1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/thread_pool/sequence.h"
#include <utility>
#include "base/check.h"
#include "base/critical_closure.h"
#include "base/feature_list.h"
#include "base/functional/bind.h"
#include "base/memory/ptr_util.h"
#include "base/memory/stack_allocated.h"
#include "base/task/task_features.h"
#include "base/time/time.h"
namespace base::internal {
namespace {
// Asserts that a lock is acquired and annotates the scope such that
// base/thread_annotations.h can recognize that the lock is acquired.
class SCOPED_LOCKABLE AnnotateLockAcquired {
STACK_ALLOCATED();
public:
explicit AnnotateLockAcquired(const CheckedLock& lock)
EXCLUSIVE_LOCK_FUNCTION(lock)
: acquired_lock_(lock) {
acquired_lock_.AssertAcquired();
}
~AnnotateLockAcquired() UNLOCK_FUNCTION() { acquired_lock_.AssertAcquired(); }
private:
const CheckedLock& acquired_lock_;
};
void MaybeMakeCriticalClosure(TaskShutdownBehavior shutdown_behavior,
Task& task) {
switch (shutdown_behavior) {
case TaskShutdownBehavior::CONTINUE_ON_SHUTDOWN:
// Nothing to do.
break;
case TaskShutdownBehavior::SKIP_ON_SHUTDOWN:
// MakeCriticalClosure() is arguably useful for SKIP_ON_SHUTDOWN, possibly
// in combination with is_immediate=false. However, SKIP_ON_SHUTDOWN is
// the default and hence the theoretical benefits don't warrant the
// performance implications.
break;
case TaskShutdownBehavior::BLOCK_SHUTDOWN:
task.task =
MakeCriticalClosure(task.posted_from, std::move(task.task),
/*is_immediate=*/task.delayed_run_time.is_null());
break;
}
}
} // namespace
Sequence::Transaction::Transaction(Sequence* sequence)
: TaskSource::Transaction(sequence) {}
Sequence::Transaction::Transaction(Sequence::Transaction&& other) = default;
Sequence::Transaction::~Transaction() = default;
bool Sequence::Transaction::WillPushImmediateTask() {
// In a Transaction.
AnnotateLockAcquired annotate(sequence()->lock_);
bool was_immediate =
sequence()->is_immediate_.exchange(true, std::memory_order_relaxed);
return !was_immediate;
}
void Sequence::Transaction::PushImmediateTask(Task task) {
// In a Transaction.
AnnotateLockAcquired annotate(sequence()->lock_);
// Use CHECK instead of DCHECK to crash earlier. See http://crbug.com/711167
// for details.
CHECK(task.task);
DCHECK(!task.queue_time.is_null());
DCHECK(sequence()->is_immediate_.load(std::memory_order_relaxed));
bool was_unretained = sequence()->IsEmpty() && !sequence()->has_worker_;
bool queue_was_empty = sequence()->queue_.empty();
MaybeMakeCriticalClosure(sequence()->traits_.shutdown_behavior(), task);
sequence()->queue_.push(std::move(task));
if (queue_was_empty) {
sequence()->UpdateReadyTimes();
}
// AddRef() matched by manual Release() when the sequence has no more tasks
// to run (in DidProcessTask() or Clear()).
if (was_unretained && sequence()->task_runner()) {
sequence()->task_runner()->AddRef();
}
}
bool Sequence::Transaction::PushDelayedTask(Task task) {
// In a Transaction.
AnnotateLockAcquired annotate(sequence()->lock_);
// Use CHECK instead of DCHECK to crash earlier. See http://crbug.com/711167
// for details.
