1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
|
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/threading/hang_watcher.h"
#include <algorithm>
#include <atomic>
#include <utility>
#include "base/containers/flat_map.h"
#include "base/debug/alias.h"
#include "base/debug/crash_logging.h"
#include "base/debug/dump_without_crashing.h"
#include "base/debug/leak_annotations.h"
#include "base/feature_list.h"
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/metrics/field_trial_params.h"
#include "base/metrics/histogram_macros.h"
#include "base/power_monitor/power_monitor.h"
#include "base/strings/string_number_conversions.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread_checker.h"
#include "base/threading/thread_restrictions.h"
#include "base/threading/threading_features.h"
#include "base/time/default_tick_clock.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
namespace base {
namespace {
// Defines how much logging happens when the HangWatcher monitors the threads.
// Logging levels are set per thread type through Finch. It's important that
// the order of the enum members stay the same and that their numerical
// values be in increasing order. The implementation of
// ThreadTypeLoggingLevelGreaterOrEqual() depends on it.
enum class LoggingLevel { kNone = 0, kUmaOnly = 1, kUmaAndCrash = 2 };
HangWatcher* g_instance = nullptr;
constinit thread_local internal::HangWatchState* hang_watch_state = nullptr;
std::atomic<bool> g_use_hang_watcher{false};
std::atomic<HangWatcher::ProcessType> g_hang_watcher_process_type{
HangWatcher::ProcessType::kBrowserProcess};
std::atomic<LoggingLevel> g_threadpool_log_level{LoggingLevel::kNone};
std::atomic<LoggingLevel> g_io_thread_log_level{LoggingLevel::kNone};
std::atomic<LoggingLevel> g_main_thread_log_level{LoggingLevel::kNone};
std::atomic<LoggingLevel> g_compositor_thread_log_level{LoggingLevel::kNone};
// Indicates whether HangWatcher::Run() should return after the next monitoring.
std::atomic<bool> g_keep_monitoring{true};
// If true, indicates that this process's shutdown sequence has started. Once
// flipped to true, cannot be un-flipped.
std::atomic<bool> g_shutting_down{false};
// Emits the hung thread count histogram. |count| is the number of threads
// of type |thread_type| that were hung or became hung during the last
// monitoring window. This function should be invoked for each thread type
// encountered on each call to Monitor(). `sample_ticks` is the time at which
// the sample was taken and `monitoring_period` is the interval being sampled.
void LogStatusHistogram(HangWatcher::ThreadType thread_type,
int count,
TimeTicks sample_ticks,
TimeDelta monitoring_period) {
// In the case of unique threads like the IO or UI/Main thread a count does
// not make sense.
const bool any_thread_hung = count >= 1;
const bool shutting_down = g_shutting_down.load(std::memory_order_relaxed);
// Uses histogram macros instead of functions. This increases binary size
// slightly, but runs slightly faster. These histograms are logged pretty
// often, so we prefer improving runtime.
const HangWatcher::ProcessType process_type =
g_hang_watcher_process_type.load(std::memory_order_relaxed);
switch (process_type) {
case HangWatcher::ProcessType::kUnknownProcess:
break;
case HangWatcher::ProcessType::kBrowserProcess:
switch (thread_type) {
case HangWatcher::ThreadType::kIOThread:
if (shutting_down) {
UMA_HISTOGRAM_BOOLEAN(
"HangWatcher.IsThreadHung.BrowserProcess.IOThread.Shutdown",
any_thread_hung);
} else {
UMA_HISTOGRAM_BOOLEAN(
"HangWatcher.IsThreadHung.BrowserProcess.IOThread.Normal",
any_thread_hung);
}
break;
case HangWatcher::ThreadType::kMainThread:
if (shutting_down) {
UMA_HISTOGRAM_BOOLEAN(
"HangWatcher.IsThreadHung.BrowserProcess.UIThread.Shutdown",
any_thread_hung);
} else {
UMA_HISTOGRAM_BOOLEAN(
"HangWatcher.IsThreadHung.BrowserProcess.UIThread.Normal",
any_thread_hung);
}
break;
case HangWatcher::ThreadType::kCompositorThread:
// The browser process does not have a thread that matches
// `HangWatcher::ThreadType::kCompositorThread`. Its main compositor
// logic runs on the main (UI) thread (due to single-threaded mode,
// see //cc/README.md). While separate "CompositorTileWorker" threads
// exist, they are distinct from this `kCompositorThread` type, which
// is for a dedicated main compositor thread (like in renderers).
// Therefore, this should not be logged for BrowserProcess.
CHECK(false) << "kCompositorThread type should not be logged for "
"BrowserProcess";
case HangWatcher::ThreadType::kThreadPoolThread:
// Not recorded for now.
break;
}
break;
case HangWatcher::ProcessType::kGPUProcess:
// Not recorded for now.
CHECK(!shutting_down);
break;
case HangWatcher::ProcessType::kRendererProcess:
CHECK(!shutting_down);
switch (thread_type) {
case HangWatcher::ThreadType::kIOThread:
UMA_HISTOGRAM_SPLIT_BY_PROCESS_PRIORITY(
UMA_HISTOGRAM_BOOLEAN, sample_ticks, monitoring_period,
"HangWatcher.IsThreadHung.RendererProcess.IOThread",
any_thread_hung);
break;
case HangWatcher::ThreadType::kMainThread:
UMA_HISTOGRAM_SPLIT_BY_PROCESS_PRIORITY(
UMA_HISTOGRAM_BOOLEAN, sample_ticks, monitoring_period,
"HangWatcher.IsThreadHung.RendererProcess.MainThread",
any_thread_hung);
break;
case HangWatcher::ThreadType::kCompositorThread:
UMA_HISTOGRAM_SPLIT_BY_PROCESS_PRIORITY(
UMA_HISTOGRAM_BOOLEAN, sample_ticks, monitoring_period,
"HangWatcher.IsThreadHung.RendererProcess.CompositorThread",
any_thread_hung);
break;
case HangWatcher::ThreadType::kThreadPoolThread:
// Not recorded for now.
break;
}
break;
case HangWatcher::ProcessType::kUtilityProcess:
CHECK(!shutting_down);
switch (thread_type) {
case HangWatcher::ThreadType::kIOThread:
UMA_HISTOGRAM_BOOLEAN(
"HangWatcher.IsThreadHung.UtilityProcess.IOThread",
any_thread_hung);
break;
case HangWatcher::ThreadType::kMainThread:
UMA_HISTOGRAM_BOOLEAN(
"HangWatcher.IsThreadHung.UtilityProcess.MainThread",
any_thread_hung);
break;
case HangWatcher::ThreadType::kCompositorThread:
// Not recorded because the compositor doesn't run in utility
// processes, as of May 2025.
