1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/test/sequenced_task_runner_test_template.h"
#include <ostream>
#include "base/location.h"
namespace base {
namespace internal {
TaskEvent::TaskEvent(int i, Type type) : i(i), type(type) {}
SequencedTaskTracker::SequencedTaskTracker()
: next_post_i_(0), task_end_count_(0), task_end_cv_(&lock_) {}
void SequencedTaskTracker::PostWrappedNonNestableTask(
SequencedTaskRunner* task_runner,
OnceClosure task) {
AutoLock event_lock(lock_);
const int post_i = next_post_i_++;
auto wrapped_task =
BindOnce(&SequencedTaskTracker::RunTask, this, std::move(task), post_i);
task_runner->PostNonNestableTask(FROM_HERE, std::move(wrapped_task));
TaskPosted(post_i);
}
void SequencedTaskTracker::PostWrappedNestableTask(
SequencedTaskRunner* task_runner,
OnceClosure task) {
AutoLock event_lock(lock_);
const int post_i = next_post_i_++;
auto wrapped_task =
BindOnce(&SequencedTaskTracker::RunTask, this, std::move(task), post_i);
task_runner->PostTask(FROM_HERE, std::move(wrapped_task));
TaskPosted(post_i);
}
void SequencedTaskTracker::PostWrappedDelayedNonNestableTask(
SequencedTaskRunner* task_runner,
OnceClosure task,
TimeDelta delay) {
AutoLock event_lock(lock_);
const int post_i = next_post_i_++;
auto wrapped_task =
BindOnce(&SequencedTaskTracker::RunTask, this, std::move(task), post_i);
task_runner->PostNonNestableDelayedTask(FROM_HERE, std::move(wrapped_task),
delay);
TaskPosted(post_i);
}
void SequencedTaskTracker::PostNonNestableTasks(
SequencedTaskRunner* task_runner,
int task_count) {
for (int i = 0; i < task_count; ++i) {
PostWrappedNonNestableTask(task_runner, OnceClosure());
}
}
void SequencedTaskTracker::RunTask(OnceClosure task, int task_i) {
TaskStarted(task_i);
if (!task.is_null()) {
std::move(task).Run();
}
TaskEnded(task_i);
}
void SequencedTaskTracker::TaskPosted(int i) {
// Caller must own |lock_|.
events_.emplace_back(i, TaskEvent::POST);
}
void SequencedTaskTracker::TaskStarted(int i) {
AutoLock lock(lock_);
events_.emplace_back(i, TaskEvent::START);
}
void SequencedTaskTracker::TaskEnded(int i) {
AutoLock lock(lock_);
events_.emplace_back(i, TaskEvent::END);
++task_end_count_;
task_end_cv_.Signal();
}
const std::vector<TaskEvent>& SequencedTaskTracker::GetTaskEvents() const {
return events_;
}
void SequencedTaskTracker::WaitForCompletedTasks(int count) {
AutoLock lock(lock_);
while (task_end_count_ < count) {
task_end_cv_.Wait();
}
}
SequencedTaskTracker::~SequencedTaskTracker() = default;
void PrintTo(const TaskEvent& event, std::ostream* os) {
*os << "(i=" << event.i << ", type=";
switch (event.type) {
case TaskEvent::POST:
*os << "POST";
break;
case TaskEvent::START:
*os << "START";
break;
case TaskEvent::END:
*os << "END";
break;
}
*os << ")";
}
namespace {
// Returns the task ordinals for the task event type |type| in the order that
// they were recorded.
std::vector<int> GetEventTypeOrder(const std::vector<TaskEvent>& events,
TaskEvent::Type type) {
std::vector<int> tasks;
std::vector<TaskEvent>::const_iterator event;
for (event = events.begin(); event != events.end(); ++event) {
if (event->type == type) {
tasks.push_back(event->i);
}
}
return tasks;
}
// Returns all task events for task |task_i|.
std::vector<TaskEvent::Type> GetEventsForTask(
const std::vector<TaskEvent>& events,
int task_i) {
std::vector<TaskEvent::Type> task_event_orders;
std::vector<TaskEvent>::const_iterator event;
for (event = events.begin(); event != events.end(); ++event) {
if (event->i == task_i) {
task_event_orders.push_back(event->type);
}
}
return task_event_orders;
}
// Checks that the task events for each task in |events| occur in the order
// {POST, START, END}, and that there is only one instance of each event type
// per task.
