1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_THREADING_SEQUENCE_BOUND_H_
#define BASE_THREADING_SEQUENCE_BOUND_H_
#include <concepts>
#include <new>
#include <tuple>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/location.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/scoped_refptr.h"
#include "base/run_loop.h"
#include "base/sequence_checker.h"
#include "base/task/sequenced_task_runner.h"
#include "base/threading/sequence_bound_internal.h"
namespace base {
// Performing blocking work on a different task runner is a common pattern for
// improving responsiveness of foreground task runners. `SequenceBound<T>`
// provides an abstraction for an owner object living on the owner sequence, to
// construct, call methods on, and destroy an object of type T that lives on a
// different sequence (the bound sequence).
//
// This makes it natural for code running on different sequences to be
// partitioned along class boundaries, e.g.:
//
// class Tab {
// private:
// void OnScroll() {
// // ...
// io_helper_.AsyncCall(&IOHelper::SaveScrollPosition);
// }
// base::SequenceBound<IOHelper> io_helper_{GetBackgroundTaskRunner()};
// };
//
// Note: `SequenceBound<T>` intentionally does not expose a raw pointer to the
// managed `T` to ensure its internal sequence-safety invariants are not
// violated. As a result, `AsyncCall()` cannot simply use `base::OnceCallback`
//
// SequenceBound also supports replies:
//
// class Database {
// public:
// int Query(int value) {
// return value * value;
// }
// };
//
// // SequenceBound itself is owned on
// // `SequencedTaskRunner::GetCurrentDefault()`. The managed Database
// // instance managed by it is constructed and owned on `GetDBTaskRunner()`.
// base::SequenceBound<Database> db(GetDBTaskRunner());
//
// // `Database::Query()` runs on `GetDBTaskRunner()`, but
// // `reply_callback` will run on the owner task runner.
// auto reply_callback = [] (int result) {
// LOG(ERROR) << result; // Prints 25.
// };
// db.AsyncCall(&Database::Query).WithArgs(5)
// .Then(base::BindOnce(reply_callback));
//
// // When `db` goes out of scope, the Database instance will also be
// // destroyed via a task posted to `GetDBTaskRunner()`.
//
// Sequence safety:
//
// Const-qualified methods may be used concurrently from multiple sequences,
// e.g. `AsyncCall()` or `is_null()`. Calls that are forwarded to the
// managed `T` will be posted to the bound sequence and executed serially
// there.
//
// Mutable methods (e.g. `Reset()`, destruction, or move assignment) require
// external synchronization if used concurrently with any other methods,
// including const-qualified methods.
//
// Advanced usage:
//
// Using `SequenceBound<std::unique_ptr<T>>` allows transferring ownership of an
// already-constructed `T` to `SequenceBound`. This can be helpful for more
// complex situations, where `T` needs to be constructed on a specific sequence
// that is different from where `T` will ultimately live.
//
// Construction (via the constructor or emplace) takes a `std::unique_ptr<T>`
// instead of forwarding the arguments to `T`'s constructor:
//
// std::unique_ptr<Database> db_impl = MakeDatabaseOnMainThread();
// base::SequenceBound<std::unique_ptr<Database>> db(GetDbTaskRunner(),
// std::move(db_impl));
//
// All other usage (e.g. `AsyncCall()`, `Reset()`) functions identically to a
// regular `SequenceBound<T>`:
//
// // No need to dereference the `std::unique_ptr` explicitly:
// db.AsyncCall(&Database::Query).WithArgs(5).Then(base::BindOnce(...));
template <typename T,
typename CrossThreadTraits =
sequence_bound_internal::CrossThreadTraits>
class SequenceBound {
private:
using Storage = sequence_bound_internal::Storage<T, CrossThreadTraits>;
using UnwrappedT = typename Storage::element_type;
public:
template <typename Signature>
using CrossThreadTask =
typename CrossThreadTraits::template CrossThreadTask<Signature>;
// Note: on construction, SequenceBound binds to the current sequence. Any
// subsequent SequenceBound calls (including destruction) must run on that
// same sequence.
// Constructs a null SequenceBound with no managed `T`.