CHECK(false) << "kCompositorThread type should not be logged for "
"UtilityProcess";
case HangWatcher::ThreadType::kThreadPoolThread:
// Not recorded for now.
break;
}
break;
}
}
// Returns true if |thread_type| was configured through Finch to have a logging
// level that is equal to or exceeds |logging_level|.
bool ThreadTypeLoggingLevelGreaterOrEqual(HangWatcher::ThreadType thread_type,
LoggingLevel logging_level) {
switch (thread_type) {
case HangWatcher::ThreadType::kIOThread:
return g_io_thread_log_level.load(std::memory_order_relaxed) >=
logging_level;
case HangWatcher::ThreadType::kMainThread:
return g_main_thread_log_level.load(std::memory_order_relaxed) >=
logging_level;
case HangWatcher::ThreadType::kThreadPoolThread:
return g_threadpool_log_level.load(std::memory_order_relaxed) >=
logging_level;
case HangWatcher::ThreadType::kCompositorThread:
return g_compositor_thread_log_level.load(std::memory_order_relaxed) >=
logging_level;
}
}
} // namespace
// Enables the HangWatcher. When disabled, the HangWatcher thread should not be
// started. Enabled by default only on platforms where the generated data is
// used, to avoid unnecessary overhead.
BASE_FEATURE(kEnableHangWatcher,
"EnableHangWatcher",
#if BUILDFLAG(IS_WIN) || BUILDFLAG(IS_MAC) || BUILDFLAG(IS_CHROMEOS) || \
BUILDFLAG(IS_LINUX)
FEATURE_ENABLED_BY_DEFAULT
#else
FEATURE_DISABLED_BY_DEFAULT
#endif
);
// Browser process.
// Note: Do not use the prepared macro as of no need for a local cache.
constexpr base::FeatureParam<int> kIOThreadLogLevel{
&kEnableHangWatcher, "io_thread_log_level",
static_cast<int>(LoggingLevel::kUmaOnly)};
constexpr base::FeatureParam<int> kUIThreadLogLevel{
&kEnableHangWatcher, "ui_thread_log_level",
static_cast<int>(LoggingLevel::kUmaOnly)};
constexpr base::FeatureParam<int> kThreadPoolLogLevel{
&kEnableHangWatcher, "threadpool_log_level",
static_cast<int>(LoggingLevel::kUmaOnly)};
// GPU process.
// Note: Do not use the prepared macro as of no need for a local cache.
constexpr base::FeatureParam<int> kGPUProcessIOThreadLogLevel{
&kEnableHangWatcher, "gpu_process_io_thread_log_level",
static_cast<int>(LoggingLevel::kNone)};
constexpr base::FeatureParam<int> kGPUProcessMainThreadLogLevel{
&kEnableHangWatcher, "gpu_process_main_thread_log_level",
static_cast<int>(LoggingLevel::kNone)};
constexpr base::FeatureParam<int> kGPUProcessThreadPoolLogLevel{
&kEnableHangWatcher, "gpu_process_threadpool_log_level",
static_cast<int>(LoggingLevel::kNone)};
// Renderer process.
// Note: Do not use the prepared macro as of no need for a local cache.
constexpr base::FeatureParam<int> kRendererProcessIOThreadLogLevel{
&kEnableHangWatcher, "renderer_process_io_thread_log_level",
static_cast<int>(LoggingLevel::kUmaOnly)};
constexpr base::FeatureParam<int> kRendererProcessMainThreadLogLevel{
&kEnableHangWatcher, "renderer_process_main_thread_log_level",
static_cast<int>(LoggingLevel::kUmaOnly)};
constexpr base::FeatureParam<int> kRendererProcessThreadPoolLogLevel{
&kEnableHangWatcher, "renderer_process_threadpool_log_level",
static_cast<int>(LoggingLevel::kUmaOnly)};
constexpr base::FeatureParam<int> kRendererProcessCompositorThreadLogLevel{
&kEnableHangWatcher, "renderer_process_compositor_thread_log_level",
static_cast<int>(LoggingLevel::kUmaOnly)};
// Utility process.
// Note: Do not use the prepared macro as of no need for a local cache.
constexpr base::FeatureParam<int> kUtilityProcessIOThreadLogLevel{
&kEnableHangWatcher, "utility_process_io_thread_log_level",
static_cast<int>(LoggingLevel::kUmaOnly)};
constexpr base::FeatureParam<int> kUtilityProcessMainThreadLogLevel{
&kEnableHangWatcher, "utility_process_main_thread_log_level",
static_cast<int>(LoggingLevel::kUmaOnly)};
constexpr base::FeatureParam<int> kUtilityProcessThreadPoolLogLevel{
&kEnableHangWatcher, "utility_process_threadpool_log_level",
static_cast<int>(LoggingLevel::kUmaOnly)};
constexpr const char* kThreadName = "HangWatcher";
// The time that the HangWatcher thread will sleep for between calls to
// Monitor(). Increasing or decreasing this does not modify the type of hangs
// that can be detected. It instead increases the probability that a call to
// Monitor() will happen at the right time to catch a hang. This has to be
// balanced with power/cpu use concerns as busy looping would catch almost all
// hangs but present unacceptable overhead. NOTE: If this period is ever changed
// then all metrics that depend on it like
// HangWatcher.IsThreadHung need to be updated.
constexpr auto kMonitoringPeriod = base::Seconds(10);
WatchHangsInScope::WatchHangsInScope(TimeDelta timeout) {
internal::HangWatchState* current_hang_watch_state =
HangWatcher::IsEnabled()
? internal::HangWatchState::GetHangWatchStateForCurrentThread()
: nullptr;
DCHECK(timeout >= base::TimeDelta()) << "Negative timeouts are invalid.";
// Thread is not monitored, noop.
if (!current_hang_watch_state) {
took_effect_ = false;
return;
}
#if DCHECK_IS_ON()
previous_watch_hangs_in_scope_ =
current_hang_watch_state->GetCurrentWatchHangsInScope();
current_hang_watch_state->SetCurrentWatchHangsInScope(this);
#endif
auto [old_flags, old_deadline] =
current_hang_watch_state->GetFlagsAndDeadline();
// TODO(crbug.com/40111620): Check whether we are over deadline already for
// the previous WatchHangsInScope here by issuing only one TimeTicks::Now()
// and reusing the value.
