1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/sequence_manager/work_queue_sets.h"
#include <optional>
#include "base/check_op.h"
#include "base/task/sequence_manager/task_order.h"
#include "base/task/sequence_manager/work_queue.h"
namespace base::sequence_manager::internal {
WorkQueueSets::WorkQueueSets(const char* name,
Observer* observer,
const SequenceManager::Settings& settings)
: name_(name),
work_queue_heaps_(settings.priority_settings.priority_count()),
#if DCHECK_IS_ON()
last_rand_(settings.random_task_selection_seed),
#endif
observer_(observer) {
}
WorkQueueSets::~WorkQueueSets() = default;
void WorkQueueSets::AddQueue(WorkQueue* work_queue, size_t set_index) {
DCHECK(!work_queue->work_queue_sets());
DCHECK_LT(set_index, work_queue_heaps_.size());
DCHECK(!work_queue->heap_handle().IsValid());
std::optional<TaskOrder> key = work_queue->GetFrontTaskOrder();
work_queue->AssignToWorkQueueSets(this);
work_queue->AssignSetIndex(set_index);
if (!key) {
return;
}
bool was_empty = work_queue_heaps_[set_index].empty();
work_queue_heaps_[set_index].insert({*key, work_queue});
if (was_empty) {
observer_->WorkQueueSetBecameNonEmpty(set_index);
}
}
void WorkQueueSets::RemoveQueue(WorkQueue* work_queue) {
DCHECK_EQ(this, work_queue->work_queue_sets());
work_queue->AssignToWorkQueueSets(nullptr);
if (!work_queue->heap_handle().IsValid()) {
return;
}
size_t set_index = work_queue->work_queue_set_index();
DCHECK_LT(set_index, work_queue_heaps_.size());
work_queue_heaps_[set_index].erase(work_queue->heap_handle());
if (work_queue_heaps_[set_index].empty()) {
observer_->WorkQueueSetBecameEmpty(set_index);
}
DCHECK(!work_queue->heap_handle().IsValid());
}
void WorkQueueSets::ChangeSetIndex(WorkQueue* work_queue, size_t set_index) {
DCHECK_EQ(this, work_queue->work_queue_sets());
DCHECK_LT(set_index, work_queue_heaps_.size());
std::optional<TaskOrder> key = work_queue->GetFrontTaskOrder();
size_t old_set = work_queue->work_queue_set_index();
DCHECK_LT(old_set, work_queue_heaps_.size());
DCHECK_NE(old_set, set_index);
work_queue->AssignSetIndex(set_index);
DCHECK_EQ(key.has_value(), work_queue->heap_handle().IsValid());
if (!key) {
return;
}
work_queue_heaps_[old_set].erase(work_queue->heap_handle());
bool was_empty = work_queue_heaps_[set_index].empty();
work_queue_heaps_[set_index].insert({*key, work_queue});
// Invoke `WorkQueueSetBecameNonEmpty()` before `WorkQueueSetBecameEmpty()` so
// `observer_` doesn't momentarily observe that all work queue sets are empty.
// TaskQueueSelectorTest.TestDisableEnable will fail if the order changes.
if (was_empty) {
observer_->WorkQueueSetBecameNonEmpty(set_index);
}
if (work_queue_heaps_[old_set].empty()) {
observer_->WorkQueueSetBecameEmpty(old_set);
}
}
void WorkQueueSets::OnQueuesFrontTaskChanged(WorkQueue* work_queue) {
size_t set_index = work_queue->work_queue_set_index();
DCHECK_EQ(this, work_queue->work_queue_sets());
DCHECK_LT(set_index, work_queue_heaps_.size());
DCHECK(work_queue->heap_handle().IsValid());
DCHECK(!work_queue_heaps_[set_index].empty()) << " set_index = " << set_index;
if (auto key = work_queue->GetFrontTaskOrder()) {
// O(log n)
work_queue_heaps_[set_index].Replace(work_queue->heap_handle(),
{*key, work_queue});
} else {
// O(log n)
work_queue_heaps_[set_index].erase(work_queue->heap_handle());
DCHECK(!work_queue->heap_handle().IsValid());
if (work_queue_heaps_[set_index].empty()) {
observer_->WorkQueueSetBecameEmpty(set_index);
}
}
}
void WorkQueueSets::OnTaskPushedToEmptyQueue(WorkQueue* work_queue) {
// NOTE if this function changes, we need to keep |WorkQueueSets::AddQueue| in
// sync.
DCHECK_EQ(this, work_queue->work_queue_sets());
std::optional<TaskOrder> key = work_queue->GetFrontTaskOrder();
DCHECK(key);
size_t set_index = work_queue->work_queue_set_index();
DCHECK_LT(set_index, work_queue_heaps_.size())
<< " set_index = " << set_index;
// |work_queue| should not be in work_queue_heaps_[set_index].
