1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/sequence_manager/thread_controller_with_message_pump_impl.h"
#include <algorithm>
#include <atomic>
#include <optional>
#include <utility>
#include "base/auto_reset.h"
#include "base/feature_list.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/memory/stack_allocated.h"
#include "base/message_loop/message_pump.h"
#include "base/metrics/histogram.h"
#include "base/metrics/histogram_macros.h"
#include "base/task/sequence_manager/tasks.h"
#include "base/task/task_features.h"
#include "base/threading/hang_watcher.h"
#include "base/time/tick_clock.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#if BUILDFLAG(IS_IOS)
#include "base/message_loop/message_pump_apple.h"
#elif BUILDFLAG(IS_ANDROID)
#include "base/message_loop/message_pump_android.h"
#endif
namespace base::sequence_manager::internal {
namespace {
// Returns |next_run_time| capped at 1 day from |lazy_now|. This is used to
// mitigate https://crbug.com/850450 where some platforms are unhappy with
// delays > 100,000,000 seconds. In practice, a diagnosis metric showed that no
// sleep > 1 hour ever completes (always interrupted by an earlier MessageLoop
// event) and 99% of completed sleeps are the ones scheduled for <= 1 second.
// Details @ https://crrev.com/c/1142589.
TimeTicks CapAtOneDay(TimeTicks next_run_time, LazyNow* lazy_now) {
return std::min(next_run_time, lazy_now->Now() + Days(1));
}
BASE_FEATURE(kAvoidScheduleWorkDuringNativeEventProcessing,
"AvoidScheduleWorkDuringNativeEventProcessing",
base::FEATURE_ENABLED_BY_DEFAULT);
std::atomic_bool g_run_tasks_by_batches = false;
std::atomic_bool g_avoid_schedule_calls_during_native_event_processing = false;
base::TimeDelta GetLeewayForWakeUp(std::optional<WakeUp> wake_up) {
if (!wake_up || wake_up->delay_policy == subtle::DelayPolicy::kPrecise) {
return TimeDelta();
}
return wake_up->leeway;
}
} // namespace
// static
void ThreadControllerWithMessagePumpImpl::InitializeFeatures() {
g_run_tasks_by_batches.store(FeatureList::IsEnabled(base::kRunTasksByBatches),
std::memory_order_relaxed);
g_avoid_schedule_calls_during_native_event_processing.store(
FeatureList::IsEnabled(kAvoidScheduleWorkDuringNativeEventProcessing),
std::memory_order_relaxed);
}
// static
void ThreadControllerWithMessagePumpImpl::ResetFeatures() {
g_run_tasks_by_batches.store(
base::kRunTasksByBatches.default_state == FEATURE_ENABLED_BY_DEFAULT,
std::memory_order_relaxed);
}
ThreadControllerWithMessagePumpImpl::ThreadControllerWithMessagePumpImpl(
const SequenceManager::Settings& settings)
: ThreadController(settings.clock),
work_deduplicator_(associated_thread_),
can_run_tasks_by_batches_(settings.can_run_tasks_by_batches) {}
ThreadControllerWithMessagePumpImpl::ThreadControllerWithMessagePumpImpl(
std::unique_ptr<MessagePump> message_pump,
const SequenceManager::Settings& settings)
: ThreadControllerWithMessagePumpImpl(settings) {
BindToCurrentThread(std::move(message_pump));
}
ThreadControllerWithMessagePumpImpl::~ThreadControllerWithMessagePumpImpl() {
// Destructors of MessagePump::Delegate and
// SingleThreadTaskRunner::CurrentDefaultHandle will do all the clean-up.
// ScopedSetSequenceLocalStorageMapForCurrentThread destructor will
// de-register the current thread as a sequence.
