1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/sequence_manager/work_queue.h"
#include <optional>
#include "base/debug/alias.h"
#include "base/task/common/task_annotator.h"
#include "base/task/sequence_manager/fence.h"
#include "base/task/sequence_manager/sequence_manager_impl.h"
#include "base/task/sequence_manager/task_order.h"
#include "base/task/sequence_manager/work_queue_sets.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/cleanup/cleanup.h"
#include "third_party/abseil-cpp/absl/container/inlined_vector.h"
namespace base::sequence_manager::internal {
WorkQueue::WorkQueue(TaskQueueImpl* task_queue,
const char* name,
QueueType queue_type)
: task_queue_(task_queue), name_(name), queue_type_(queue_type) {}
Value::List WorkQueue::AsValue(TimeTicks now) const {
Value::List state;
for (const Task& task : tasks_) {
state.Append(TaskQueueImpl::TaskAsValue(task, now));
}
return state;
}
WorkQueue::~WorkQueue() {
DCHECK(!work_queue_sets_) << task_queue_->GetName() << " : "
<< work_queue_sets_->GetName() << " : " << name_;
}
const Task* WorkQueue::GetFrontTask() const {
if (tasks_.empty()) {
return nullptr;
}
return &tasks_.front();
}
const Task* WorkQueue::GetBackTask() const {
if (tasks_.empty()) {
return nullptr;
}
return &tasks_.back();
}
bool WorkQueue::BlockedByFence() const {
if (!fence_) {
return false;
}
// If the queue is empty then any future tasks will have a higher enqueue
// order and will be blocked. The queue is also blocked if the head is past
// the fence.
return tasks_.empty() || tasks_.front().task_order() >= fence_->task_order();
}
std::optional<TaskOrder> WorkQueue::GetFrontTaskOrder() const {
if (tasks_.empty() || BlockedByFence()) {
return std::nullopt;
}
// Quick sanity check.
DCHECK(tasks_.front().task_order() <= tasks_.back().task_order())
<< task_queue_->GetName() << " : " << work_queue_sets_->GetName() << " : "
<< name_;
return tasks_.front().task_order();
}
void WorkQueue::Push(Task task) {
bool was_empty = tasks_.empty();
#ifndef NDEBUG
DCHECK(task.enqueue_order_set());
#endif
// Make sure the task order is strictly increasing.
DCHECK(was_empty || tasks_.back().task_order() < task.task_order());
// Make sure enqueue order is strictly increasing for immediate queues and
// monotonically increasing for delayed queues.
DCHECK(was_empty || tasks_.back().enqueue_order() < task.enqueue_order() ||
(queue_type_ == QueueType::kDelayed &&
tasks_.back().enqueue_order() == task.enqueue_order()));
// Amortized O(1).
tasks_.push_back(std::move(task));
if (!was_empty) {
return;
}
// If we hit the fence, pretend to WorkQueueSets that we're empty.
if (work_queue_sets_ && !BlockedByFence()) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
}
}
WorkQueue::TaskPusher::TaskPusher(WorkQueue* work_queue)
: work_queue_(work_queue), was_empty_(work_queue->Empty()) {}
WorkQueue::TaskPusher::TaskPusher(TaskPusher&& other)
: work_queue_(other.work_queue_), was_empty_(other.was_empty_) {
other.work_queue_ = nullptr;
}
void WorkQueue::TaskPusher::Push(Task task) {
DCHECK(work_queue_);
#ifndef NDEBUG
DCHECK(task.enqueue_order_set());
#endif
// Make sure the task order is strictly increasing.
DCHECK(work_queue_->tasks_.empty() ||
work_queue_->tasks_.back().task_order() < task.task_order());
// Make sure enqueue order is strictly increasing for immediate queues and
// monotonically increasing for delayed queues.