SequenceBound() = default;
// Constructs a SequenceBound that manages a new instance of `T` on
// `task_runner`. `T` will be constructed on `task_runner`.
//
// Once this constructor returns, it is safe to immediately use `AsyncCall()`,
// et cetera; these calls will be sequenced after the construction of the
// managed `T`.
template <typename... Args>
explicit SequenceBound(scoped_refptr<SequencedTaskRunner> task_runner,
Args&&... args)
: impl_task_runner_(std::move(task_runner)) {
storage_.Construct(*impl_task_runner_, std::forward<Args>(args)...);
}
// If non-null, the managed `T` will be destroyed on `impl_task_runner_`.`
~SequenceBound() { Reset(); }
// Disallow copy or assignment. SequenceBound has single ownership of the
// managed `T`.
SequenceBound(const SequenceBound&) = delete;
SequenceBound& operator=(const SequenceBound&) = delete;
// Move construction and assignment.
SequenceBound(SequenceBound&& other) { MoveRecordFrom(other); }
SequenceBound& operator=(SequenceBound&& other) {
Reset();
MoveRecordFrom(other);
return *this;
}
// Move conversion helpers: allows upcasting from SequenceBound<Derived> to
// SequenceBound<Base>.
template <typename U>
// NOLINTNEXTLINE(google-explicit-constructor): Intentionally implicit.
SequenceBound(SequenceBound<U, CrossThreadTraits>&& other) {
// TODO(crbug.com/40245687): static_assert that U* is convertible to
// T*.
MoveRecordFrom(other);
}
template <typename U>
SequenceBound& operator=(SequenceBound<U, CrossThreadTraits>&& other) {
// TODO(crbug.com/40245687): static_assert that U* is convertible to
// T*.
Reset();
MoveRecordFrom(other);
return *this;
}
// Constructs a new managed instance of `T` on `task_runner`. If `this` is
// already managing another instance of `T`, that pre-existing instance will
// first be destroyed by calling `Reset()`.
//
// Once `emplace()` returns, it is safe to immediately use `AsyncCall()`,
// et cetera; these calls will be sequenced after the construction of the
// managed `T`.
template <typename... Args>
SequenceBound& emplace(scoped_refptr<SequencedTaskRunner> task_runner,
Args&&... args) {
Reset();
impl_task_runner_ = std::move(task_runner);
storage_.Construct(*impl_task_runner_, std::forward<Args>(args)...);
return *this;
}
// Invokes `method` of the managed `T` on `impl_task_runner_`. May only be
// used when `is_null()` is false.
//
// Basic usage:
//
// helper.AsyncCall(&IOHelper::DoWork);
//
// If `method` accepts arguments, use `WithArgs()` to bind them:
//
// helper.AsyncCall(&IOHelper::DoWorkWithArgs)
// .WithArgs(args);
//
// Use `Then()` to run a callback on the owner sequence after `method`
// completes:
//
// helper.AsyncCall(&IOHelper::GetValue)
// .Then(std::move(process_result_callback));
//
// If a method returns a non-void type, use of `Then()` is required, and the
// method's return value will be passed to the `Then()` callback. To ignore
// the method's return value instead, wrap `method` in `base::IgnoreResult()`:
//
// // Calling `GetPrefs` to force-initialize prefs.
// helper.AsyncCall(base::IgnoreResult(&IOHelper::GetPrefs));
//
// `WithArgs()` and `Then()` may also be combined:
//
// // Ordering is important: `Then()` must come last.
// helper.AsyncCall(&IOHelper::GetValueWithArgs)
// .WithArgs(args)
// .Then(std::move(process_result_callback));
//
// Note: internally, `AsyncCall()` is implemented using a series of helper
// classes that build the callback chain and post it on destruction. Capturing
// the return value and passing it elsewhere or triggering lifetime extension
// (e.g. by binding the return value to a reference) are both unsupported.