DCHECK(!work_queue->heap_handle().IsValid());
bool was_empty = work_queue_heaps_[set_index].empty();
work_queue_heaps_[set_index].insert({*key, work_queue});
if (was_empty) {
observer_->WorkQueueSetBecameNonEmpty(set_index);
}
}
void WorkQueueSets::OnPopMinQueueInSet(WorkQueue* work_queue) {
// Assume that `work_queue` contains the lowest `TaskOrder`.
size_t set_index = work_queue->work_queue_set_index();
DCHECK_EQ(this, work_queue->work_queue_sets());
DCHECK_LT(set_index, work_queue_heaps_.size());
DCHECK(!work_queue_heaps_[set_index].empty()) << " set_index = " << set_index;
DCHECK_EQ(work_queue_heaps_[set_index].top().value, work_queue)
<< " set_index = " << set_index;
DCHECK(work_queue->heap_handle().IsValid());
if (auto key = work_queue->GetFrontTaskOrder()) {
// O(log n)
work_queue_heaps_[set_index].ReplaceTop({*key, work_queue});
} else {
// O(log n)
work_queue_heaps_[set_index].pop();
DCHECK(!work_queue->heap_handle().IsValid());
DCHECK(work_queue_heaps_[set_index].empty() ||
work_queue_heaps_[set_index].top().value != work_queue);
if (work_queue_heaps_[set_index].empty()) {
observer_->WorkQueueSetBecameEmpty(set_index);
}
}
}
void WorkQueueSets::OnQueueBlocked(WorkQueue* work_queue) {
DCHECK_EQ(this, work_queue->work_queue_sets());
HeapHandle heap_handle = work_queue->heap_handle();
if (!heap_handle.IsValid()) {
return;
}
size_t set_index = work_queue->work_queue_set_index();
DCHECK_LT(set_index, work_queue_heaps_.size());
work_queue_heaps_[set_index].erase(heap_handle);
if (work_queue_heaps_[set_index].empty()) {
observer_->WorkQueueSetBecameEmpty(set_index);
}
}
std::optional<WorkQueueAndTaskOrder>
WorkQueueSets::GetOldestQueueAndTaskOrderInSet(size_t set_index) const {
DCHECK_LT(set_index, work_queue_heaps_.size());
if (work_queue_heaps_[set_index].empty()) {
return std::nullopt;
}
const OldestTaskOrder& oldest = work_queue_heaps_[set_index].top();
DCHECK(oldest.value->heap_handle().IsValid());
#if DCHECK_IS_ON()
std::optional<TaskOrder> order = oldest.value->GetFrontTaskOrder();
DCHECK(order && oldest.key == *order);
#endif
return WorkQueueAndTaskOrder(*oldest.value, oldest.key);
}
#if DCHECK_IS_ON()
std::optional<WorkQueueAndTaskOrder>
WorkQueueSets::GetRandomQueueAndTaskOrderInSet(size_t set_index) const {
DCHECK_LT(set_index, work_queue_heaps_.size());
if (work_queue_heaps_[set_index].empty()) {
return std::nullopt;
}
const OldestTaskOrder& chosen =
work_queue_heaps_[set_index].begin()[static_cast<long>(
Random() % work_queue_heaps_[set_index].size())];
#if DCHECK_IS_ON()
std::optional<TaskOrder> key = chosen.value->GetFrontTaskOrder();
DCHECK(key && chosen.key == *key);
#endif
return WorkQueueAndTaskOrder(*chosen.value, chosen.key);
}
#endif
bool WorkQueueSets::IsSetEmpty(size_t set_index) const {
DCHECK_LT(set_index, work_queue_heaps_.size())
<< " set_index = " << set_index;
return work_queue_heaps_[set_index].empty();
}
#if DCHECK_IS_ON() || !defined(NDEBUG)
bool WorkQueueSets::ContainsWorkQueueForTest(
const WorkQueue* work_queue) const {
std::optional<TaskOrder> task_order = work_queue->GetFrontTaskOrder();
for (const auto& heap : work_queue_heaps_) {
for (const OldestTaskOrder& heap_value_pair : heap) {
if (heap_value_pair.value == work_queue) {
DCHECK(task_order);
DCHECK(heap_value_pair.key == *task_order);
DCHECK_EQ(this, work_queue->work_queue_sets());
return true;
}
}
}
if (work_queue->work_queue_sets() == this) {
DCHECK(!task_order);
return true;
}
return false;
}
#endif
void WorkQueueSets::CollectSkippedOverLowerPriorityTasks(
const internal::WorkQueue* selected_work_queue,
std::vector<const Task*>* result) const {
std::optional<TaskOrder> task_order =
selected_work_queue->GetFrontTaskOrder();
CHECK(task_order);
for (size_t priority = selected_work_queue->work_queue_set_index() + 1;
priority < work_queue_heaps_.size(); priority++) {
for (const OldestTaskOrder& pair : work_queue_heaps_[priority]) {
pair.value->CollectTasksOlderThan(*task_order, result);
}
}
}
} // namespace base::sequence_manager::internal
|