previous_deadline_ = old_deadline;
TimeTicks deadline = TimeTicks::Now() + timeout;
current_hang_watch_state->SetDeadline(deadline);
current_hang_watch_state->IncrementNestingLevel();
const bool hangs_ignored_for_current_scope =
internal::HangWatchDeadline::IsFlagSet(
internal::HangWatchDeadline::Flag::kIgnoreCurrentWatchHangsInScope,
old_flags);
// If the current WatchHangsInScope is ignored, temporarily reactivate hang
// watching for newly created WatchHangsInScopes. On exiting hang watching
// is suspended again to return to the original state.
if (hangs_ignored_for_current_scope) {
current_hang_watch_state->UnsetIgnoreCurrentWatchHangsInScope();
set_hangs_ignored_on_exit_ = true;
}
}
WatchHangsInScope::~WatchHangsInScope() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
// If hang watching was not enabled at construction time there is nothing to
// validate or undo.
if (!took_effect_) {
return;
}
// If the thread was unregistered since construction there is also nothing to
// do.
auto* const state =
internal::HangWatchState::GetHangWatchStateForCurrentThread();
if (!state) {
return;
}
// If a hang is currently being captured we should block here so execution
// stops and we avoid recording unrelated stack frames in the crash.
if (state->IsFlagSet(internal::HangWatchDeadline::Flag::kShouldBlockOnHang)) {
base::HangWatcher::GetInstance()->BlockIfCaptureInProgress();
}
#if DCHECK_IS_ON()
// Verify that no Scope was destructed out of order.
DCHECK_EQ(this, state->GetCurrentWatchHangsInScope());
state->SetCurrentWatchHangsInScope(previous_watch_hangs_in_scope_);
#endif
if (state->nesting_level() == 1) {
// If a call to InvalidateActiveExpectations() suspended hang watching
// during the lifetime of this or any nested WatchHangsInScope it can now
// safely be reactivated by clearing the ignore bit since this is the
// outer-most scope.
state->UnsetIgnoreCurrentWatchHangsInScope();
} else if (set_hangs_ignored_on_exit_) {
// Return to ignoring hangs since this was the previous state before hang
// watching was temporarily enabled for this WatchHangsInScope only in the
// constructor.
state->SetIgnoreCurrentWatchHangsInScope();
}
// Reset the deadline to the value it had before entering this
// WatchHangsInScope.
state->SetDeadline(previous_deadline_);
// TODO(crbug.com/40111620): Log when a WatchHangsInScope exits after its
// deadline and that went undetected by the HangWatcher.
state->DecrementNestingLevel();
}
// static
void HangWatcher::InitializeOnMainThread(ProcessType process_type,
bool emit_crashes) {
DCHECK(!g_use_hang_watcher);
DCHECK(g_io_thread_log_level == LoggingLevel::kNone);
DCHECK(g_main_thread_log_level == LoggingLevel::kNone);
DCHECK(g_threadpool_log_level == LoggingLevel::kNone);
bool enable_hang_watcher = base::FeatureList::IsEnabled(kEnableHangWatcher);
// Do not start HangWatcher in the GPU process until the issue related to
// invalid magic signature in the GPU WatchDog is fixed
// (https://crbug.com/1297760).
if (process_type == ProcessType::kGPUProcess) {
enable_hang_watcher = false;
}
g_use_hang_watcher.store(enable_hang_watcher, std::memory_order_relaxed);
// Keep the process type.
g_hang_watcher_process_type.store(process_type, std::memory_order_relaxed);
// If hang watching is disabled as a whole there is no need to read the
// params.
if (!enable_hang_watcher) {
return;
}
// Retrieve thread-specific config for hang watching.
if (process_type == HangWatcher::ProcessType::kBrowserProcess) {
// Crashes are set to always emit. Override any feature flags.
if (emit_crashes) {
g_io_thread_log_level.store(
static_cast<LoggingLevel>(LoggingLevel::kUmaAndCrash),
std::memory_order_relaxed);
g_main_thread_log_level.store(
static_cast<LoggingLevel>(LoggingLevel::kUmaAndCrash),
std::memory_order_relaxed);
} else {
g_io_thread_log_level.store(
static_cast<LoggingLevel>(kIOThreadLogLevel.Get()),
std::memory_order_relaxed);
g_main_thread_log_level.store(
static_cast<LoggingLevel>(kUIThreadLogLevel.Get()),
std::memory_order_relaxed);
}
g_threadpool_log_level.store(
static_cast<LoggingLevel>(kThreadPoolLogLevel.Get()),
std::memory_order_relaxed);
} else if (process_type == HangWatcher::ProcessType::kGPUProcess) {
g_threadpool_log_level.store(
static_cast<LoggingLevel>(kGPUProcessThreadPoolLogLevel.Get()),
std::memory_order_relaxed);
g_io_thread_log_level.store(
static_cast<LoggingLevel>(kGPUProcessIOThreadLogLevel.Get()),
std::memory_order_relaxed);
g_main_thread_log_level.store(
static_cast<LoggingLevel>(kGPUProcessMainThreadLogLevel.Get()),
std::memory_order_relaxed);
} else if (process_type == HangWatcher::ProcessType::kRendererProcess) {
g_threadpool_log_level.store(
static_cast<LoggingLevel>(kRendererProcessThreadPoolLogLevel.Get()),
std::memory_order_relaxed);
g_io_thread_log_level.store(
static_cast<LoggingLevel>(kRendererProcessIOThreadLogLevel.Get()),
std::memory_order_relaxed);
g_main_thread_log_level.store(
static_cast<LoggingLevel>(kRendererProcessMainThreadLogLevel.Get()),
std::memory_order_relaxed);
g_compositor_thread_log_level.store(
static_cast<LoggingLevel>(
kRendererProcessCompositorThreadLogLevel.Get()),
std::memory_order_relaxed);
} else if (process_type == HangWatcher::ProcessType::kUtilityProcess) {
g_threadpool_log_level.store(
static_cast<LoggingLevel>(kUtilityProcessThreadPoolLogLevel.Get()),
std::memory_order_relaxed);
g_io_thread_log_level.store(
static_cast<LoggingLevel>(kUtilityProcessIOThreadLogLevel.Get()),
std::memory_order_relaxed);
g_main_thread_log_level.store(
static_cast<LoggingLevel>(kUtilityProcessMainThreadLogLevel.Get()),
std::memory_order_relaxed);
}
}
void HangWatcher::UninitializeOnMainThreadForTesting() {
g_use_hang_watcher.store(false, std::memory_order_relaxed);
g_threadpool_log_level.store(LoggingLevel::kNone, std::memory_order_relaxed);
g_io_thread_log_level.store(LoggingLevel::kNone, std::memory_order_relaxed);
g_main_thread_log_level.store(LoggingLevel::kNone, std::memory_order_relaxed);
g_compositor_thread_log_level.store(LoggingLevel::kNone,
std::memory_order_relaxed);
g_shutting_down.store(false, std::memory_order_relaxed);
}
// static
bool HangWatcher::IsEnabled() {
return g_use_hang_watcher.load(std::memory_order_relaxed);
}
// static
bool HangWatcher::IsThreadPoolHangWatchingEnabled() {
return g_threadpool_log_level.load(std::memory_order_relaxed) !=
LoggingLevel::kNone;
}
// static
bool HangWatcher::IsIOThreadHangWatchingEnabled() {
return g_io_thread_log_level.load(std::memory_order_relaxed) !=
LoggingLevel::kNone;
}
// static
bool HangWatcher::IsCompositorThreadHangWatchingEnabled() {
return g_compositor_thread_log_level.load(std::memory_order_relaxed) !=
LoggingLevel::kNone;
}
// static
bool HangWatcher::IsCrashReportingEnabled() {
if (g_main_thread_log_level.load(std::memory_order_relaxed) ==
LoggingLevel::kUmaAndCrash) {
return true;
}
if (g_io_thread_log_level.load(std::memory_order_relaxed) ==
LoggingLevel::kUmaAndCrash) {
return true;
}
if (g_threadpool_log_level.load(std::memory_order_relaxed) ==
LoggingLevel::kUmaAndCrash) {
return true;
}
return false;
}
// static
void HangWatcher::InvalidateActiveExpectations() {
auto* const state =
internal::HangWatchState::GetHangWatchStateForCurrentThread();
if (!state) {
// If the current thread is not under watch there is nothing to invalidate.