#if BUILDFLAG(IS_WIN)
if (main_thread_only().in_high_res_mode) {
main_thread_only().in_high_res_mode = false;
Time::ActivateHighResolutionTimer(false);
}
#endif
}
// static
std::unique_ptr<ThreadControllerWithMessagePumpImpl>
ThreadControllerWithMessagePumpImpl::CreateUnbound(
const SequenceManager::Settings& settings) {
return base::WrapUnique(new ThreadControllerWithMessagePumpImpl(settings));
}
ThreadControllerWithMessagePumpImpl::MainThreadOnly::MainThreadOnly() = default;
ThreadControllerWithMessagePumpImpl::MainThreadOnly::~MainThreadOnly() =
default;
void ThreadControllerWithMessagePumpImpl::SetSequencedTaskSource(
SequencedTaskSource* task_source) {
DCHECK(task_source);
DCHECK(!main_thread_only().task_source);
main_thread_only().task_source = task_source;
}
void ThreadControllerWithMessagePumpImpl::BindToCurrentThread(
std::unique_ptr<MessagePump> message_pump) {
associated_thread_->BindToCurrentThread();
pump_ = std::move(message_pump);
work_id_provider_ = WorkIdProvider::GetForCurrentThread();
RunLoop::RegisterDelegateForCurrentThread(this);
scoped_set_sequence_local_storage_map_for_current_thread_ = std::make_unique<
base::internal::ScopedSetSequenceLocalStorageMapForCurrentThread>(
&sequence_local_storage_map_);
{
base::internal::CheckedAutoLock task_runner_lock(task_runner_lock_);
if (task_runner_) {
InitializeSingleThreadTaskRunnerCurrentDefaultHandle();
}
}
if (work_deduplicator_.BindToCurrentThread() ==
ShouldScheduleWork::kScheduleImmediate) {
pump_->ScheduleWork();
}
}
void ThreadControllerWithMessagePumpImpl::SetWorkBatchSize(
int work_batch_size) {
DCHECK_GE(work_batch_size, 1);
CHECK(main_thread_only().can_change_batch_size);
main_thread_only().work_batch_size = work_batch_size;
}
void ThreadControllerWithMessagePumpImpl::WillQueueTask(
PendingTask* pending_task) {
task_annotator_.WillQueueTask("SequenceManager PostTask", pending_task);
}
void ThreadControllerWithMessagePumpImpl::ScheduleWork() {
base::internal::CheckedLock::AssertNoLockHeldOnCurrentThread();
if (work_deduplicator_.OnWorkRequested() ==
ShouldScheduleWork::kScheduleImmediate) {
if (!associated_thread_->IsBoundToCurrentThread()) {
run_level_tracker_.RecordScheduleWork();
} else {
TRACE_EVENT_INSTANT("wakeup.flow", "ScheduleWorkToSelf");
}
pump_->ScheduleWork();
}
}
void ThreadControllerWithMessagePumpImpl::BeginNativeWorkBeforeDoWork() {
do_work_needed_before_wait_ = true;
if (!g_avoid_schedule_calls_during_native_event_processing.load(
std::memory_order_relaxed)) {
return;
}
// Native nested loops don't guarantee that `DoWork()` will be called after
// executing native work. This is the invariant that is needed to avoid
// calls to `ScheduleWork()`. Since these calls can't be skipped there is
// nothing left to do in this function.
if (task_execution_allowed_in_native_nested_loop_) {
return;
}
// Reuse the deduplicator facility to indicate that there is no need for
// ScheduleWork() until the next time we look for work.
work_deduplicator_.OnWorkStarted();
}
void ThreadControllerWithMessagePumpImpl::SetNextDelayedDoWork(
LazyNow* lazy_now,
std::optional<WakeUp> wake_up) {
DCHECK(!wake_up || !wake_up->is_immediate());
// It's very rare for PostDelayedTask to be called outside of a DoWork in
// production, so most of the time this does nothing.
if (work_deduplicator_.OnDelayedWorkRequested() !=
ShouldScheduleWork::kScheduleImmediate) {
return;
}
TimeTicks run_time =
wake_up.has_value()
? pump_->AdjustDelayedRunTime(wake_up->earliest_time(), wake_up->time,
wake_up->latest_time())
: TimeTicks::Max();
DCHECK_LT(lazy_now->Now(), run_time);
if (!run_time.is_max()) {
run_time = CapAtOneDay(run_time, lazy_now);
}
// |pump_| can't be null as all postTasks are cross-thread before binding,
// and delayed cross-thread postTasks do the thread hop through an immediate
// task.
pump_->ScheduleDelayedWork(
{run_time, GetLeewayForWakeUp(wake_up), lazy_now->Now()});
}
bool ThreadControllerWithMessagePumpImpl::RunsTasksInCurrentSequence() {
return associated_thread_->IsBoundToCurrentThread();
}
void ThreadControllerWithMessagePumpImpl::SetDefaultTaskRunner(
scoped_refptr<SingleThreadTaskRunner> task_runner) {
base::internal::CheckedAutoLock lock(task_runner_lock_);
task_runner_ = task_runner;
if (associated_thread_->IsBound()) {
DCHECK(associated_thread_->IsBoundToCurrentThread());
// Thread task runner handle will be created in BindToCurrentThread().
