1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/sequence_manager/thread_controller_impl.h"
#include <algorithm>
#include "base/functional/bind.h"
#include "base/memory/ptr_util.h"
#include "base/message_loop/message_pump.h"
#include "base/notreached.h"
#include "base/run_loop.h"
#include "base/task/common/lazy_now.h"
#include "base/task/sequence_manager/sequence_manager_impl.h"
#include "base/task/sequence_manager/sequenced_task_source.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
namespace base::sequence_manager::internal {
using ShouldScheduleWork = WorkDeduplicator::ShouldScheduleWork;
ThreadControllerImpl::ThreadControllerImpl(
SequenceManagerImpl* funneled_sequence_manager,
scoped_refptr<SingleThreadTaskRunner> task_runner,
const TickClock* time_source)
: ThreadController(time_source),
funneled_sequence_manager_(funneled_sequence_manager),
task_runner_(task_runner),
message_loop_task_runner_(funneled_sequence_manager
? funneled_sequence_manager->GetTaskRunner()
: nullptr),
work_deduplicator_(associated_thread_) {
if (task_runner_ || funneled_sequence_manager_) {
work_deduplicator_.BindToCurrentThread();
}
immediate_do_work_closure_ =
BindRepeating(&ThreadControllerImpl::DoWork, weak_factory_.GetWeakPtr(),
WorkType::kImmediate);
delayed_do_work_closure_ =
BindRepeating(&ThreadControllerImpl::DoWork, weak_factory_.GetWeakPtr(),
WorkType::kDelayed);
// Unlike ThreadControllerWithMessagePumpImpl, ThreadControllerImpl isn't
// explicitly Run(). Rather, DoWork() will be invoked at some point in the
// future when the associated thread begins pumping messages.
LazyNow lazy_now(time_source_);
run_level_tracker_.OnRunLoopStarted(RunLevelTracker::kIdle, lazy_now);
}
ThreadControllerImpl::~ThreadControllerImpl() {
// Balances OnRunLoopStarted() in the constructor to satisfy the exit criteria
// of ~RunLevelTracker().
run_level_tracker_.OnRunLoopEnded();
}
ThreadControllerImpl::MainSequenceOnly::MainSequenceOnly() = default;
ThreadControllerImpl::MainSequenceOnly::~MainSequenceOnly() = default;
std::unique_ptr<ThreadControllerImpl> ThreadControllerImpl::Create(
SequenceManagerImpl* funneled_sequence_manager,
const TickClock* time_source) {
return WrapUnique(new ThreadControllerImpl(
funneled_sequence_manager,
funneled_sequence_manager ? funneled_sequence_manager->GetTaskRunner()
: nullptr,
time_source));
}
void ThreadControllerImpl::SetSequencedTaskSource(
SequencedTaskSource* sequence) {
DCHECK_CALLED_ON_VALID_SEQUENCE(associated_thread_->sequence_checker);
DCHECK(sequence);
DCHECK(!sequence_);
sequence_ = sequence;
}
void ThreadControllerImpl::ScheduleWork() {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"ThreadControllerImpl::ScheduleWork::PostTask");
if (work_deduplicator_.OnWorkRequested() ==
ShouldScheduleWork::kScheduleImmediate) {
task_runner_->PostTask(FROM_HERE, immediate_do_work_closure_);
}
}
void ThreadControllerImpl::SetNextDelayedDoWork(LazyNow* lazy_now,
std::optional<WakeUp> wake_up) {
DCHECK_CALLED_ON_VALID_SEQUENCE(associated_thread_->sequence_checker);
DCHECK(sequence_);
DCHECK(!wake_up || !wake_up->is_immediate());
// Cancel DoWork if it was scheduled and we set an "infinite" delay now.
if (!wake_up) {
if (!main_sequence_only().next_delayed_do_work.is_max()) {
cancelable_delayed_do_work_closure_.Cancel();
main_sequence_only().next_delayed_do_work = TimeTicks::Max();
}
return;
}
if (work_deduplicator_.OnDelayedWorkRequested() ==
ShouldScheduleWork::kNotNeeded) {
return;
}
if (main_sequence_only().next_delayed_do_work == wake_up->time) {
return;
}
base::TimeDelta delay =
std::max(TimeDelta(), wake_up->time - lazy_now->Now());
TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"ThreadControllerImpl::SetNextDelayedDoWork::PostDelayedTask",
"delay_ms", delay.InMillisecondsF());
main_sequence_only().next_delayed_do_work = wake_up->time;
// Reset also causes cancellation of the previous DoWork task.