return;
}
state->SetIgnoreCurrentWatchHangsInScope();
}
// static
void HangWatcher::SetShuttingDown() {
// memory_order_relaxed offers no memory order guarantees. In rare cases, we
// could falsely log to BrowserProcess.Normal instead of
// BrowserProcess.Shutdown. This is OK in practice.
bool was_shutting_down =
g_shutting_down.exchange(true, std::memory_order_relaxed);
DCHECK(!was_shutting_down);
}
HangWatcher::HangWatcher()
: monitoring_period_(kMonitoringPeriod),
should_monitor_(WaitableEvent::ResetPolicy::AUTOMATIC),
thread_(this, kThreadName),
tick_clock_(base::DefaultTickClock::GetInstance()),
memory_pressure_listener_(
FROM_HERE,
base::BindRepeating(&HangWatcher::OnMemoryPressure,
base::Unretained(this))) {
// |thread_checker_| should not be bound to the constructing thread.
DETACH_FROM_THREAD(hang_watcher_thread_checker_);
should_monitor_.declare_only_used_while_idle();
DCHECK(!g_instance);
g_instance = this;
}
// static
void HangWatcher::CreateHangWatcherInstance() {
DCHECK(!g_instance);
g_instance = new base::HangWatcher();
// The hang watcher is leaked to make sure it survives all watched threads.
ANNOTATE_LEAKING_OBJECT_PTR(g_instance);
}
#if !BUILDFLAG(IS_NACL)
debug::ScopedCrashKeyString
HangWatcher::GetTimeSinceLastCriticalMemoryPressureCrashKey() {
DCHECK_CALLED_ON_VALID_THREAD(hang_watcher_thread_checker_);
// The crash key size is large enough to hold the biggest possible return
// value from base::TimeDelta::InSeconds().
constexpr debug::CrashKeySize kCrashKeyContentSize =
debug::CrashKeySize::Size32;
DCHECK_GE(static_cast<uint64_t>(kCrashKeyContentSize),
base::NumberToString(std::numeric_limits<int64_t>::max()).size());
static debug::CrashKeyString* crash_key = AllocateCrashKeyString(
"seconds-since-last-memory-pressure", kCrashKeyContentSize);
const base::TimeTicks last_critical_memory_pressure_time =
last_critical_memory_pressure_.load(std::memory_order_relaxed);
if (last_critical_memory_pressure_time.is_null()) {
constexpr char kNoMemoryPressureMsg[] = "No critical memory pressure";
static_assert(
std::size(kNoMemoryPressureMsg) <=
static_cast<uint64_t>(kCrashKeyContentSize),
"The crash key is too small to hold \"No critical memory pressure\".");
return debug::ScopedCrashKeyString(crash_key, kNoMemoryPressureMsg);
} else {
base::TimeDelta time_since_last_critical_memory_pressure =
base::TimeTicks::Now() - last_critical_memory_pressure_time;
return debug::ScopedCrashKeyString(
crash_key, base::NumberToString(
time_since_last_critical_memory_pressure.InSeconds()));
}
}
#endif
std::string HangWatcher::GetTimeSinceLastSystemPowerResumeCrashKeyValue()
const {
DCHECK_CALLED_ON_VALID_THREAD(hang_watcher_thread_checker_);
const TimeTicks last_system_power_resume_time =
PowerMonitor::GetInstance()->GetLastSystemResumeTime();
if (last_system_power_resume_time.is_null()) {
return "Never suspended";
}
if (last_system_power_resume_time == TimeTicks::Max()) {
return "Power suspended";
}
const TimeDelta time_since_last_system_resume =
TimeTicks::Now() - last_system_power_resume_time;
return NumberToString(time_since_last_system_resume.InSeconds());
}
void HangWatcher::OnMemoryPressure(
base::MemoryPressureListener::MemoryPressureLevel memory_pressure_level) {
if (memory_pressure_level ==
base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL) {
last_critical_memory_pressure_.store(base::TimeTicks::Now(),
std::memory_order_relaxed);
}
}
HangWatcher::~HangWatcher() {
DCHECK_CALLED_ON_VALID_THREAD(constructing_thread_checker_);
DCHECK_EQ(g_instance, this);
DCHECK(watch_states_.empty());
g_instance = nullptr;
Stop();
}
void HangWatcher::Start() {
thread_.Start();
thread_started_ = true;
}
void HangWatcher::Stop() {
g_keep_monitoring.store(false, std::memory_order_relaxed);
should_monitor_.Signal();
thread_.Join();
thread_started_ = false;
// In production HangWatcher is always leaked but during testing it's possibly
// stopped and restarted using a new instance. This makes sure the next call
// to Start() will actually monitor in that case.
g_keep_monitoring.store(true, std::memory_order_relaxed);
}
bool HangWatcher::IsWatchListEmpty() {
AutoLock auto_lock(watch_state_lock_);
return watch_states_.empty();
}
void HangWatcher::Wait() {
while (true) {
// Amount by which the actual time spent sleeping can deviate from
// the target time and still be considered timely.