CHECK(task.task);
DCHECK(!task.queue_time.is_null());
DCHECK(!task.delayed_run_time.is_null());
bool top_will_change = sequence()->DelayedSortKeyWillChange(task);
bool was_empty = sequence()->IsEmpty();
MaybeMakeCriticalClosure(sequence()->traits_.shutdown_behavior(), task);
sequence()->delayed_queue_.insert(std::move(task));
if (sequence()->queue_.empty()) {
sequence()->UpdateReadyTimes();
}
// AddRef() matched by manual Release() when the sequence has no more tasks
// to run (in DidProcessTask() or Clear()).
if (was_empty && !sequence()->has_worker_ && sequence()->task_runner()) {
sequence()->task_runner()->AddRef();
}
return top_will_change;
}
// Delayed tasks are ordered by latest_delayed_run_time(). The top task may
// not be the first task eligible to run, but tasks will always become ripe
// before their latest_delayed_run_time().
bool Sequence::DelayedTaskGreater::operator()(const Task& lhs,
const Task& rhs) const {
TimeTicks lhs_latest_delayed_run_time = lhs.latest_delayed_run_time();
TimeTicks rhs_latest_delayed_run_time = rhs.latest_delayed_run_time();
return std::tie(lhs_latest_delayed_run_time, lhs.sequence_num) >
std::tie(rhs_latest_delayed_run_time, rhs.sequence_num);
}
TaskSource::RunStatus Sequence::WillRunTask() {
// There should never be a second call to WillRunTask() before DidProcessTask
// since the RunStatus is always marked a saturated.
DCHECK(!has_worker_);
// It's ok to access |has_worker_| outside of a Transaction since
// WillRunTask() is externally synchronized, always called in sequence with
// TakeTask() and DidProcessTask() and only called if HasReadyTasks(), which
// means it won't race with Push[Immediate/Delayed]Task().
has_worker_ = true;
return RunStatus::kAllowedSaturated;
}
bool Sequence::OnBecomeReady() {
DCHECK(!has_worker_);
// std::memory_order_relaxed is sufficient because no other state is
// synchronized with |is_immediate_| outside of |lock_|.
return !is_immediate_.exchange(true, std::memory_order_relaxed);
}
size_t Sequence::GetRemainingConcurrency() const {
return 1;
}
Task Sequence::TakeNextImmediateTask() {
Task next_task = std::move(queue_.front());
queue_.pop();
return next_task;
}
Task Sequence::TakeEarliestTask() {
if (queue_.empty()) {
return delayed_queue_.take_top();
}
if (delayed_queue_.empty()) {
return TakeNextImmediateTask();
}
// Both queues contain at least a task. Decide from which one the task should
// be taken.
if (queue_.front().queue_time <=
delayed_queue_.top().latest_delayed_run_time()) {
return TakeNextImmediateTask();
}
return delayed_queue_.take_top();
}
void Sequence::UpdateReadyTimes() {
DCHECK(!IsEmpty());
if (queue_.empty()) {
latest_ready_time_.store(delayed_queue_.top().latest_delayed_run_time(),
std::memory_order_relaxed);
earliest_ready_time_.store(delayed_queue_.top().earliest_delayed_run_time(),
std::memory_order_relaxed);
return;
}
if (delayed_queue_.empty()) {
latest_ready_time_.store(queue_.front().queue_time,
std::memory_order_relaxed);
} else {
latest_ready_time_.store(
std::min(queue_.front().queue_time,
delayed_queue_.top().latest_delayed_run_time()),
std::memory_order_relaxed);
}
earliest_ready_time_.store(TimeTicks(), std::memory_order_relaxed);
}
Task Sequence::TakeTask(TaskSource::Transaction* transaction) {
CheckedAutoLockMaybe auto_lock(transaction ? nullptr : &lock_);
AnnotateLockAcquired annotate(lock_);
DCHECK(has_worker_);
DCHECK(is_immediate_.load(std::memory_order_relaxed));
DCHECK(!queue_.empty() || !delayed_queue_.empty());
auto next_task = TakeEarliestTask();
if (!IsEmpty()) {
UpdateReadyTimes();
}
return next_task;
}
bool Sequence::DidProcessTask(TaskSource::Transaction* transaction) {
CheckedAutoLockMaybe auto_lock(transaction ? nullptr : &lock_);
AnnotateLockAcquired annotate(lock_);
// There should never be a call to DidProcessTask without an associated
// WillRunTask().