template <typename R, typename C, typename... Args>
requires(std::derived_from<UnwrappedT, C>)
auto AsyncCall(R (C::*method)(Args...),
const Location& location = Location::Current()) const {
return AsyncCallBuilder<R (C::*)(Args...), R, std::tuple<Args...>>(
this, &location, method);
}
template <typename R, typename C, typename... Args>
requires(std::derived_from<UnwrappedT, C>)
auto AsyncCall(R (C::*method)(Args...) const,
const Location& location = Location::Current()) const {
return AsyncCallBuilder<R (C::*)(Args...) const, R, std::tuple<Args...>>(
this, &location, method);
}
template <typename R, typename C, typename... Args>
requires(std::derived_from<UnwrappedT, C>)
auto AsyncCall(internal::IgnoreResultHelper<R (C::*)(Args...) const> method,
const Location& location = Location::Current()) const {
return AsyncCallBuilder<
internal::IgnoreResultHelper<R (C::*)(Args...) const>, void,
std::tuple<Args...>>(this, &location, method);
}
template <typename R, typename C, typename... Args>
requires(std::derived_from<UnwrappedT, C>)
auto AsyncCall(internal::IgnoreResultHelper<R (C::*)(Args...)> method,
const Location& location = Location::Current()) const {
return AsyncCallBuilder<internal::IgnoreResultHelper<R (C::*)(Args...)>,
void, std::tuple<Args...>>(this, &location, method);
}
// Posts `task` to `impl_task_runner_`, passing it a reference to the wrapped
// object. This allows arbitrary logic to be safely executed on the object's
// task runner. The object is guaranteed to remain alive for the duration of
// the task.
// TODO(crbug.com/40170667): Consider checking whether the task runner can run
// tasks in current sequence, and using "plain" binds and task posting (here
// and other places that `CrossThreadTraits::PostTask`).
using ConstPostTaskCallback = CrossThreadTask<void(const UnwrappedT&)>;
void PostTaskWithThisObject(
ConstPostTaskCallback callback,
const Location& location = Location::Current()) const {
DCHECK(!is_null());
// Even though the lifetime of the object managed by `storage_` may not
// have begun yet, the storage has been allocated. Per [basic.life/6] and
// [basic.life/7], "Indirection through such a pointer is permitted but the
// resulting lvalue may only be used in limited ways, as described below."
CrossThreadTraits::PostTask(
*impl_task_runner_, location,
CrossThreadTraits::BindOnce(std::move(callback),
storage_.GetRefForBind()));
}
// Same as above, but for non-const operations. The callback takes a pointer
// to the wrapped object rather than a const ref.
using PostTaskCallback = CrossThreadTask<void(UnwrappedT*)>;
void PostTaskWithThisObject(
PostTaskCallback callback,
const Location& location = Location::Current()) const {
DCHECK(!is_null());
CrossThreadTraits::PostTask(
*impl_task_runner_, location,
CrossThreadTraits::BindOnce(std::move(callback),
storage_.GetPtrForBind()));
}
void FlushPostedTasksForTesting() const {
DCHECK(!is_null());
RunLoop run_loop;
CrossThreadTraits::PostTask(*impl_task_runner_, FROM_HERE,
run_loop.QuitClosure());
run_loop.Run();
}
// TODO(liberato): Add PostOrCall(), to support cases where synchronous calls
// are okay if it's the same task runner.
// Resets `this` to null. If `this` is not currently null, posts destruction
// of the managed `T` to `impl_task_runner_`.
void Reset() {
if (is_null()) {
return;
}
storage_.Destruct(*impl_task_runner_);
impl_task_runner_ = nullptr;
}
// Resets `this` to null. If `this` is not currently null, posts destruction
// of the managed `T` to `impl_task_runner_`. Blocks until the destructor has
// run.
void SynchronouslyResetForTest() {
if (is_null()) {
return;
}
scoped_refptr<SequencedTaskRunner> task_runner = impl_task_runner_;
Reset();
// `Reset()` posts a task to destroy the managed `T`; synchronously wait for
// that posted task to complete.
RunLoop run_loop;
CrossThreadTraits::PostTask(*task_runner, FROM_HERE,
run_loop.QuitClosure());
run_loop.Run();
}
// Return true if `this` is logically null; otherwise, returns false.
//
// A SequenceBound is logically null if there is no managed `T`; it is only
// valid to call `AsyncCall()` on a non-null SequenceBound.