DCHECK(work_queue_->tasks_.empty() ||
work_queue_->tasks_.back().enqueue_order() < task.enqueue_order() ||
(work_queue_->queue_type_ == QueueType::kDelayed &&
work_queue_->tasks_.back().enqueue_order() == task.enqueue_order()));
// Amortized O(1).
work_queue_->tasks_.push_back(std::move(task));
}
WorkQueue::TaskPusher::~TaskPusher() {
// If |work_queue_| became non empty and it isn't blocked by a fence then we
// must notify |work_queue_->work_queue_sets_|.
if (was_empty_ && work_queue_ && !work_queue_->Empty() &&
work_queue_->work_queue_sets_ && !work_queue_->BlockedByFence()) {
work_queue_->work_queue_sets_->OnTaskPushedToEmptyQueue(work_queue_);
}
}
WorkQueue::TaskPusher WorkQueue::CreateTaskPusher() {
return TaskPusher(this);
}
void WorkQueue::PushNonNestableTaskToFront(Task task) {
DCHECK(task.nestable == Nestable::kNonNestable);
bool was_empty = tasks_.empty();
bool was_blocked = BlockedByFence();
#ifndef NDEBUG
DCHECK(task.enqueue_order_set());
#endif
if (!was_empty) {
// Make sure the task order is strictly increasing.
DCHECK(task.task_order() < tasks_.front().task_order())
<< task_queue_->GetName() << " : " << work_queue_sets_->GetName()
<< " : " << name_;
// Make sure the enqueue order is strictly increasing for immediate queues
// and monotonically increasing for delayed queues.
DCHECK(task.enqueue_order() < tasks_.front().enqueue_order() ||
(queue_type_ == QueueType::kDelayed &&
task.enqueue_order() == tasks_.front().enqueue_order()))
<< task_queue_->GetName() << " : " << work_queue_sets_->GetName()
<< " : " << name_;
}
// Amortized O(1).
tasks_.push_front(std::move(task));
if (!work_queue_sets_) {
return;
}
// Pretend to WorkQueueSets that nothing has changed if we're blocked.
if (BlockedByFence()) {
return;
}
// Pushing task to front may unblock the fence.
if (was_empty || was_blocked) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
} else {
work_queue_sets_->OnQueuesFrontTaskChanged(this);
}
}
void WorkQueue::TakeImmediateIncomingQueueTasks() {
DCHECK(tasks_.empty());
task_queue_->TakeImmediateIncomingQueueTasks(&tasks_);
if (tasks_.empty()) {
return;
}
// If we hit the fence, pretend to WorkQueueSets that we're empty.
if (work_queue_sets_ && !BlockedByFence()) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
}
}
Task WorkQueue::TakeTaskFromWorkQueue() {
DCHECK(work_queue_sets_);
DCHECK(!tasks_.empty());
Task pending_task = std::move(tasks_.front());
tasks_.pop_front();
// NB immediate tasks have a different pipeline to delayed ones.
if (tasks_.empty()) {
// NB delayed tasks are inserted via Push, no don't need to reload those.
if (queue_type_ == QueueType::kImmediate) {
// Short-circuit the queue reload so that OnPopMinQueueInSet does the
// right thing.
task_queue_->TakeImmediateIncomingQueueTasks(&tasks_);
}
}
DCHECK(work_queue_sets_);
#if DCHECK_IS_ON()
// If diagnostics are on it's possible task queues are being selected at
// random so we can't use the (slightly) more efficient OnPopMinQueueInSet.
work_queue_sets_->OnQueuesFrontTaskChanged(this);
#else
// OnPopMinQueueInSet calls GetFrontTaskOrder which checks
// BlockedByFence() so we don't need to here.
work_queue_sets_->OnPopMinQueueInSet(this);
#endif
task_queue_->TraceQueueSize();
return pending_task;
}
bool WorkQueue::RemoveCancelledTasks(RemoveCancelledTasksPolicy policy) {
// Since task destructors could have a side-effect of deleting this task queue
// we move cancelled tasks into a temporary container which can be emptied
// without accessing |this|.
