1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// `Time` represents an absolute point in coordinated universal time (UTC),
// internally represented as microseconds (s/1,000,000) since the Windows epoch
// (1601-01-01 00:00:00 UTC). System-dependent clock interface routines are
// defined in time_PLATFORM.cc. Note that values for `Time` may skew and jump
// around as the operating system makes adjustments to synchronize (e.g., with
// NTP servers). Thus, client code that uses the `Time` class must account for
// this.
//
// `TimeDelta` represents a duration of time, internally represented in
// microseconds.
//
// `TimeTicks` and `ThreadTicks` represent an abstract time that is most of the
// time incrementing, for use in measuring time durations. Internally, they are
// represented in microseconds. They cannot be converted to a human-readable
// time, but are guaranteed not to decrease (unlike the `Time` class). Note
// that `TimeTicks` may "stand still" (e.g., if the computer is suspended), and
// `ThreadTicks` will "stand still" whenever the thread has been de-scheduled
// by the operating system.
//
// All time classes are copyable, assignable, and occupy 64 bits per instance.
// Prefer to pass them by value, e.g.:
//
// void MyFunction(TimeDelta arg);
//
// All time classes support `operator<<` with logging streams, e.g. `LOG(INFO)`.
// For human-readable formatting, use //base/i18n/time_formatting.h.
//
// Example use cases for different time classes:
//
// Time: Interpreting the wall-clock time provided by a remote system.
// Detecting whether cached resources have expired. Providing the
// user with a display of the current date and time. Determining
// the amount of time between events across re-boots of the
// machine.
//
// TimeTicks: Tracking the amount of time a task runs. Executing delayed
// tasks at the right time. Computing presentation timestamps.
// Synchronizing audio and video using TimeTicks as a common
// reference clock (lip-sync). Measuring network round-trip
// latency.
//
// ThreadTicks: Benchmarking how long the current thread has been doing actual
// work.
//
// Serialization:
//
// Use the helpers in //base/json/values_util.h when serializing `Time`
// or `TimeDelta` to/from `base::Value`.
//
// Otherwise:
//
// - Time: use `FromDeltaSinceWindowsEpoch()`/`ToDeltaSinceWindowsEpoch()`.
// - TimeDelta: use `base::Microseconds()`/`InMicroseconds()`.
//
// `TimeTicks` and `ThreadTicks` do not have a stable origin; serialization for
// the purpose of persistence is not supported.
#ifndef BASE_TIME_TIME_H_
#define BASE_TIME_TIME_H_
#include <stdint.h>
#include <time.h>
#include <compare>
#include <concepts>
#include <iosfwd>
#include <limits>
#include <type_traits>
#include "base/base_export.h"
#include "base/check.h"
#include "base/check_op.h"
#include "base/compiler_specific.h"
#include "base/numerics/clamped_math.h"
#include "build/build_config.h"
#if BUILDFLAG(IS_FUCHSIA)
#include <zircon/types.h>
#endif
#if BUILDFLAG(IS_APPLE)
#include <CoreFoundation/CoreFoundation.h>
#include <mach/mach_time.h>
// Avoid Mac system header macro leak.
#undef TYPE_BOOL
#endif
#if BUILDFLAG(IS_ANDROID)
#include <jni.h>
#endif
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
#include <sys/time.h>
#include <unistd.h>
#endif
#if BUILDFLAG(IS_WIN)
#include <string>
#include "base/gtest_prod_util.h"
#include "base/win/windows_types.h"
namespace ABI {
namespace Windows {
namespace Foundation {
struct DateTime;
struct TimeSpan;
} // namespace Foundation
} // namespace Windows
} // namespace ABI
#endif
namespace base {
#if BUILDFLAG(IS_WIN)
class CommandLine;
class PlatformThreadHandle;
#endif
class TimeDelta;
template <typename T>
constexpr TimeDelta Microseconds(T n);
namespace {
// TODO: Replace usage of this with std::isnan() once Chromium uses C++23,
// where that is constexpr.