constexpr base::TimeDelta kWaitDriftTolerance = base::Milliseconds(100);
const base::TimeTicks time_before_wait = tick_clock_->NowTicks();
// Sleep until next scheduled monitoring or until signaled.
const bool was_signaled = should_monitor_.TimedWait(monitoring_period_);
if (after_wait_callback_) {
after_wait_callback_.Run(time_before_wait);
}
const base::TimeTicks time_after_wait = tick_clock_->NowTicks();
const base::TimeDelta wait_time = time_after_wait - time_before_wait;
const bool wait_was_normal =
wait_time <= (monitoring_period_ + kWaitDriftTolerance);
if (!wait_was_normal) {
// If the time spent waiting was too high it might indicate the machine is
// very slow or that that it went to sleep. In any case we can't trust the
// WatchHangsInScopes that are currently live. Update the ignore
// threshold to make sure they don't trigger a hang on subsequent monitors
// then keep waiting.
base::AutoLock auto_lock(watch_state_lock_);
// Find the latest deadline among the live watch states. They might change
// atomically while iterating but that's fine because if they do that
// means the new WatchHangsInScope was constructed very soon after the
// abnormal sleep happened and might be affected by the root cause still.
// Ignoring it is cautious and harmless.
base::TimeTicks latest_deadline;
for (const auto& state : watch_states_) {
base::TimeTicks deadline = state->GetDeadline();
if (deadline > latest_deadline) {
latest_deadline = deadline;
}
}
deadline_ignore_threshold_ = latest_deadline;
}
// Stop waiting.
if (wait_was_normal || was_signaled) {
return;
}
}
}
void HangWatcher::Run() {
// Monitor() should only run on |thread_|. Bind |thread_checker_| here to make
// sure of that.
DCHECK_CALLED_ON_VALID_THREAD(hang_watcher_thread_checker_);
while (g_keep_monitoring.load(std::memory_order_relaxed)) {
Wait();
if (!IsWatchListEmpty() &&
g_keep_monitoring.load(std::memory_order_relaxed)) {
Monitor();
if (after_monitor_closure_for_testing_) {
after_monitor_closure_for_testing_.Run();
}
}
}
}
// static
HangWatcher* HangWatcher::GetInstance() {
return g_instance;
}
// static
void HangWatcher::RecordHang() {
base::debug::DumpWithoutCrashing();
NO_CODE_FOLDING();
}
ScopedClosureRunner HangWatcher::RegisterThreadInternal(
ThreadType thread_type) {
AutoLock auto_lock(watch_state_lock_);
CHECK(base::FeatureList::GetInstance());
// Do not install a WatchState if the results would never be observable.
if (!ThreadTypeLoggingLevelGreaterOrEqual(thread_type,
LoggingLevel::kUmaOnly)) {
return ScopedClosureRunner(base::DoNothing());
}
watch_states_.push_back(
internal::HangWatchState::CreateHangWatchStateForCurrentThread(
thread_type));
return ScopedClosureRunner(BindOnce(&HangWatcher::UnregisterThread,
Unretained(HangWatcher::GetInstance())));
}
// static
ScopedClosureRunner HangWatcher::RegisterThread(ThreadType thread_type) {
if (!GetInstance()) {
return ScopedClosureRunner();
}
return GetInstance()->RegisterThreadInternal(thread_type);
}
base::TimeTicks HangWatcher::WatchStateSnapShot::GetHighestDeadline() const {
DCHECK(IsActionable());
// Since entries are sorted in increasing order the last entry is the largest
// one.
return hung_watch_state_copies_.back().deadline;
}
HangWatcher::WatchStateSnapShot::WatchStateSnapShot() = default;
void HangWatcher::WatchStateSnapShot::Init(
const HangWatchStates& watch_states,
base::TimeTicks deadline_ignore_threshold,
base::TimeDelta monitoring_period) {
DCHECK(!initialized_);
// No matter if the snapshot is actionable or not after this function
// it will have been initialized.
initialized_ = true;
const base::TimeTicks now = base::TimeTicks::Now();
bool all_threads_marked = true;
bool found_deadline_before_ignore_threshold = false;
// Use an std::array to store the hang counts to avoid allocations. The
// numerical values of the HangWatcher::ThreadType enum is used to index into
// the array. A |kInvalidHangCount| is used to signify there were no threads
// of the type found.
constexpr size_t kHangCountArraySize =
static_cast<std::size_t>(base::HangWatcher::ThreadType::kMax) + 1;
std::array<int, kHangCountArraySize> hung_counts_per_thread_type;
constexpr int kInvalidHangCount = -1;
hung_counts_per_thread_type.fill(kInvalidHangCount);
// Will be true if any of the hung threads has a logging level high enough,
// as defined through finch params, to warrant dumping a crash.
bool any_hung_thread_has_dumping_enabled = false;
// Copy hung thread information.
for (const auto& watch_state : watch_states) {
uint64_t flags;
TimeTicks deadline;
std::tie(flags, deadline) = watch_state->GetFlagsAndDeadline();
if (deadline <= deadline_ignore_threshold) {
found_deadline_before_ignore_threshold = true;
}
if (internal::HangWatchDeadline::IsFlagSet(
internal::HangWatchDeadline::Flag::kIgnoreCurrentWatchHangsInScope,
flags)) {
continue;
}
// If a thread type is monitored and did not hang it still needs to be
// logged as a zero count;
const size_t hang_count_index =
static_cast<size_t>(watch_state.get()->thread_type());
if (hung_counts_per_thread_type[hang_count_index] == kInvalidHangCount) {
hung_counts_per_thread_type[hang_count_index] = 0;
}
// Only copy hung threads.
if (deadline <= now) {
++hung_counts_per_thread_type[hang_count_index];
if (ThreadTypeLoggingLevelGreaterOrEqual(watch_state.get()->thread_type(),
LoggingLevel::kUmaAndCrash)) {
any_hung_thread_has_dumping_enabled = true;
}
// Emit trace events for monitored threads.
if (ThreadTypeLoggingLevelGreaterOrEqual(watch_state.get()->thread_type(),
LoggingLevel::kUmaOnly)) {
const PlatformThreadId thread_id = watch_state.get()->GetThreadID();
const auto track = perfetto::Track::FromPointer(
this, perfetto::ThreadTrack::ForThread(thread_id.raw()));
TRACE_EVENT_BEGIN("latency", "HangWatcher::ThreadHung", track,
now - monitoring_period);
TRACE_EVENT_END("latency", track, now);
}
// Attempt to mark the thread as needing to stay within its current
// WatchHangsInScope until capture is complete.