::testing::AssertionResult CheckEventOrdersForEachTask(
const std::vector<TaskEvent>& events,
int task_count) {
std::vector<TaskEvent::Type> expected_order;
expected_order.push_back(TaskEvent::POST);
expected_order.push_back(TaskEvent::START);
expected_order.push_back(TaskEvent::END);
// This is O(n^2), but it runs fast enough currently so is not worth
// optimizing.
for (int i = 0; i < task_count; ++i) {
const std::vector<TaskEvent::Type> task_events =
GetEventsForTask(events, i);
if (task_events != expected_order) {
return ::testing::AssertionFailure()
<< "Events for task " << i << " are out of order; expected: "
<< ::testing::PrintToString(expected_order)
<< "; actual: " << ::testing::PrintToString(task_events);
}
}
return ::testing::AssertionSuccess();
}
// Checks that no two tasks were running at the same time. I.e. the only
// events allowed between the START and END of a task are the POSTs of other
// tasks.
::testing::AssertionResult CheckNoTaskRunsOverlap(
const std::vector<TaskEvent>& events) {
// If > -1, we're currently inside a START, END pair.
int current_task_i = -1;
std::vector<TaskEvent>::const_iterator event;
for (event = events.begin(); event != events.end(); ++event) {
bool spurious_event_found = false;
if (current_task_i == -1) { // Not inside a START, END pair.
switch (event->type) {
case TaskEvent::POST:
break;
case TaskEvent::START:
current_task_i = event->i;
break;
case TaskEvent::END:
spurious_event_found = true;
break;
}
} else { // Inside a START, END pair.
bool interleaved_task_detected = false;
switch (event->type) {
case TaskEvent::POST:
if (event->i == current_task_i) {
spurious_event_found = true;
}
break;
case TaskEvent::START:
interleaved_task_detected = true;
break;
case TaskEvent::END:
if (event->i != current_task_i) {
interleaved_task_detected = true;
} else {
current_task_i = -1;
}
break;
}
if (interleaved_task_detected) {
return ::testing::AssertionFailure()
<< "Found event " << ::testing::PrintToString(*event)
<< " between START and END events for task " << current_task_i
<< "; event dump: " << ::testing::PrintToString(events);
}
}
if (spurious_event_found) {
const int event_i = event - events.begin();
return ::testing::AssertionFailure()
<< "Spurious event " << ::testing::PrintToString(*event)
<< " at position " << event_i
<< "; event dump: " << ::testing::PrintToString(events);
}
}
return ::testing::AssertionSuccess();
}
} // namespace
::testing::AssertionResult CheckNonNestableInvariants(
const std::vector<TaskEvent>& events,
int task_count) {
const std::vector<int> post_order =
GetEventTypeOrder(events, TaskEvent::POST);
const std::vector<int> start_order =
GetEventTypeOrder(events, TaskEvent::START);
const std::vector<int> end_order = GetEventTypeOrder(events, TaskEvent::END);
if (start_order != post_order) {
return ::testing::AssertionFailure()
<< "Expected START order (which equals actual POST order): \n"
<< ::testing::PrintToString(post_order) << "\n Actual START order:\n"
<< ::testing::PrintToString(start_order);
}
if (end_order != post_order) {
return ::testing::AssertionFailure()
<< "Expected END order (which equals actual POST order): \n"
<< ::testing::PrintToString(post_order) << "\n Actual END order:\n"
<< ::testing::PrintToString(end_order);
}
const ::testing::AssertionResult result =
CheckEventOrdersForEachTask(events, task_count);
if (!result) {
return result;
}
return CheckNoTaskRunsOverlap(events);
}
} // namespace internal
// This suite is instantiated in binaries that use //base:test_support.
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SequencedTaskRunnerTest);
} // namespace base
|