InitializeSingleThreadTaskRunnerCurrentDefaultHandle();
}
}
void ThreadControllerWithMessagePumpImpl::
InitializeSingleThreadTaskRunnerCurrentDefaultHandle() {
// Only one SingleThreadTaskRunner::CurrentDefaultHandle can exist at any
// time, so reset the old one.
main_thread_only().thread_task_runner_handle.reset();
main_thread_only().thread_task_runner_handle =
std::make_unique<SingleThreadTaskRunner::CurrentDefaultHandle>(
task_runner_);
// When the task runner is known, bind the power manager. Power notifications
// are received through that sequence.
power_monitor_.BindToCurrentThread();
}
scoped_refptr<SingleThreadTaskRunner>
ThreadControllerWithMessagePumpImpl::GetDefaultTaskRunner() {
base::internal::CheckedAutoLock lock(task_runner_lock_);
return task_runner_;
}
void ThreadControllerWithMessagePumpImpl::RestoreDefaultTaskRunner() {
// There is no default task runner (as opposed to ThreadControllerImpl).
}
void ThreadControllerWithMessagePumpImpl::AddNestingObserver(
RunLoop::NestingObserver* observer) {
DCHECK(!main_thread_only().nesting_observer);
DCHECK(observer);
main_thread_only().nesting_observer = observer;
RunLoop::AddNestingObserverOnCurrentThread(this);
}
void ThreadControllerWithMessagePumpImpl::RemoveNestingObserver(
RunLoop::NestingObserver* observer) {
DCHECK_EQ(main_thread_only().nesting_observer, observer);
main_thread_only().nesting_observer = nullptr;
RunLoop::RemoveNestingObserverOnCurrentThread(this);
}
void ThreadControllerWithMessagePumpImpl::OnBeginWorkItem() {
LazyNow lazy_now(time_source_);
OnBeginWorkItemImpl(lazy_now);
}
void ThreadControllerWithMessagePumpImpl::OnBeginWorkItemImpl(
LazyNow& lazy_now) {
hang_watch_scope_.emplace();
work_id_provider_->IncrementWorkId();
run_level_tracker_.OnWorkStarted(lazy_now);
main_thread_only().task_source->OnBeginWork();
}
void ThreadControllerWithMessagePumpImpl::OnEndWorkItem(int run_level_depth) {
LazyNow lazy_now(time_source_);
OnEndWorkItemImpl(lazy_now, run_level_depth);
}
void ThreadControllerWithMessagePumpImpl::OnEndWorkItemImpl(
LazyNow& lazy_now,
int run_level_depth) {
// Work completed, begin a new hang watch until the next task (watching the
// pump's overhead).
hang_watch_scope_.emplace();
work_id_provider_->IncrementWorkId();
run_level_tracker_.OnWorkEnded(lazy_now, run_level_depth);
}
void ThreadControllerWithMessagePumpImpl::BeforeWait() {
// DoWork is guaranteed to be called after native work batches and before
// wait.
CHECK(!do_work_needed_before_wait_);
// In most cases, DoIdleWork() will already have cleared the
// `hang_watch_scope_` but in some cases where the native side of the
// MessagePump impl is instrumented, it's possible to get a BeforeWait()
// outside of a DoWork cycle (e.g. message_pump_win.cc :
// MessagePumpForUI::HandleWorkMessage).
hang_watch_scope_.reset();
work_id_provider_->IncrementWorkId();
LazyNow lazy_now(time_source_);
run_level_tracker_.OnIdle(lazy_now);
}
MessagePump::Delegate::NextWorkInfo
ThreadControllerWithMessagePumpImpl::DoWork() {
#if BUILDFLAG(IS_WIN)
// We've been already in a wakeup here. Deactivate the high res timer of OS
// immediately instead of waiting for next DoIdleWork().
if (main_thread_only().in_high_res_mode) {
main_thread_only().in_high_res_mode = false;
Time::ActivateHighResolutionTimer(false);
}
#endif
MessagePump::Delegate::NextWorkInfo next_work_info{};
work_deduplicator_.OnWorkStarted();
LazyNow continuation_lazy_now(time_source_);
std::optional<WakeUp> next_wake_up = DoWorkImpl(&continuation_lazy_now);
do_work_needed_before_wait_ = false;
// Schedule a continuation.
