1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <atomic>
#include <string>
#include "base/barrier_closure.h"
#include "base/functional/callback.h"
#include "base/memory/raw_ptr.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/simple_thread.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/perf/perf_result_reporter.h"
// This file contains tests to measure the cost of incrementing:
// - A non-atomic variable, no lock.
// - A non-atomic variable, with lock.
// - An atomic variable, no memory barriers.
// - An atomic variable, acquire-release barriers.
// The goal is to provide data to guide counter implementation choices.
namespace base {
namespace {
constexpr char kMetricPrefixCounter[] = "Counter.";
constexpr char kMetricOperationThroughput[] = "operation_throughput";
constexpr uint64_t kNumIterations = 100000000;
perf_test::PerfResultReporter SetUpReporter(const std::string& story_name) {
perf_test::PerfResultReporter reporter(kMetricPrefixCounter, story_name);
reporter.RegisterImportantMetric(kMetricOperationThroughput, "operations/ms");
return reporter;
}
class Uint64_NoLock {
public:
Uint64_NoLock() = default;
void Increment() { counter_ = counter_ + 1; }
uint64_t value() const { return counter_; }
private:
// Volatile to prevent the compiler from over-optimizing the increment.
volatile uint64_t counter_ = 0;
};
class Uint64_Lock {
public:
Uint64_Lock() = default;
void Increment() {
AutoLock auto_lock(lock_);
++counter_;
}
uint64_t value() const {
AutoLock auto_lock(lock_);
return counter_;
}
private:
mutable Lock lock_;
uint64_t counter_ GUARDED_BY(lock_) = 0;
};
class AtomicUint64_NoBarrier {
public:
AtomicUint64_NoBarrier() = default;
void Increment() { counter_.fetch_add(1, std::memory_order_relaxed); }
uint64_t value() const { return counter_; }
private:
std::atomic<uint64_t> counter_{0};
};
class AtomicUint64_Barrier {
public:
AtomicUint64_Barrier() = default;
void Increment() { counter_.fetch_add(1, std::memory_order_acq_rel); }
uint64_t value() const { return counter_; }
private:
std::atomic<uint64_t> counter_{0};
};
template <typename CounterType>
class IncrementThread : public SimpleThread {
public:
// Upon entering its main function, the thread waits for |start_event| to be
// signaled. Then, it increments |counter| |kNumIterations| times.
// Finally, it invokes |done_closure|.
explicit IncrementThread(WaitableEvent* start_event,
CounterType* counter,
OnceClosure done_closure)
: SimpleThread("IncrementThread"),
start_event_(start_event),
counter_(counter),
done_closure_(std::move(done_closure)) {}
// SimpleThread:
void Run() override {
start_event_->Wait();
for (uint64_t i = 0; i < kNumIterations; ++i) {
counter_->Increment();
}
std::move(done_closure_).Run();
}
private:
const raw_ptr<WaitableEvent> start_event_;
const raw_ptr<CounterType> counter_;
OnceClosure done_closure_;
};
template <typename CounterType>
void RunIncrementPerfTest(const std::string& story_name, int num_threads) {
WaitableEvent start_event;
WaitableEvent end_event;
CounterType counter;
RepeatingClosure done_closure = BarrierClosure(
num_threads, BindOnce(&WaitableEvent::Signal, Unretained(&end_event)));
std::vector<std::unique_ptr<IncrementThread<CounterType>>> threads;
for (int i = 0; i < num_threads; ++i) {
threads.push_back(std::make_unique<IncrementThread<CounterType>>(
&start_event, &counter, done_closure));
threads.back()->Start();
}
TimeTicks start_time = TimeTicks::Now();
start_event.Signal();
end_event.Wait();
TimeTicks end_time = TimeTicks::Now();
EXPECT_EQ(num_threads * kNumIterations, counter.value());
auto reporter = SetUpReporter(story_name);
reporter.AddResult(
kMetricOperationThroughput,
kNumIterations / (end_time - start_time).InMillisecondsF());
for (auto& thread : threads) {
thread->Join();
}
}
} // namespace
TEST(CounterPerfTest, Uint64_NoLock_1Thread) {
RunIncrementPerfTest<Uint64_NoLock>("Uint64_NoLock_1Thread", 1);
}
// No Uint64_NoLock_4Threads test because it would cause data races.
TEST(CounterPerfTest, Uint64_Lock_1Thread) {
RunIncrementPerfTest<Uint64_Lock>("Uint64_Lock_1Thread", 1);
}
TEST(CounterPerfTest, Uint64_Lock_4Threads) {
RunIncrementPerfTest<Uint64_Lock>("Uint64_Lock_4Threads", 4);
}
TEST(CounterPerfTest, AtomicUint64_NoBarrier_1Thread) {
RunIncrementPerfTest<AtomicUint64_NoBarrier>("AtomicUint64_NoBarrier_1Thread",
1);
}
TEST(CounterPerfTest, AtomicUint64_NoBarrier_4Threads) {
RunIncrementPerfTest<AtomicUint64_NoBarrier>(
"AtomicUint64_NoBarrier_4Threads", 4);
}
TEST(CounterPerfTest, AtomicUint64_Barrier_1Thread) {
RunIncrementPerfTest<AtomicUint64_Barrier>("AtomicUint64_Barrier_1Thread", 1);
}
TEST(CounterPerfTest, AtomicUint64_Barrier_4Threads) {
RunIncrementPerfTest<AtomicUint64_Barrier>("AtomicUint64_Barrier_4Threads",
4);
}
} // namespace base
|