddNestingObserver(RunLoop::NestingObserver* observer) = 0;
virtual void RemoveNestingObserver(RunLoop::NestingObserver* observer) = 0;
const scoped_refptr<AssociatedThreadId>& GetAssociatedThread() const {
return associated_thread_;
}
protected:
const scoped_refptr<AssociatedThreadId> associated_thread_;
// The source of TimeTicks for this ThreadController.
// Must only be accessed from the `associated_thread_`.
// TODO(scheduler-dev): This could be made
// `GUARDED_BY_CONTEXT(associated_thread_->thread_checker)` when
// switching MainThreadOnly to thread annotations and annotating all
// thread-affine ThreadController methods. Without that, this lone annotation
// would result in an inconsistent set of DCHECKs...
raw_ptr<const TickClock> time_source_; // Not owned.
// Whether or not wall-time based metrics are enabled.
bool wall_time_based_metrics_enabled_for_testing_;
// Tracks the state of each run-level (main and nested ones) in its associated
// ThreadController. It does so using two high-level principles:
// 1) #work-in-work-implies-nested :
// If the |state_| is kRunningWorkItem and another work item starts
// (OnWorkStarted()), it implies this inner-work-item is running from a
// 2) #done-work-at-lower-runlevel-implies-done-nested
// WorkItems are required to pass in the nesting depth at which they were
// created in OnWorkEnded(). Then, if |rundepth| is lower than the current
// RunDepth(), we know the top RunLevel was an (already exited) nested
// loop and will be popped off |run_levels_|.
// We need this logic because native nested loops can run from any work item
// without a RunLoop being involved, see
// ThreadControllerWithMessagePumpTest.ThreadControllerActive* tests for
// examples. Using these two heuristics is the simplest way, trying to
// capture all the ways in which work items can nest is harder than reacting
// as it happens.
//
// Note 1: "native work" is only captured if the MessagePump is
// instrumented to see them and shares them with ThreadController (via
// MessagePump::Delegate::OnBeginWorkItem). As such it is still possible to
// view trace events emanating from native work without "ThreadController
// active" being active.
// Note 2: Non-instrumented native work does not break the two high-level
// principles above because:
// A) If a non-instrumented work item enters a nested loop, either:
// i) No instrumented work run within the loop so it's invisible.
// ii) Instrumented work runs *and* current state is kRunningWorkItem
// ((A) is a work item within an instrumented work item):
// #work-in-work-implies-nested triggers and the nested loop is
// visible.
// iii) Instrumented work runs *and* current state is kIdle or
// kInBetweenWorkItems ((A) is a work item run by a native loop):
// #work-in-work-implies-nested doesn't trigger and this instrumented
// work (iii) looks like a non-nested continuation of work at the
// current RunLevel.
// B) When work item (A) exits its nested loop and completes, respectively:
// i) The loop was invisible so no RunLevel was created for it and
// #done-work-at-lower-runlevel-implies-done-nested doesn't trigger so
// it balances out.
// ii) Instrumented work did run, and so RunLevels() increased. However,
// since instrumented work (the work which called the nested loop)
// keeps track of its own run depth, on its exit, we know to pop the
// RunLevel corresponding to the nested work.
// iii) Nested instrumented work was visible but didn't appear nested,
// state is now back to kInBetweenWorkItems or kIdle as before (A).
class BASE_EXPORT RunLevelTracker {
public:
// States each RunLevel can be in.
enum State {
// Waiting for work (pending wakeup).
kIdle,
// Between two work items but not idle.
kInBetweenWorkItems,
// Running and currently processing a work items (includes selecting the
// next work item, i.e. either peeking the native work queue or selecting
// the next application task).