WorkDeduplicator::NextTask next_task =
(next_wake_up && next_wake_up->is_immediate())
? WorkDeduplicator::NextTask::kIsImmediate
: WorkDeduplicator::NextTask::kIsDelayed;
if (work_deduplicator_.DidCheckForMoreWork(next_task) ==
ShouldScheduleWork::kScheduleImmediate) {
// Need to run new work immediately, but due to the contract of DoWork
// we only need to return a null TimeTicks to ensure that happens.
return next_work_info;
}
// Special-casing here avoids unnecessarily sampling Now() when out of work.
if (!next_wake_up) {
next_work_info.delayed_run_time = TimeTicks::Max();
return next_work_info;
}
// The MessagePump will schedule the wake up on our behalf, so we need to
// update |next_work_info.delayed_run_time|.
TimeTicks next_delayed_do_work = pump_->AdjustDelayedRunTime(
next_wake_up->earliest_time(), next_wake_up->time,
next_wake_up->latest_time());
// Don't request a run time past |main_thread_only().quit_runloop_after|.
if (next_delayed_do_work > main_thread_only().quit_runloop_after) {
next_delayed_do_work = main_thread_only().quit_runloop_after;
// If we've passed |quit_runloop_after| there's no more work to do.
if (continuation_lazy_now.Now() >= main_thread_only().quit_runloop_after) {
next_work_info.delayed_run_time = TimeTicks::Max();
return next_work_info;
}
}
next_work_info.delayed_run_time =
CapAtOneDay(next_delayed_do_work, &continuation_lazy_now);
next_work_info.leeway = GetLeewayForWakeUp(next_wake_up);
next_work_info.recent_now = continuation_lazy_now.Now();
return next_work_info;
}
std::optional<WakeUp> ThreadControllerWithMessagePumpImpl::DoWorkImpl(
LazyNow* continuation_lazy_now) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"ThreadControllerImpl::DoWork");
if (!main_thread_only().task_execution_allowed) {
// Broadcast in a trace event that application tasks were disallowed. This
// helps spot nested loops that intentionally starve application tasks.
TRACE_EVENT0("base", "ThreadController: application tasks disallowed");
if (main_thread_only().quit_runloop_after == TimeTicks::Max()) {
return std::nullopt;
}
return WakeUp{main_thread_only().quit_runloop_after};
}
DCHECK(main_thread_only().task_source);
// Keep running tasks for up to 8ms before yielding to the pump when tasks are
// run by batches.
const base::TimeDelta batch_duration =
RunsTasksByBatches() ? base::Milliseconds(8) : base::Milliseconds(0);
const std::optional<base::TimeTicks> start_time =
batch_duration.is_zero()
? std::nullopt
: std::optional<base::TimeTicks>(time_source_->NowTicks());
std::optional<base::TimeTicks> recent_time = start_time;
// Loops for |batch_duration|, or |work_batch_size| times if |batch_duration|
// is zero.
for (int num_tasks_executed = 0;
(!batch_duration.is_zero() &&
(recent_time.value() - start_time.value()) < batch_duration) ||
(batch_duration.is_zero() &&
num_tasks_executed < main_thread_only().work_batch_size);
++num_tasks_executed) {
LazyNow lazy_now_select_task(recent_time, time_source_);
// Include SelectNextTask() in the scope of the work item. This ensures
// it's covered in tracing and hang reports. This is particularly
// important when SelectNextTask() finds no work immediately after a
// wakeup, otherwise the power-inefficient wakeup is invisible in
// tracing. OnApplicationTaskSelected() assumes this ordering as well.