bool thread_marked = watch_state->SetShouldBlockOnHang(flags, deadline);
// If marking some threads already failed the snapshot won't be kept so
// there is no need to keep adding to it. The loop doesn't abort though
// to keep marking the other threads. If these threads remain hung until
// the next capture then they'll already be marked and will be included
// in the capture at that time.
if (thread_marked && all_threads_marked) {
hung_watch_state_copies_.push_back(
WatchStateCopy{deadline, watch_state.get()->GetThreadID()});
} else {
all_threads_marked = false;
}
}
}
bool any_critical_thread_hung = false;
bool any_thread_hung = false;
// Log the hung thread counts to histograms for each thread type if any thread
// of the type were found.
for (size_t i = 0; i < kHangCountArraySize; ++i) {
const int hang_count = hung_counts_per_thread_type[i];
const HangWatcher::ThreadType thread_type =
static_cast<HangWatcher::ThreadType>(i);
if (hang_count != kInvalidHangCount) {
if (hang_count > 0) {
any_thread_hung = true;
}
if (ThreadTypeLoggingLevelGreaterOrEqual(thread_type,
LoggingLevel::kUmaOnly)) {
LogStatusHistogram(thread_type, hang_count, now, monitoring_period);
if (hang_count > 0 && thread_type != ThreadType::kThreadPoolThread) {
any_critical_thread_hung = true;
}
}
}
}
UMA_HISTOGRAM_BOOLEAN("HangWatcher.IsThreadHung.Any", any_thread_hung);
UMA_HISTOGRAM_BOOLEAN("HangWatcher.IsThreadHung.AnyCritical",
any_critical_thread_hung);
// Three cases can invalidate this snapshot and prevent the capture of the
// hang.
//
// 1. Some threads could not be marked for blocking so this snapshot isn't
// actionable since marked threads could be hung because of unmarked ones.
// If only the marked threads were captured the information would be
// incomplete.
//
// 2. Any of the threads have a deadline before |deadline_ignore_threshold|.
// If any thread is ignored it reduces the confidence in the whole state and
// it's better to avoid capturing misleading data.
//
// 3. The hung threads found were all of types that are not configured through
// Finch to trigger a crash dump.
//
if (!all_threads_marked || found_deadline_before_ignore_threshold ||
!any_hung_thread_has_dumping_enabled) {
hung_watch_state_copies_.clear();
return;
}
// Sort |hung_watch_state_copies_| by order of decreasing hang severity so the
// most severe hang is first in the list.
std::ranges::sort(hung_watch_state_copies_,
[](const WatchStateCopy& lhs, const WatchStateCopy& rhs) {
return lhs.deadline < rhs.deadline;
});
}
void HangWatcher::WatchStateSnapShot::Clear() {
hung_watch_state_copies_.clear();
initialized_ = false;
}
HangWatcher::WatchStateSnapShot::WatchStateSnapShot(
const WatchStateSnapShot& other) = default;
HangWatcher::WatchStateSnapShot::~WatchStateSnapShot() = default;
std::string HangWatcher::WatchStateSnapShot::PrepareHungThreadListCrashKey()
const {
DCHECK(IsActionable());
// Build a crash key string that contains the ids of the hung threads.
constexpr char kSeparator{'|'};
std::string list_of_hung_thread_ids;
// Add as many thread ids to the crash key as possible.
for (const WatchStateCopy& copy : hung_watch_state_copies_) {
std::string fragment =
base::NumberToString(copy.thread_id.raw()) + kSeparator;
if (list_of_hung_thread_ids.size() + fragment.size() <
static_cast<std::size_t>(debug::CrashKeySize::Size256)) {
list_of_hung_thread_ids += fragment;
} else {
// Respect the by priority ordering of thread ids in the crash key by
// stopping the construction as soon as one does not fit. This avoids
// including lesser priority ids while omitting more important ones.
break;
}
}
return list_of_hung_thread_ids;
}
bool HangWatcher::WatchStateSnapShot::IsActionable() const {
DCHECK(initialized_);
return !hung_watch_state_copies_.empty();
}
void HangWatcher::Monitor() {
DCHECK_CALLED_ON_VALID_THREAD(hang_watcher_thread_checker_);
AutoLock auto_lock(watch_state_lock_);
// If all threads unregistered since this function was invoked there's
// nothing to do anymore.
if (watch_states_.empty()) {
return;
}
watch_state_snapshot_.Init(watch_states_, deadline_ignore_threshold_,
monitoring_period_);
if (watch_state_snapshot_.IsActionable()) {
DoDumpWithoutCrashing(watch_state_snapshot_);
}
watch_state_snapshot_.Clear();
}
void HangWatcher::DoDumpWithoutCrashing(
const WatchStateSnapShot& watch_state_snapshot) {
TRACE_EVENT("latency", "HangWatcher::DoDumpWithoutCrashing");
capture_in_progress_.store(true, std::memory_order_relaxed);
base::AutoLock scope_lock(capture_lock_);
#if !BUILDFLAG(IS_NACL)
const std::string list_of_hung_thread_ids =
watch_state_snapshot.PrepareHungThreadListCrashKey();
static debug::CrashKeyString* crash_key = AllocateCrashKeyString(
"list-of-hung-threads", debug::CrashKeySize::Size256);
const debug::ScopedCrashKeyString list_of_hung_threads_crash_key_string(
crash_key, list_of_hung_thread_ids);
const debug::ScopedCrashKeyString
time_since_last_critical_memory_pressure_crash_key_string =
GetTimeSinceLastCriticalMemoryPressureCrashKey();
SCOPED_CRASH_KEY_STRING32("HangWatcher", "seconds-since-last-resume",
GetTimeSinceLastSystemPowerResumeCrashKeyValue());
SCOPED_CRASH_KEY_BOOL("HangWatcher", "shutting-down",
g_shutting_down.load(std::memory_order_relaxed));
#endif
// To avoid capturing more than one hang that blames a subset of the same
// threads it's necessary to keep track of what is the furthest deadline
// that contributed to declaring a hang. Only once
// all threads have deadlines past this point can we be sure that a newly
// discovered hang is not directly related.