DCHECK(has_worker_);
has_worker_ = false;
// See comment on TaskSource::task_runner_ for lifetime management details.
if (IsEmpty()) {
is_immediate_.store(false, std::memory_order_relaxed);
ReleaseTaskRunner();
return false;
}
// Let the caller re-enqueue this non-empty Sequence regardless of
// |run_result| so it can continue churning through this Sequence's tasks and
// skip/delete them in the proper scope.
return true;
}
bool Sequence::WillReEnqueue(TimeTicks now,
TaskSource::Transaction* transaction) {
CheckedAutoLockMaybe auto_lock(transaction ? nullptr : &lock_);
AnnotateLockAcquired annotate(lock_);
// This should always be called from a worker thread and it will be
// called after DidProcessTask().
DCHECK(is_immediate_.load(std::memory_order_relaxed));
bool has_ready_tasks = HasReadyTasks(now);
if (!has_ready_tasks) {
is_immediate_.store(false, std::memory_order_relaxed);
}
return has_ready_tasks;
}
bool Sequence::DelayedSortKeyWillChange(const Task& delayed_task) const {
// If sequence has already been picked up by a worker or moved, no need to
// proceed further here.
if (is_immediate_.load(std::memory_order_relaxed)) {
return false;
}
if (IsEmpty()) {
return true;
}
return delayed_task.latest_delayed_run_time() <
delayed_queue_.top().latest_delayed_run_time();
}
bool Sequence::HasReadyTasks(TimeTicks now) const {
return now >= TS_UNCHECKED_READ(earliest_ready_time_)
.load(std::memory_order_relaxed);
}
bool Sequence::HasImmediateTasks() const {
return !queue_.empty();
}
TaskSourceSortKey Sequence::GetSortKey() const {
return TaskSourceSortKey(
priority_racy(),
TS_UNCHECKED_READ(latest_ready_time_).load(std::memory_order_relaxed));
}
TimeTicks Sequence::GetDelayedSortKey() const {
return TS_UNCHECKED_READ(latest_ready_time_).load(std::memory_order_relaxed);
}
std::optional<Task> Sequence::Clear(TaskSource::Transaction* transaction) {
CheckedAutoLockMaybe auto_lock(transaction ? nullptr : &lock_);
AnnotateLockAcquired annotate(lock_);
// See comment on TaskSource::task_runner_ for lifetime management details.
if (!IsEmpty() && !has_worker_) {
ReleaseTaskRunner();
}
return Task(
FROM_HERE,
base::BindOnce(
[](base::queue<Task> queue,
base::IntrusiveHeap<Task, DelayedTaskGreater> delayed_queue) {
while (!queue.empty()) {
queue.pop();
}
while (!delayed_queue.empty()) {
delayed_queue.pop();
}
},
std::move(queue_), std::move(delayed_queue_)),
TimeTicks(), TimeDelta(), TimeDelta(),
static_cast<int>(reinterpret_cast<intptr_t>(this)));
}
void Sequence::ReleaseTaskRunner() {
if (!task_runner()) {
return;
}
// No member access after this point, releasing |task_runner()| might delete
// |this|.
task_runner()->Release();
}
Sequence::Sequence(const TaskTraits& traits,
SequencedTaskRunner* task_runner,
TaskSourceExecutionMode execution_mode)
: TaskSource(traits, execution_mode), task_runner_(task_runner) {}
Sequence::~Sequence() = default;
Sequence::Transaction Sequence::BeginTransaction() {
return Transaction(this);
}
ExecutionEnvironment Sequence::GetExecutionEnvironment() {
if (execution_mode() == TaskSourceExecutionMode::kSingleThread) {
return {token_, &sequence_local_storage_,
static_cast<SingleThreadTaskRunner*>(task_runner())};
}
return {token_, &sequence_local_storage_, task_runner()};
}
bool Sequence::IsEmpty() const {
return queue_.empty() && delayed_queue_.empty();
}
} // namespace base::internal
|