kRunningWorkItem,
};
explicit RunLevelTracker(const ThreadController& outer);
~RunLevelTracker();
void OnRunLoopStarted(State initial_state, LazyNow& lazy_now);
void OnRunLoopEnded();
void OnWorkStarted(LazyNow& lazy_now);
void OnApplicationTaskSelected(TimeTicks queue_time, LazyNow& lazy_now);
void OnWorkEnded(LazyNow& lazy_now, int run_level_depth);
void OnIdle(LazyNow& lazy_now);
size_t num_run_levels() const {
DCHECK_CALLED_ON_VALID_THREAD(outer_->associated_thread_->thread_checker);
return run_levels_.size();
}
// Emits a perfetto::Flow (wakeup.flow) event associated with this
// RunLevelTracker.
void RecordScheduleWork();
void EnableTimeKeeperMetrics(
const char* thread_name,
bool wall_time_based_metrics_enabled_for_testing);
// Observes changes of state sent as trace-events so they can be tested.
class TraceObserverForTesting {
public:
virtual ~TraceObserverForTesting() = default;
virtual void OnThreadControllerActiveBegin() = 0;
virtual void OnThreadControllerActiveEnd() = 0;
virtual void OnPhaseRecorded(Phase phase) = 0;
};
static void SetTraceObserverForTesting(
TraceObserverForTesting* trace_observer_for_testing);
private:
// Keeps track of the time spent in various Phases (ignores idle), reports
// via UMA to the corresponding phase every time one reaches >= 100ms of
// cumulative time, resulting in a metric of relative time spent in each
// non-idle phase. Also emits each phase as a trace event on its own
// MessagePumpPhases track when the disabled-by-default-base tracing
// category is enabled.
class TimeKeeper {
public:
explicit TimeKeeper(const RunLevelTracker& outer);
void EnableRecording(const char* thread_name,
bool wall_time_based_metrics_enabled_for_testing);
// Records the start time of the first phase out-of-idle. The kScheduled
// phase will be attributed the time before this point once its
// `queue_time` is known.
void RecordWakeUp(LazyNow& lazy_now);
// Accounts the time since OnWorkStarted() towards
// kSelectingApplicationTask. Accounts `queue_time - last_wakeup_` towards
// kScheduled (iff `queue_time` is not null nor later than
// `last_wakeup_`). And flags the current kWorkItem as a kApplicationTask,
// to be accounted from OnWorkEnded(). Emits a trace event for the
// kScheduled phase if applicable.
void OnApplicationTaskSelected(TimeTicks queue_time, LazyNow& lazy_now);
// If recording is enabled: Records the end of a phase, attributing it the
// delta between `lazy_now` and `last_phase_end` and emit a trace event
// for it.
void RecordEndOfPhase(Phase phase, LazyNow& lazy_now);
// If recording is enabled: If the `wakeup.flow` category is enabled,
// record a TerminatingFlow into the current "ThreadController Active"
// track event.
void MaybeEmitIncomingWakeupFlow(perfetto::EventContext& ctx);
const std::string& thread_name() const LIFETIME_BOUND {
return thread_name_;
}
bool wall_time_based_metrics_enabled_for_testing() const {
return wall_time_based_metrics_enabled_for_testing_;
}
private:
enum class ShouldRecordReqs {
// Regular should-record requirements.
kRegular,
// On wakeup there's an exception to the requirement that `last_wakeup_`
// be set.
kOnWakeUp,
// On end-nested there's an exception to the requirement that there's no
// ongoing nesting (as the kNested phase ends from ~RunLevel, before
// run_levels.pop() completes).
kOnEndNested,
};
bool ShouldRecordNow(ShouldRecordReqs reqs = ShouldRecordReqs::kRegular);
// Common helper to actually record time in a phase and emitt histograms
// as needed.
void RecordTimeInPhase(Phase phase,
TimeTicks phase_begin,
TimeTicks phase_end);
static const char* PhaseToEventName(Phase phase);
std::string thread_name_;
// Whether or not wall-time based metrics are reported.
bool wall_time_based_metrics_enabled_for_testing_ = false;
// Cumulative time deltas for each phase, reported and reset when >=100ms.
std::array<TimeDelta, Phase::kLastPhase + 1> deltas_ = {};
// Set at the start of the first work item out-of-idle. Consumed from the
// first application task found in that work cycle
// (in OnApplicationTaskSelected).