OnBeginWorkItemImpl(lazy_now_select_task);
int run_depth = static_cast<int>(run_level_tracker_.num_run_levels());
const SequencedTaskSource::SelectTaskOption select_task_option =
power_monitor_.IsProcessInPowerSuspendState()
? SequencedTaskSource::SelectTaskOption::kSkipDelayedTask
: SequencedTaskSource::SelectTaskOption::kDefault;
std::optional<SequencedTaskSource::SelectedTask> selected_task =
main_thread_only().task_source->SelectNextTask(lazy_now_select_task,
select_task_option);
LazyNow lazy_now_task_selected(time_source_);
run_level_tracker_.OnApplicationTaskSelected(
(selected_task && selected_task->task.delayed_run_time.is_null())
? selected_task->task.queue_time
: TimeTicks(),
lazy_now_task_selected);
if (!selected_task) {
OnEndWorkItemImpl(lazy_now_task_selected, run_depth);
break;
}
// Execute the task and assume the worst: it is probably not reentrant.
AutoReset<bool> ban_nested_application_tasks(
&main_thread_only().task_execution_allowed, false);
// Trace-parsing tools (DevTools, Lighthouse, etc) consume this event to
// determine long tasks.
// See https://crbug.com/681863 and https://crbug.com/874982
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("devtools.timeline"), "RunTask");
{
// Always track the start of the task, as this is low-overhead.
TaskAnnotator::LongTaskTracker long_task_tracker(
time_source_, selected_task->task, &task_annotator_,
lazy_now_task_selected.Now());
// Note: all arguments after task are just passed to a TRACE_EVENT for
// logging so lambda captures are safe as lambda is executed inline.
SequencedTaskSource* source = main_thread_only().task_source;
task_annotator_.RunTask(
"ThreadControllerImpl::RunTask", selected_task->task,
[&selected_task, &source](perfetto::EventContext& ctx) {
if (selected_task->task_execution_trace_logger) {
selected_task->task_execution_trace_logger.Run(
ctx, selected_task->task);
}
source->MaybeEmitTaskDetails(ctx, selected_task.value());
});
}
// Reset `selected_task` before the call to `DidRunTask()` below makes its
// `PendingTask` reference dangling.
selected_task.reset();
LazyNow lazy_now_after_run_task(time_source_);
main_thread_only().task_source->DidRunTask(lazy_now_after_run_task);
// End the work item scope after DidRunTask() as it can process microtasks
// (which are extensions of the RunTask).
OnEndWorkItemImpl(lazy_now_after_run_task, run_depth);
// If DidRunTask() read the clock (lazy_now_after_run_task.has_value()) or
// if |batch_duration| > 0, store the clock value in `recent_time` so it can
// be reused by SelectNextTask() at the next loop iteration.
if (lazy_now_after_run_task.has_value() || !batch_duration.is_zero()) {
recent_time = lazy_now_after_run_task.Now();
} else {
recent_time.reset();
}
// When Quit() is called we must stop running the batch because the
// caller expects per-task granularity.
if (main_thread_only().quit_pending) {
break;
}
}
if (main_thread_only().quit_pending) {
return std::nullopt;
}
work_deduplicator_.WillCheckForMoreWork();
// Re-check the state of the power after running tasks. An executed task may
// have been a power change notification.
const SequencedTaskSource::SelectTaskOption select_task_option =
power_monitor_.IsProcessInPowerSuspendState()
? SequencedTaskSource::SelectTaskOption::kSkipDelayedTask
: SequencedTaskSource::SelectTaskOption::kDefault;
return main_thread_only().task_source->GetPendingWakeUp(continuation_lazy_now,
select_task_option);
}
bool ThreadControllerWithMessagePumpImpl::RunsTasksByBatches() const {
return can_run_tasks_by_batches_ &&
g_run_tasks_by_batches.load(std::memory_order_relaxed);
}
void ThreadControllerWithMessagePumpImpl::DoIdleWork() {
struct OnIdle {
STACK_ALLOCATED();
public:
OnIdle(const TickClock* time_source, RunLevelTracker& run_level_tracker_ref)
: lazy_now(time_source), run_level_tracker(run_level_tracker_ref) {}
// Very last step before going idle, must be fast as this is hidden from the
// DoIdleWork trace event below.