// Example:
// **********************************************************************
// Timeline A : L------1-------2----------3-------4----------N-----------
// Timeline B : -------2----------3-------4----------L----5------N-------
// Timeline C : L----------------------------5------6----7---8------9---N
// **********************************************************************
// In the example when a Monitor() happens during timeline A
// |deadline_ignore_threshold_| (L) is at time zero and deadlines (1-4)
// are before Now() (N) . A hang is captured and L is updated. During
// the next Monitor() (timeline B) a new deadline is over but we can't
// capture a hang because deadlines 2-4 are still live and already counted
// toward a hang. During a third monitor (timeline C) all live deadlines
// are now after L and a second hang can be recorded.
base::TimeTicks latest_expired_deadline =
watch_state_snapshot.GetHighestDeadline();
if (on_hang_closure_for_testing_) {
on_hang_closure_for_testing_.Run();
} else {
RecordHang();
}
// Update after running the actual capture.
deadline_ignore_threshold_ = latest_expired_deadline;
capture_in_progress_.store(false, std::memory_order_relaxed);
}
void HangWatcher::SetAfterMonitorClosureForTesting(
base::RepeatingClosure closure) {
DCHECK_CALLED_ON_VALID_THREAD(constructing_thread_checker_);
after_monitor_closure_for_testing_ = std::move(closure);
}
void HangWatcher::SetOnHangClosureForTesting(base::RepeatingClosure closure) {
DCHECK_CALLED_ON_VALID_THREAD(constructing_thread_checker_);
on_hang_closure_for_testing_ = std::move(closure);
}
void HangWatcher::SetMonitoringPeriodForTesting(base::TimeDelta period) {
DCHECK_CALLED_ON_VALID_THREAD(constructing_thread_checker_);
monitoring_period_ = period;
}
void HangWatcher::SetAfterWaitCallbackForTesting(
RepeatingCallback<void(TimeTicks)> callback) {
DCHECK_CALLED_ON_VALID_THREAD(constructing_thread_checker_);
after_wait_callback_ = callback;
}
void HangWatcher::SignalMonitorEventForTesting() {
DCHECK_CALLED_ON_VALID_THREAD(constructing_thread_checker_);
should_monitor_.Signal();
}
// static
void HangWatcher::StopMonitoringForTesting() {
g_keep_monitoring.store(false, std::memory_order_relaxed);
}
void HangWatcher::SetTickClockForTesting(const base::TickClock* tick_clock) {
tick_clock_ = tick_clock;
}
std::string HangWatcher::GetHungThreadListCrashKeyForTesting() const {
WatchStateSnapShot snapshot;
snapshot.Init(watch_states_, deadline_ignore_threshold_, TimeDelta());
return snapshot.PrepareHungThreadListCrashKey();
}
void HangWatcher::BlockIfCaptureInProgress() {
// Makes a best-effort attempt to block execution if a hang is currently being
// captured. Only block on |capture_lock| if |capture_in_progress_| hints that
// it's already held to avoid serializing all threads on this function when no
// hang capture is in-progress.
if (capture_in_progress_.load(std::memory_order_relaxed)) {
base::AutoLock hang_lock(capture_lock_);
}
}
void HangWatcher::UnregisterThread() {
AutoLock auto_lock(watch_state_lock_);
auto it = std::ranges::find(
watch_states_,
internal::HangWatchState::GetHangWatchStateForCurrentThread(),
&std::unique_ptr<internal::HangWatchState>::get);
// Thread should be registered to get unregistered.
CHECK(it != watch_states_.end());
watch_states_.erase(it);
}
namespace internal {
namespace {
constexpr uint64_t kOnlyDeadlineMask = 0x00FF'FFFF'FFFF'FFFFu;
constexpr uint64_t kOnlyFlagsMask = ~kOnlyDeadlineMask;
constexpr uint64_t kMaximumFlag = 0x8000'0000'0000'0000u;
// Use as a mask to keep persistent flags and the deadline.
constexpr uint64_t kPersistentFlagsAndDeadlineMask =
kOnlyDeadlineMask |
static_cast<uint64_t>(
HangWatchDeadline::Flag::kIgnoreCurrentWatchHangsInScope);
} // namespace
// Flag binary representation assertions.
static_assert(
static_cast<uint64_t>(HangWatchDeadline::Flag::kMinValue) >
kOnlyDeadlineMask,
"Invalid numerical value for flag. Would interfere with bits of data.");
static_assert(static_cast<uint64_t>(HangWatchDeadline::Flag::kMaxValue) <=
kMaximumFlag,
"A flag can only set a single bit.");
HangWatchDeadline::HangWatchDeadline() = default;
HangWatchDeadline::~HangWatchDeadline() = default;
std::pair<uint64_t, TimeTicks> HangWatchDeadline::GetFlagsAndDeadline() const {
uint64_t bits = bits_.load(std::memory_order_relaxed);
return std::make_pair(ExtractFlags(bits),
DeadlineFromBits(ExtractDeadline((bits))));
}
TimeTicks HangWatchDeadline::GetDeadline() const {
return DeadlineFromBits(
ExtractDeadline(bits_.load(std::memory_order_relaxed)));
}
// static
TimeTicks HangWatchDeadline::Max() {
// |kOnlyDeadlineMask| has all the bits reserved for the TimeTicks value
// set. This means it also represents the highest representable value.
return DeadlineFromBits(kOnlyDeadlineMask);
}
// static
bool HangWatchDeadline::IsFlagSet(Flag flag, uint64_t flags) {
return static_cast<uint64_t>(flag) & flags;
}
void HangWatchDeadline::SetDeadline(TimeTicks new_deadline) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK(new_deadline <= Max()) << "Value too high to be represented.";
DCHECK(new_deadline >= TimeTicks{}) << "Value cannot be negative.";
if (switch_bits_callback_for_testing_) {
const uint64_t switched_in_bits = SwitchBitsForTesting();
// If a concurrent deadline change is tested it cannot have a deadline or
// persistent flag change since those always happen on the same thread.
DCHECK((switched_in_bits & kPersistentFlagsAndDeadlineMask) == 0u);
}
// Discard all non-persistent flags and apply deadline change.
const uint64_t old_bits = bits_.load(std::memory_order_relaxed);
const uint64_t new_flags =
ExtractFlags(old_bits & kPersistentFlagsAndDeadlineMask);
bits_.store(new_flags | ExtractDeadline(static_cast<uint64_t>(
new_deadline.ToInternalValue())),
std::memory_order_relaxed);
}
// TODO(crbug.com/40132796): Add flag DCHECKs here.
bool HangWatchDeadline::SetShouldBlockOnHang(uint64_t old_flags,
TimeTicks old_deadline) {
DCHECK(old_deadline <= Max()) << "Value too high to be represented.";
DCHECK(old_deadline >= TimeTicks{}) << "Value cannot be negative.";
// Set the kShouldBlockOnHang flag only if |bits_| did not change since it was
// read. kShouldBlockOnHang is the only non-persistent flag and should never
// be set twice. Persistent flags and deadline changes are done from the same
// thread so there is no risk of losing concurrently added information.
uint64_t old_bits =
old_flags | static_cast<uint64_t>(old_deadline.ToInternalValue());
const uint64_t desired_bits =
old_bits | static_cast<uint64_t>(Flag::kShouldBlockOnHang);
// If a test needs to simulate |bits_| changing since calling this function
// this happens now.
if (switch_bits_callback_for_testing_) {
const uint64_t switched_in_bits = SwitchBitsForTesting();
// Injecting the flag being tested is invalid.