//
// Note that the concept of 'logically null' here does not exactly match the
// lifetime of `T`, which lives on `impl_task_runner_`. In particular, when
// SequenceBound is first constructed, `is_null()` may return false, even
// though the lifetime of `T` may not have begun yet on `impl_task_runner_`.
// Similarly, after `SequenceBound::Reset()`, `is_null()` may return true,
// even though the lifetime of `T` may not have ended yet on
// `impl_task_runner_`.
bool is_null() const { return storage_.is_null(); }
// True if `this` is not logically null. See `is_null()`.
explicit operator bool() const { return !is_null(); }
private:
// For move conversion.
template <typename U, typename V>
friend class SequenceBound;
template <template <typename> class CallbackType>
static constexpr bool IsCrossThreadTask =
CrossThreadTraits::template IsCrossThreadTask<CallbackType>;
// Support helpers for `AsyncCall()` implementation.
//
// Several implementation notes:
// 1. Tasks are posted via destroying the builder or an explicit call to
// `Then()`.
//
// 2. A builder may be consumed by:
//
// - calling `Then()`, which immediately posts the task chain
// - calling `WithArgs()`, which returns a new builder with the captured
// arguments
//
// Builders that are consumed have the internal `sequence_bound_` field
// nulled out; the hope is the compiler can see this and use it to
// eliminate dead branches (e.g. correctness checks that aren't needed
// since the code can be statically proved correct).
//
// 3. Builder methods are rvalue-qualified to try to enforce that the builder
// is only used as a temporary. Note that this only helps so much; nothing
// prevents a determined caller from using `std::move()` to force calls to
// a non-temporary instance.
//
// TODO(dcheng): It might also be possible to use Gmock-style matcher
// composition, e.g. something like:
//
// sb.AsyncCall(&Helper::DoWork, WithArgs(args),
// Then(std::move(process_result));
//
// In theory, this might allow the elimination of magic destructors and
// better static checking by the compiler.
template <typename MethodRef>
class AsyncCallBuilderBase {
protected:
AsyncCallBuilderBase(const SequenceBound* sequence_bound,
const Location* location,
MethodRef method)
: sequence_bound_(sequence_bound),
location_(location),
method_(method) {
// Common entry point for `AsyncCall()`, so check preconditions here.
DCHECK(sequence_bound_);
DCHECK(!sequence_bound_->storage_.is_null());
}
AsyncCallBuilderBase(AsyncCallBuilderBase&&) = default;
AsyncCallBuilderBase& operator=(AsyncCallBuilderBase&&) = default;
// `sequence_bound_` is consumed and set to `nullptr` when `Then()` is
// invoked. This is used as a flag for two potential states
//
// - if a method returns void, invoking `Then()` is optional. The destructor
// will check if `sequence_bound_` is null; if it is, `Then()` was
// already invoked and the task chain has already been posted, so the
// destructor does not need to do anything. Otherwise, the destructor
// needs to post the task to make the async call. In theory, the compiler
// should be able to eliminate this branch based on the presence or
// absence of a call to `Then()`.
//
// - if a method returns a non-void type, `Then()` *must* be invoked. The
// destructor will `CHECK()` if `sequence_bound_` is non-null, since that
// indicates `Then()` was not invoked. Similarly, note this branch should
// be eliminated by the optimizer if the code is free of bugs. :)
raw_ptr<const SequenceBound<T, CrossThreadTraits>> sequence_bound_;
// Subtle: this typically points at a Location *temporary*. This is used to
// try to detect errors resulting from lifetime extension of the async call
// factory temporaries, since the factory destructors can perform work. If
// the lifetime of the factory is incorrectly extended, dereferencing
// `location_` will trigger a stack-use-after-scope when running with ASan.
const raw_ptr<const Location> location_;
MethodRef method_;
};
template <typename MethodRef, typename ReturnType, typename ArgsTuple>
class AsyncCallBuilderImpl;
// Selected method has no arguments and returns void.
template <typename MethodRef>
class AsyncCallBuilderImpl<MethodRef, void, std::tuple<>>
: public AsyncCallBuilderBase<MethodRef> {
public:
// Note: despite being here, this is actually still protected, since it is
// protected on the base class.