~OnIdle() { run_level_tracker.OnIdle(lazy_now); }
LazyNow lazy_now;
private:
RunLevelTracker& run_level_tracker;
};
std::optional<OnIdle> on_idle;
// Must be after `on_idle` as this trace event's scope must end before the END
// of the "ThreadController active" trace event emitted from
// `run_level_tracker_.OnIdle()`.
TRACE_EVENT0("sequence_manager", "SequenceManager::DoIdleWork");
#if BUILDFLAG(IS_WIN)
if (!power_monitor_.IsProcessInPowerSuspendState()) {
// Avoid calling Time::ActivateHighResolutionTimer() between
// suspend/resume as the system hangs if we do (crbug.com/1074028).
// OnResume() will generate a task on this thread per the
// ThreadControllerPowerMonitor observer and DoIdleWork() will thus get
// another chance to set the right high-resolution-timer-state before
// going to sleep after resume.
const bool need_high_res_mode =
main_thread_only().task_source->NextWakeUpNeedsHighRes();
if (main_thread_only().in_high_res_mode != need_high_res_mode) {
// On Windows we activate the high resolution timer so that the wait
// _if_ triggered by the timer happens with good resolution. If we don't
// do this the default resolution is 15ms which might not be acceptable
// for some tasks.
main_thread_only().in_high_res_mode = need_high_res_mode;
Time::ActivateHighResolutionTimer(need_high_res_mode);
}
}
#endif // BUILDFLAG(IS_WIN)
if (main_thread_only().task_source->OnIdle()) {
work_id_provider_->IncrementWorkId();
// The OnIdle() callback resulted in more immediate work, so schedule a
// DoWork callback. For some message pumps returning true from here is
// sufficient to do that but not on mac.
pump_->ScheduleWork();
return;
}
work_id_provider_->IncrementWorkId();
// This is mostly redundant with the identical call in BeforeWait (upcoming)
// but some uninstrumented MessagePump impls don't call BeforeWait so it must
// also be done here.
hang_watch_scope_.reset();
// All return paths below are truly idle.
on_idle.emplace(time_source_, run_level_tracker_);
// Check if any runloop timeout has expired.
if (main_thread_only().quit_runloop_after != TimeTicks::Max() &&
main_thread_only().quit_runloop_after <= on_idle->lazy_now.Now()) {
Quit();
return;
}
// RunLoop::Delegate knows whether we called Run() or RunUntilIdle().
if (ShouldQuitWhenIdle()) {
Quit();
}
}
int ThreadControllerWithMessagePumpImpl::RunDepth() {
return static_cast<int>(run_level_tracker_.num_run_levels());
}
void ThreadControllerWithMessagePumpImpl::Run(bool application_tasks_allowed,
TimeDelta timeout) {
DCHECK(RunsTasksInCurrentSequence());
// Inside a `RunLoop`, all work that has mutual exclusion or ordering
// expectations with the task source is tracked, so it's safe to allow running
// tasks synchronously in `RunOrPostTask()`.
main_thread_only().task_source->SetRunTaskSynchronouslyAllowed(true);
LazyNow lazy_now_run_loop_start(time_source_);
// RunLoops can be nested so we need to restore the previous value of
// |quit_runloop_after| upon exit. NB we could use saturated arithmetic here
// but don't because we have some tests which assert the number of calls to
// Now.
AutoReset<TimeTicks> quit_runloop_after(
&main_thread_only().quit_runloop_after,
(timeout == TimeDelta::Max()) ? TimeTicks::Max()
: lazy_now_run_loop_start.Now() + timeout);
run_level_tracker_.OnRunLoopStarted(RunLevelTracker::kInBetweenWorkItems,
lazy_now_run_loop_start);
// Quit may have been called outside of a Run(), so |quit_pending| might be
// true here. We can't use InTopLevelDoWork() in Quit() as this call may be
// outside top-level DoWork but still in Run().
main_thread_only().quit_pending = false;
hang_watch_scope_.emplace();
if (application_tasks_allowed && !main_thread_only().task_execution_allowed) {
// Allow nested task execution as explicitly requested.