DCHECK(!IsFlagSet(Flag::kShouldBlockOnHang, switched_in_bits));
}
return bits_.compare_exchange_weak(old_bits, desired_bits,
std::memory_order_relaxed,
std::memory_order_relaxed);
}
void HangWatchDeadline::SetIgnoreCurrentWatchHangsInScope() {
SetPersistentFlag(Flag::kIgnoreCurrentWatchHangsInScope);
}
void HangWatchDeadline::UnsetIgnoreCurrentWatchHangsInScope() {
ClearPersistentFlag(Flag::kIgnoreCurrentWatchHangsInScope);
}
void HangWatchDeadline::SetPersistentFlag(Flag flag) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (switch_bits_callback_for_testing_) {
SwitchBitsForTesting();
}
bits_.fetch_or(static_cast<uint64_t>(flag), std::memory_order_relaxed);
}
void HangWatchDeadline::ClearPersistentFlag(Flag flag) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
if (switch_bits_callback_for_testing_) {
SwitchBitsForTesting();
}
bits_.fetch_and(~(static_cast<uint64_t>(flag)), std::memory_order_relaxed);
}
// static
uint64_t HangWatchDeadline::ExtractFlags(uint64_t bits) {
return bits & kOnlyFlagsMask;
}
// static
uint64_t HangWatchDeadline::ExtractDeadline(uint64_t bits) {
return bits & kOnlyDeadlineMask;
}
// static
TimeTicks HangWatchDeadline::DeadlineFromBits(uint64_t bits) {
// |kOnlyDeadlineMask| has all the deadline bits set to 1 so is the largest
// representable value.
DCHECK(bits <= kOnlyDeadlineMask)
<< "Flags bits are set. Remove them before returning deadline.";
static_assert(kOnlyDeadlineMask <= std::numeric_limits<int64_t>::max());
return TimeTicks::FromInternalValue(static_cast<int64_t>(bits));
}
bool HangWatchDeadline::IsFlagSet(Flag flag) const {
return bits_.load(std::memory_order_relaxed) & static_cast<uint64_t>(flag);
}
void HangWatchDeadline::SetSwitchBitsClosureForTesting(
RepeatingCallback<uint64_t(void)> closure) {
switch_bits_callback_for_testing_ = closure;
}
void HangWatchDeadline::ResetSwitchBitsClosureForTesting() {
DCHECK(switch_bits_callback_for_testing_);
switch_bits_callback_for_testing_.Reset();
}
uint64_t HangWatchDeadline::SwitchBitsForTesting() {
DCHECK(switch_bits_callback_for_testing_);
const uint64_t old_bits = bits_.load(std::memory_order_relaxed);
const uint64_t new_bits = switch_bits_callback_for_testing_.Run();
const uint64_t old_flags = ExtractFlags(old_bits);
const uint64_t switched_in_bits = old_flags | new_bits;
bits_.store(switched_in_bits, std::memory_order_relaxed);
return switched_in_bits;
}
HangWatchState::HangWatchState(HangWatcher::ThreadType thread_type)
: resetter_(&hang_watch_state, this, nullptr), thread_type_(thread_type) {
thread_id_ = PlatformThread::CurrentId();
}
HangWatchState::~HangWatchState() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
DCHECK_EQ(GetHangWatchStateForCurrentThread(), this);
#if DCHECK_IS_ON()
// Destroying the HangWatchState should not be done if there are live
// WatchHangsInScopes.
DCHECK(!current_watch_hangs_in_scope_);
#endif
}
// static
std::unique_ptr<HangWatchState>
HangWatchState::CreateHangWatchStateForCurrentThread(
HangWatcher::ThreadType thread_type) {
// Allocate a watch state object for this thread.
std::unique_ptr<HangWatchState> hang_state =
std::make_unique<HangWatchState>(thread_type);
// Setting the thread local worked.
DCHECK_EQ(GetHangWatchStateForCurrentThread(), hang_state.get());
// Transfer ownership to caller.
return hang_state;
}
TimeTicks HangWatchState::GetDeadline() const {
return deadline_.GetDeadline();
}
std::pair<uint64_t, TimeTicks> HangWatchState::GetFlagsAndDeadline() const {
return deadline_.GetFlagsAndDeadline();
}
void HangWatchState::SetDeadline(TimeTicks deadline) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
deadline_.SetDeadline(deadline);
}
bool HangWatchState::IsOverDeadline() const {
return TimeTicks::Now() > deadline_.GetDeadline();
}
void HangWatchState::SetIgnoreCurrentWatchHangsInScope() {
deadline_.SetIgnoreCurrentWatchHangsInScope();
}
void HangWatchState::UnsetIgnoreCurrentWatchHangsInScope() {
deadline_.UnsetIgnoreCurrentWatchHangsInScope();
}
bool HangWatchState::SetShouldBlockOnHang(uint64_t old_flags,
TimeTicks old_deadline) {
return deadline_.SetShouldBlockOnHang(old_flags, old_deadline);
}
bool HangWatchState::IsFlagSet(HangWatchDeadline::Flag flag) {
return deadline_.IsFlagSet(flag);
}
#if DCHECK_IS_ON()
void HangWatchState::SetCurrentWatchHangsInScope(
WatchHangsInScope* current_hang_watch_scope_enable) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
current_watch_hangs_in_scope_ = current_hang_watch_scope_enable;
}
WatchHangsInScope* HangWatchState::GetCurrentWatchHangsInScope() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
return current_watch_hangs_in_scope_;
}
#endif
HangWatchDeadline* HangWatchState::GetHangWatchDeadlineForTesting() {
return &deadline_;
}
void HangWatchState::IncrementNestingLevel() {
++nesting_level_;
}
void HangWatchState::DecrementNestingLevel() {
--nesting_level_;
}
// static
HangWatchState* HangWatchState::GetHangWatchStateForCurrentThread() {
// Workaround false-positive MSAN use-of-uninitialized-value on
// thread_local storage for loaded libraries:
// https://github.com/google/sanitizers/issues/1265
MSAN_UNPOISON(&hang_watch_state, sizeof(internal::HangWatchState*));
return hang_watch_state;
}
PlatformThreadId HangWatchState::GetThreadID() const {
return thread_id_;
}
} // namespace internal
} // namespace base
|