TimeTicks last_wakeup_;
// The end of the last phase (used as the beginning of the next one).
TimeTicks last_phase_end_;
// The end of the last kIdleWork phase. Used as a minimum for the next
// kScheduled phase's begin (as it's possible that the next wake-up is
// scheduled during DoIdleWork and we don't want overlapping phases).
TimeTicks last_sleep_;
// Assumes each kWorkItem is native unless OnApplicationTaskSelected() is
// invoked in a given [OnWorkStarted, OnWorkEnded].
bool current_work_item_is_native_ = true;
// non-null when recording is enabled.
raw_ptr<HistogramBase> histogram_ = nullptr;
std::optional<perfetto::Track> perfetto_track_;
// True if tracing was enabled during the last pass of RecordTimeInPhase.
bool was_tracing_enabled_ = false;
const raw_ref<const RunLevelTracker> outer_;
} time_keeper_{*this};
class RunLevel {
public:
RunLevel(State initial_state,
bool is_nested,
TimeKeeper& time_keeper,
LazyNow& lazy_now);
~RunLevel();
// Move-constructible for STL compat. Flags `other.was_moved_` so it noops
// on destruction after handing off its responsibility. Move-assignment
// is not necessary nor possible as not all members are assignable.
RunLevel(RunLevel&& other);
RunLevel& operator=(RunLevel&&) = delete;
void UpdateState(State new_state, LazyNow& lazy_now);
State state() const { return state_; }
void set_exit_lazy_now(LazyNow* exit_lazy_now) {
DCHECK(exit_lazy_now);
DCHECK(!exit_lazy_now_);
exit_lazy_now_ = exit_lazy_now;
}
private:
void LogPercentageMetric(const char* name, int value);
void LogPercentageMetric(const char* name,
int value,
base::TimeDelta interval_duration);
void LogIntervalMetric(const char* name,
base::TimeDelta value,
base::TimeDelta interval_duration);
void LogOnActiveMetrics(LazyNow& lazy_now);
void LogOnIdleMetrics(LazyNow& lazy_now);
base::TimeTicks last_active_end_;
base::TimeTicks last_active_start_;
base::ThreadTicks last_active_threadtick_start_;
base::TimeDelta accumulated_idle_time_;
base::TimeDelta accumulated_active_time_;
base::TimeDelta accumulated_active_on_cpu_time_;
base::TimeDelta accumulated_active_off_cpu_time_;
MetricsSubSampler metrics_sub_sampler_;
State state_ = kIdle;
bool is_nested_;
bool ShouldRecordSampleMetadata();
// Get full suffix for histogram logging purposes. |duration| should equal
// TimeDelta() when not applicable.
std::string GetSuffixForHistogram(TimeDelta duration);
std::string GetSuffixForCatchAllHistogram();
std::string_view GetThreadName();
const raw_ref<TimeKeeper> time_keeper_;
// Must be set shortly before ~RunLevel.
raw_ptr<LazyNow> exit_lazy_now_ = nullptr;
SampleMetadata thread_controller_sample_metadata_;
size_t thread_controller_active_id_ = 0;
// Toggles to true when used as RunLevel&& input to construct another
// RunLevel. This RunLevel's destructor will then no-op.
class TruePostMove {
public:
TruePostMove() = default;
TruePostMove(TruePostMove&& other) { other.was_moved_ = true; }
// Not necessary for now.
TruePostMove& operator=(TruePostMove&&) = delete;
explicit operator bool() { return was_moved_; }
private:
bool was_moved_ = false;
};
TruePostMove was_moved_;
};
[[maybe_unused]] const raw_ref<const ThreadController> outer_;
std::stack<RunLevel, std::vector<RunLevel>> run_levels_
GUARDED_BY_CONTEXT(outer_->associated_thread_->thread_checker);
static TraceObserverForTesting* trace_observer_for_testing_;
} run_level_tracker_{*this};
};
} // namespace internal
} // namespace sequence_manager
} // namespace base
#endif // BASE_TASK_SEQUENCE_MANAGER_THREAD_CONTROLLER_H_
|