cancelable_delayed_do_work_closure_.Reset(delayed_do_work_closure_);
task_runner_->PostDelayedTask(
FROM_HERE, cancelable_delayed_do_work_closure_.callback(), delay);
}
bool ThreadControllerImpl::RunsTasksInCurrentSequence() {
return task_runner_->RunsTasksInCurrentSequence();
}
void ThreadControllerImpl::SetDefaultTaskRunner(
scoped_refptr<SingleThreadTaskRunner> task_runner) {
#if DCHECK_IS_ON()
default_task_runner_set_ = true;
#endif
if (!funneled_sequence_manager_) {
return;
}
funneled_sequence_manager_->SetTaskRunner(task_runner);
}
scoped_refptr<SingleThreadTaskRunner>
ThreadControllerImpl::GetDefaultTaskRunner() {
return funneled_sequence_manager_->GetTaskRunner();
}
void ThreadControllerImpl::RestoreDefaultTaskRunner() {
if (!funneled_sequence_manager_) {
return;
}
funneled_sequence_manager_->SetTaskRunner(message_loop_task_runner_);
}
void ThreadControllerImpl::BindToCurrentThread(
std::unique_ptr<MessagePump> message_pump) {
NOTREACHED();
}
void ThreadControllerImpl::WillQueueTask(PendingTask* pending_task) {
task_annotator_.WillQueueTask("SequenceManager PostTask", pending_task);
}
void ThreadControllerImpl::DoWork(WorkType work_type) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"ThreadControllerImpl::DoWork");
DCHECK_CALLED_ON_VALID_SEQUENCE(associated_thread_->sequence_checker);
DCHECK(sequence_);
work_deduplicator_.OnWorkStarted();
std::optional<base::TimeTicks> recent_time;
WeakPtr<ThreadControllerImpl> weak_ptr = weak_factory_.GetWeakPtr();
for (int i = 0; i < main_sequence_only().work_batch_size_; i++) {
LazyNow lazy_now_select_task(recent_time, time_source_);
// Include SelectNextTask() in the scope of the work item. This ensures
// it's covered in tracing and hang reports. This is particularly
// important when SelectNextTask() finds no work immediately after a
// wakeup, otherwise the power-inefficient wakeup is invisible in
// tracing. OnApplicationTaskSelected() assumes this ordering as well.
DCHECK_GT(run_level_tracker_.num_run_levels(), 0U);
run_level_tracker_.OnWorkStarted(lazy_now_select_task);
int run_depth = static_cast<int>(run_level_tracker_.num_run_levels());
std::optional<SequencedTaskSource::SelectedTask> selected_task =
sequence_->SelectNextTask(lazy_now_select_task);
LazyNow lazy_now_task_selected(time_source_);
run_level_tracker_.OnApplicationTaskSelected(
(selected_task && selected_task->task.delayed_run_time.is_null())
? selected_task->task.queue_time
: TimeTicks(),
lazy_now_task_selected);
if (!selected_task) {
run_level_tracker_.OnWorkEnded(lazy_now_task_selected, run_depth);
break;
}
{
// Trace-parsing tools (DevTools, Lighthouse, etc) consume this event
// to determine long tasks.
// See https://crbug.com/681863 and https://crbug.com/874982
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("devtools.timeline"), "RunTask");
// Note: all arguments after task are just passed to a TRACE_EVENT for
// logging so lambda captures are safe as lambda is executed inline.
SequencedTaskSource* source = sequence_;
task_annotator_.RunTask(
"ThreadControllerImpl::RunTask", selected_task->task,
[&selected_task, &source](perfetto::EventContext& ctx) {
if (selected_task->task_execution_trace_logger) {
selected_task->task_execution_trace_logger.Run(
ctx, selected_task->task);
}
source->MaybeEmitTaskDetails(ctx, *selected_task);
});
if (!weak_ptr) {
return;
}
// This processes microtasks, hence all scoped operations above must end
// after it.
LazyNow lazy_now_after_run_task(time_source_);
sequence_->DidRunTask(lazy_now_after_run_task);
run_level_tracker_.OnWorkEnded(lazy_now_after_run_task, run_depth);
// If DidRunTask() read the clock (lazy_now_after_run_task.has_value()),
// store it in `recent_time` so it can be reused by SelectNextTask() at
// the next loop iteration.
if (lazy_now_after_run_task.has_value()) {
recent_time =
std::optional<base::TimeTicks>(lazy_now_after_run_task.Now());
} else {
recent_time.reset();
}
}
// NOTE: https://crbug.com/828835.
// When we're running inside a nested RunLoop it may quit anytime, so any
// outstanding pending tasks must run in the outer RunLoop
// (see SequenceManagerTestWithMessageLoop.QuitWhileNested test).
// Unfortunately, it's MessageLoop who's receiving that signal and we can't
// know it before we return from DoWork, hence, OnExitNestedRunLoop
// will be called later. Since we must implement ThreadController and
// SequenceManager in conformance with MessageLoop task runners, we need
// to disable this batching optimization while nested.