using AsyncCallBuilderBase<MethodRef>::AsyncCallBuilderBase;
~AsyncCallBuilderImpl() {
if (this->sequence_bound_) {
CrossThreadTraits::PostTask(
*this->sequence_bound_->impl_task_runner_, *this->location_,
CrossThreadTraits::BindOnce(
this->method_,
this->sequence_bound_->storage_.GetPtrForBind()));
}
}
void Then(CrossThreadTask<void()> then_callback) && {
this->sequence_bound_->PostTaskAndThenHelper(
*this->location_,
CrossThreadTraits::BindOnce(
this->method_, this->sequence_bound_->storage_.GetPtrForBind()),
std::move(then_callback));
this->sequence_bound_ = nullptr;
}
private:
friend SequenceBound;
AsyncCallBuilderImpl(AsyncCallBuilderImpl&&) = default;
AsyncCallBuilderImpl& operator=(AsyncCallBuilderImpl&&) = default;
};
// Selected method has no arguments and returns non-void.
template <typename MethodRef, typename ReturnType>
class AsyncCallBuilderImpl<MethodRef, ReturnType, std::tuple<>>
: public AsyncCallBuilderBase<MethodRef> {
public:
// Note: despite being here, this is actually still protected, since it is
// protected on the base class.
using AsyncCallBuilderBase<MethodRef>::AsyncCallBuilderBase;
~AsyncCallBuilderImpl() {
// Must use Then() since the method's return type is not void.
// Should be optimized out if the code is bug-free.
CHECK(!this->sequence_bound_)
<< "Then() not invoked for a method that returns a non-void type; "
<< "make sure to invoke Then() or use base::IgnoreResult()";
}
template <template <typename> class CallbackType, typename ThenArg>
requires(IsCrossThreadTask<CallbackType>)
void Then(CallbackType<void(ThenArg)> then_callback) && {
this->sequence_bound_->PostTaskAndThenHelper(
*this->location_,
CrossThreadTraits::BindOnce(
this->method_, this->sequence_bound_->storage_.GetPtrForBind()),
std::move(then_callback));
this->sequence_bound_ = nullptr;
}
private:
friend SequenceBound;
AsyncCallBuilderImpl(AsyncCallBuilderImpl&&) = default;
AsyncCallBuilderImpl& operator=(AsyncCallBuilderImpl&&) = default;
};
// Selected method has arguments. Return type can be void or non-void.
template <typename MethodRef, typename ReturnType, typename... Args>
class AsyncCallBuilderImpl<MethodRef, ReturnType, std::tuple<Args...>>
: public AsyncCallBuilderBase<MethodRef> {
public:
// Note: despite being here, this is actually still protected, since it is
// protected on the base class.
using AsyncCallBuilderBase<MethodRef>::AsyncCallBuilderBase;
~AsyncCallBuilderImpl() {
// Must use WithArgs() since the method takes arguments.
// Should be optimized out if the code is bug-free.
CHECK(!this->sequence_bound_);
}
template <typename... BoundArgs>
auto WithArgs(BoundArgs&&... bound_args) {
const SequenceBound* const sequence_bound =
std::exchange(this->sequence_bound_, nullptr);
return AsyncCallWithBoundArgsBuilder<ReturnType>(
sequence_bound, this->location_,
CrossThreadTraits::BindOnce(this->method_,
sequence_bound->storage_.GetPtrForBind(),
std::forward<BoundArgs>(bound_args)...));
}
private:
friend SequenceBound;
AsyncCallBuilderImpl(AsyncCallBuilderImpl&&) = default;
AsyncCallBuilderImpl& operator=(AsyncCallBuilderImpl&&) = default;
};
// `MethodRef` is either a member function pointer type or a member function
// pointer type wrapped with `internal::IgnoreResultHelper`.
// `R` is the return type of `MethodRef`. This is always `void` if
// `MethodRef` is an `internal::IgnoreResultHelper` wrapper.