DCHECK(RunLoop::IsNestedOnCurrentThread());
main_thread_only().task_execution_allowed = true;
pump_->Run(this);
main_thread_only().task_execution_allowed = false;
} else {
pump_->Run(this);
}
run_level_tracker_.OnRunLoopEnded();
main_thread_only().quit_pending = false;
// If this was a nested loop, hang watch the remainder of the task which
// caused it. Otherwise, stop watching as we're no longer running.
if (RunLoop::IsNestedOnCurrentThread()) {
hang_watch_scope_.emplace();
} else {
hang_watch_scope_.reset();
}
work_id_provider_->IncrementWorkId();
// Work outside of a `RunLoop` may have mutual exclusion or ordering
// guarantees with the task source, so disallow running tasks synchronously in
// `RunOrPostTask()`.
if (run_level_tracker_.num_run_levels() == 0) {
main_thread_only().task_source->SetRunTaskSynchronouslyAllowed(false);
}
}
void ThreadControllerWithMessagePumpImpl::OnBeginNestedRunLoop() {
// We don't need to ScheduleWork here! That's because the call to pump_->Run()
// above, which is always called for RunLoop().Run(), guarantees a call to
// DoWork on all platforms.
if (main_thread_only().nesting_observer) {
main_thread_only().nesting_observer->OnBeginNestedRunLoop();
}
}
void ThreadControllerWithMessagePumpImpl::OnExitNestedRunLoop() {
if (main_thread_only().nesting_observer) {
main_thread_only().nesting_observer->OnExitNestedRunLoop();
}
}
void ThreadControllerWithMessagePumpImpl::Quit() {
DCHECK(RunsTasksInCurrentSequence());
// Interrupt a batch of work.
main_thread_only().quit_pending = true;
// If we're in a nested RunLoop, continuation will be posted if necessary.
pump_->Quit();
}
void ThreadControllerWithMessagePumpImpl::EnsureWorkScheduled() {
if (work_deduplicator_.OnWorkRequested() ==
ShouldScheduleWork::kScheduleImmediate) {
pump_->ScheduleWork();
}
}
void ThreadControllerWithMessagePumpImpl::
SetTaskExecutionAllowedInNativeNestedLoop(bool allowed) {
if (allowed) {
// We need to schedule work unconditionally because we might be about to
// enter an OS level nested message loop. Unlike a RunLoop().Run() we don't
// get a call to DoWork on entering for free.
work_deduplicator_.OnWorkRequested(); // Set the pending DoWork flag.
} else {
// We've (probably) just left an OS level nested message loop. Make sure a
// subsequent PostTask within the same Task doesn't ScheduleWork with the
// pump (this will be done anyway when the task exits).
work_deduplicator_.OnWorkStarted();
}
if (!pump_->HandleNestedNativeLoopWithApplicationTasks(allowed)) {
// Pump does not have its own support for native nested loops,
// ThreadController must handle scheduling for upcoming tasks.
if (allowed) {
pump_->ScheduleWork();
}
}
task_execution_allowed_in_native_nested_loop_ = allowed;
main_thread_only().task_execution_allowed = allowed;
}
bool ThreadControllerWithMessagePumpImpl::IsTaskExecutionAllowed() const {
return main_thread_only().task_execution_allowed;
}
MessagePump* ThreadControllerWithMessagePumpImpl::GetBoundMessagePump() const {
return pump_.get();
}
#if BUILDFLAG(IS_IOS)
void ThreadControllerWithMessagePumpImpl::AttachToMessagePump() {
static_cast<MessagePumpCFRunLoopBase*>(pump_.get())->Attach(this);
}
void ThreadControllerWithMessagePumpImpl::DetachFromMessagePump() {
static_cast<MessagePumpCFRunLoopBase*>(pump_.get())->Detach();
}
#elif BUILDFLAG(IS_ANDROID)
void ThreadControllerWithMessagePumpImpl::AttachToMessagePump() {
CHECK(main_thread_only().work_batch_size == 1);
// Aborting the message pump currently relies on the batch size being 1.
main_thread_only().can_change_batch_size = false;
static_cast<MessagePumpForUI*>(pump_.get())->Attach(this);
}
#endif
bool ThreadControllerWithMessagePumpImpl::ShouldQuitRunLoopWhenIdle() {
if (run_level_tracker_.num_run_levels() == 0) {
return false;
}
// It's only safe to call ShouldQuitWhenIdle() when in a RunLoop.
return ShouldQuitWhenIdle();
}
} // namespace base::sequence_manager::internal
|