// Implementing MessagePump::Delegate ourselves will help to resolve this
// issue.
if (run_level_tracker_.num_run_levels() > 1) {
break;
}
}
work_deduplicator_.WillCheckForMoreWork();
LazyNow lazy_now_after_work(time_source_);
std::optional<WakeUp> next_wake_up =
sequence_->GetPendingWakeUp(&lazy_now_after_work);
// The OnIdle() callback allows the TimeDomains to advance virtual time in
// which case we now have immediate work to do.
if ((next_wake_up && next_wake_up->is_immediate()) || sequence_->OnIdle()) {
// The next task needs to run immediately, post a continuation if
// another thread didn't get there first.
if (work_deduplicator_.DidCheckForMoreWork(
WorkDeduplicator::NextTask::kIsImmediate) ==
ShouldScheduleWork::kScheduleImmediate) {
task_runner_->PostTask(FROM_HERE, immediate_do_work_closure_);
}
return;
}
// It looks like we have a non-zero delay, however another thread may have
// posted an immediate task while we computed the delay.
if (work_deduplicator_.DidCheckForMoreWork(
WorkDeduplicator::NextTask::kIsDelayed) ==
ShouldScheduleWork::kScheduleImmediate) {
task_runner_->PostTask(FROM_HERE, immediate_do_work_closure_);
return;
}
// No more immediate work.
run_level_tracker_.OnIdle(lazy_now_after_work);
// Any future work?
if (!next_wake_up) {
main_sequence_only().next_delayed_do_work = TimeTicks::Max();
cancelable_delayed_do_work_closure_.Cancel();
return;
}
TimeTicks next_wake_up_time = next_wake_up->time;
// Already requested next delay?
if (next_wake_up_time == main_sequence_only().next_delayed_do_work) {
return;
}
// Schedule a callback after |delay_till_next_task| and cancel any previous
// callback.
main_sequence_only().next_delayed_do_work = next_wake_up_time;
cancelable_delayed_do_work_closure_.Reset(delayed_do_work_closure_);
// TODO(crbug.com/40158967): Use PostDelayedTaskAt().
task_runner_->PostDelayedTask(FROM_HERE,
cancelable_delayed_do_work_closure_.callback(),
next_wake_up_time - lazy_now_after_work.Now());
}
void ThreadControllerImpl::AddNestingObserver(
RunLoop::NestingObserver* observer) {
DCHECK_CALLED_ON_VALID_SEQUENCE(associated_thread_->sequence_checker);
nesting_observer_ = observer;
RunLoop::AddNestingObserverOnCurrentThread(this);
}
void ThreadControllerImpl::RemoveNestingObserver(
RunLoop::NestingObserver* observer) {
DCHECK_CALLED_ON_VALID_SEQUENCE(associated_thread_->sequence_checker);
DCHECK_EQ(observer, nesting_observer_);
nesting_observer_ = nullptr;
RunLoop::RemoveNestingObserverOnCurrentThread(this);
}
void ThreadControllerImpl::OnBeginNestedRunLoop() {
LazyNow lazy_now(time_source_);
run_level_tracker_.OnRunLoopStarted(RunLevelTracker::kInBetweenWorkItems,
lazy_now);
// Just assume we have a pending task and post a DoWork to make sure we don't
// grind to a halt while nested.
work_deduplicator_.OnWorkRequested(); // Set the pending DoWork flag.
task_runner_->PostTask(FROM_HERE, immediate_do_work_closure_);
if (nesting_observer_) {
nesting_observer_->OnBeginNestedRunLoop();
}
}
void ThreadControllerImpl::OnExitNestedRunLoop() {
if (nesting_observer_) {
nesting_observer_->OnExitNestedRunLoop();
}
run_level_tracker_.OnRunLoopEnded();
}
void ThreadControllerImpl::SetWorkBatchSize(int work_batch_size) {
main_sequence_only().work_batch_size_ = work_batch_size;
}
void ThreadControllerImpl::SetTaskExecutionAllowedInNativeNestedLoop(
bool allowed) {
NOTREACHED();
}
bool ThreadControllerImpl::IsTaskExecutionAllowed() const {
return true;
}
bool ThreadControllerImpl::ShouldQuitRunLoopWhenIdle() {
// The MessageLoop does not expose the API needed to support this query.
return false;
}
MessagePump* ThreadControllerImpl::GetBoundMessagePump() const {
return nullptr;
}
#if BUILDFLAG(IS_IOS) || BUILDFLAG(IS_ANDROID)
void ThreadControllerImpl::AttachToMessagePump() {
NOTREACHED();
}
#endif // BUILDFLAG(IS_IOS) || BUILDFLAG(IS_ANDROID)
#if BUILDFLAG(IS_IOS)
void ThreadControllerImpl::DetachFromMessagePump() {
NOTREACHED();
}
#endif // BUILDFLAG(IS_IOS)
} // namespace base::sequence_manager::internal
|