absl::InlinedVector<Task, 8> tasks_to_delete;
for (auto& pending_task : tasks_) {
#if DCHECK_IS_ON()
// Checking if a task is cancelled can trip DCHECK/CHECK failures out of the
// control of the SequenceManager code, so provide a task trace for easier
// diagnosis. See crbug.com/374409662 for context.
absl::Cleanup resetter = [original_task =
TaskAnnotator::CurrentTaskForThread()] {
TaskAnnotator::SetCurrentTaskForThread({}, original_task);
};
TaskAnnotator::SetCurrentTaskForThread(base::PassKey<WorkQueue>(),
&pending_task);
#endif
CHECK(pending_task.task, base::NotFatalUntil::M140);
if (pending_task.task.IsCancelled()) {
tasks_to_delete.push_back(std::move(pending_task));
} else if (policy == RemoveCancelledTasksPolicy::kFront) {
// Stop iterating when encountering a non-cancelled tasks and the policy
// is to remove only from the front.
break;
}
}
if (tasks_to_delete.empty()) {
return false;
}
if (policy == RemoveCancelledTasksPolicy::kFront) {
tasks_.erase(tasks_.begin(),
tasks_.begin() + base::checked_cast<std::ptrdiff_t>(
tasks_to_delete.size()));
} else {
DCHECK_EQ(policy, RemoveCancelledTasksPolicy::kAll);
std::erase_if(tasks_, [](const Task& task) { return task.task.is_null(); });
}
if (tasks_.empty()) {
// NB delayed tasks are inserted via Push, no don't need to reload those.
if (queue_type_ == QueueType::kImmediate) {
// Short-circuit the queue reload so that OnPopMinQueueInSet does the
// right thing.
task_queue_->TakeImmediateIncomingQueueTasks(&tasks_);
}
}
// If we have a valid |heap_handle_| (i.e. we're not blocked by a fence or
// disabled) then |work_queue_sets_| needs to be told.
if (heap_handle_.IsValid()) {
CHECK(work_queue_sets_);
work_queue_sets_->OnQueuesFrontTaskChanged(this);
}
task_queue_->TraceQueueSize();
return true;
}
void WorkQueue::AssignToWorkQueueSets(WorkQueueSets* work_queue_sets) {
work_queue_sets_ = work_queue_sets;
}
void WorkQueue::AssignSetIndex(size_t work_queue_set_index) {
work_queue_set_index_ = work_queue_set_index;
}
bool WorkQueue::InsertFenceImpl(Fence fence) {
DCHECK(!fence_ || fence.task_order() >= fence_->task_order() ||
fence.IsBlockingFence());
bool was_blocked_by_fence = BlockedByFence();
fence_ = fence;
return was_blocked_by_fence;
}
void WorkQueue::InsertFenceSilently(Fence fence) {
// Ensure that there is no fence present or a new one blocks queue completely.
DCHECK(!fence_ || fence_->IsBlockingFence());
InsertFenceImpl(fence);
}
bool WorkQueue::InsertFence(Fence fence) {
bool was_blocked_by_fence = InsertFenceImpl(fence);
if (!work_queue_sets_) {
return false;
}
// Moving the fence forward may unblock some tasks.
if (!tasks_.empty() && was_blocked_by_fence && !BlockedByFence()) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
return true;
}
// Fence insertion may have blocked all tasks in this work queue.
if (BlockedByFence()) {
work_queue_sets_->OnQueueBlocked(this);
}
return false;
}
bool WorkQueue::RemoveFence() {
bool was_blocked_by_fence = BlockedByFence();
fence_ = std::nullopt;
if (work_queue_sets_ && !tasks_.empty() && was_blocked_by_fence) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
return true;
}
return false;
}
void WorkQueue::PopTaskForTesting() {
if (tasks_.empty()) {
return;
}
tasks_.pop_front();
}
void WorkQueue::CollectTasksOlderThan(TaskOrder reference,
std::vector<const Task*>* result) const {
for (const Task& task : tasks_) {
if (task.task_order() >= reference) {
break;
}
result->push_back(&task);
}
}
} // namespace base::sequence_manager::internal
|