// `ArgsTuple` is a `std::tuple` with template type arguments corresponding to
// the types of the method's parameters.
template <typename MethodRef, typename R, typename ArgsTuple>
using AsyncCallBuilder = AsyncCallBuilderImpl<MethodRef, R, ArgsTuple>;
// Support factories when arguments are bound using `WithArgs()`. These
// factories don't need to handle raw method pointers, since everything has
// already been packaged into a base::OnceCallback.
template <typename ReturnType>
class AsyncCallWithBoundArgsBuilder {
public:
// Subtle: the internal helpers rely on move elision. Preventing move
// elision (e.g. using `std::move()` when returning the temporary) will
// trigger a `CHECK()` since `sequence_bound_` is not reset to nullptr on
// move.
AsyncCallWithBoundArgsBuilder(AsyncCallWithBoundArgsBuilder&&) noexcept =
default;
AsyncCallWithBoundArgsBuilder& operator=(
AsyncCallWithBoundArgsBuilder&&) noexcept = default;
~AsyncCallWithBoundArgsBuilder() {
if constexpr (std::is_void_v<ReturnType>) {
if (sequence_bound_) {
CrossThreadTraits::PostTask(*sequence_bound_->impl_task_runner_,
*location_, std::move(callback_));
}
} else {
// Must use Then() since the method's return type is not void to avoid
// silently dropping the return value. Hopefully optimized out if the
// code is bug-free.
CHECK(!sequence_bound_)
<< "Then() not invoked for a method that returns a non-void type; "
<< "make sure to invoke Then() or use base::IgnoreResult()";
}
}
template <template <typename> class CallbackType>
requires(std::is_void_v<ReturnType> && IsCrossThreadTask<CallbackType>)
void Then(CallbackType<void()> then_callback) && {
std::exchange(sequence_bound_, nullptr)
->PostTaskAndThenHelper(*location_, std::move(callback_),
std::move(then_callback));
}
template <template <typename> class CallbackType, typename ThenArg>
requires(!std::is_void_v<ReturnType> && IsCrossThreadTask<CallbackType>)
void Then(CallbackType<void(ThenArg)> then_callback) && {
std::exchange(sequence_bound_, nullptr)
->PostTaskAndThenHelper(*location_, std::move(callback_),
std::move(then_callback));
}
private:
AsyncCallWithBoundArgsBuilder(const SequenceBound* sequence_bound,
const Location* location,
CrossThreadTask<ReturnType()> callback)
: sequence_bound_(sequence_bound),
location_(location),
callback_(std::move(callback)) {
DCHECK(sequence_bound_);
DCHECK(!sequence_bound_->storage_.is_null());
}
friend SequenceBound;
raw_ptr<const SequenceBound<T, CrossThreadTraits>> sequence_bound_;
const raw_ptr<const Location> location_;
CrossThreadTask<ReturnType()> callback_;
};
void PostTaskAndThenHelper(const Location& location,
CrossThreadTask<void()> callback,
CrossThreadTask<void()> then_callback) const {
CrossThreadTraits::PostTaskAndReply(*impl_task_runner_, location,
std::move(callback),
std::move(then_callback));
}
template <typename ReturnType,
template <typename>
class CallbackType,
typename ThenArg>
requires(IsCrossThreadTask<CallbackType>)
void PostTaskAndThenHelper(const Location& location,
CrossThreadTask<ReturnType()> callback,
CallbackType<void(ThenArg)> then_callback) const {
CrossThreadTask<void(ThenArg)>&& once_then_callback =
std::move(then_callback);
CrossThreadTraits::PostTaskAndReplyWithResult(
*impl_task_runner_, location, std::move(callback),
std::move(once_then_callback));
}
// Helper to support move construction and move assignment.
//
// TODO(crbug.com/40245687): Constrain this so converting between
// std::unique_ptr<T> and T are explicitly forbidden (rather than simply
// failing to build in spectacular ways).
template <typename From>
void MoveRecordFrom(From&& other) {
impl_task_runner_ = std::move(other.impl_task_runner_);
storage_.TakeFrom(std::move(other.storage_));
}
Storage storage_;
// Task runner which manages `storage_`. An object owned by `storage_` (if
// any) will be constructed, destroyed, and otherwise used only on this task
// runner.
scoped_refptr<SequencedTaskRunner> impl_task_runner_;
};
} // namespace base
#endif // BASE_THREADING_SEQUENCE_BOUND_H_
|