constexpr bool isnan(double d) {
return d != d;
}
} // namespace
// TimeDelta ------------------------------------------------------------------
class BASE_EXPORT TimeDelta {
public:
constexpr TimeDelta() = default;
#if BUILDFLAG(IS_WIN)
static TimeDelta FromQPCValue(LONGLONG qpc_value);
// TODO(crbug.com/40638442): Avoid base::TimeDelta factory functions
// based on absolute time
static TimeDelta FromFileTime(FILETIME ft);
static TimeDelta FromWinrtDateTime(ABI::Windows::Foundation::DateTime dt);
static TimeDelta FromWinrtTimeSpan(ABI::Windows::Foundation::TimeSpan ts);
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
static TimeDelta FromTimeSpec(const timespec& ts);
#endif
#if BUILDFLAG(IS_FUCHSIA)
static TimeDelta FromZxDuration(zx_duration_t nanos);
#endif
#if BUILDFLAG(IS_APPLE)
static TimeDelta FromMachTime(uint64_t mach_time);
#endif // BUILDFLAG(IS_APPLE)
// Converts an integer value representing TimeDelta to a class. This is used
// when deserializing a |TimeDelta| structure, using a value known to be
// compatible. It is not provided as a constructor because the integer type
// may be unclear from the perspective of a caller.
//
// DEPRECATED - Do not use in new code. http://crbug.com/634507
static constexpr TimeDelta FromInternalValue(int64_t delta) {
return TimeDelta(delta);
}
// Returns the maximum time delta, which should be greater than any reasonable
// time delta we might compare it to. If converted to double with ToDouble()
// it becomes an IEEE double infinity. Use FiniteMax() if you want a very
// large number that doesn't do this. TimeDelta math saturates at the end
// points so adding to TimeDelta::Max() leaves the value unchanged.
// Subtracting should leave the value unchanged but currently changes it
// TODO(crbug.com/41405098).
static constexpr TimeDelta Max();
// Returns the minimum time delta, which should be less than than any
// reasonable time delta we might compare it to. For more details see the
// comments for Max().
static constexpr TimeDelta Min();
// Returns the maximum time delta which is not equivalent to infinity. Only
// subtracting a finite time delta from this time delta has a defined result.
static constexpr TimeDelta FiniteMax();
// Returns the minimum time delta which is not equivalent to -infinity. Only
// adding a finite time delta to this time delta has a defined result.
static constexpr TimeDelta FiniteMin();
// Returns the internal numeric value of the TimeDelta object. Please don't
// use this and do arithmetic on it, as it is more error prone than using the
// provided operators.
// For serializing, use FromInternalValue to reconstitute.
//
// DEPRECATED - Do not use in new code. http://crbug.com/634507
constexpr int64_t ToInternalValue() const { return delta_; }
// Returns the magnitude (absolute value) of this TimeDelta.
constexpr TimeDelta magnitude() const { return TimeDelta(delta_.Abs()); }
// Returns true if the time delta is a zero, positive or negative time delta.
constexpr bool is_zero() const { return delta_ == 0; }
constexpr bool is_positive() const { return delta_ > 0; }
constexpr bool is_negative() const { return delta_ < 0; }
// Returns true if the time delta is the maximum/minimum time delta.
constexpr bool is_max() const { return *this == Max(); }
constexpr bool is_min() const { return *this == Min(); }
constexpr bool is_inf() const { return is_min() || is_max(); }
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
// According to https://en.cppreference.com/w/c/chrono/timespec, negative
// timespecs are invalid, so this function clamps negative TimeDeltas to 0.
// In addition, this function clamps the upper bound of TimeDelta values to
// what a `time_t` can hold.
struct timespec ToTimeSpec() const;
#endif
#if BUILDFLAG(IS_FUCHSIA)
zx_duration_t ToZxDuration() const;
#endif
#if BUILDFLAG(IS_WIN)
ABI::Windows::Foundation::DateTime ToWinrtDateTime() const;
ABI::Windows::Foundation::TimeSpan ToWinrtTimeSpan() const;
#endif
// Returns the frequency in Hertz (cycles per second) that has a period of
// *this.
constexpr double ToHz() const;
// Returns the time delta in some unit. Minimum argument values return as
// -inf for doubles and min type values otherwise. Maximum ones are treated as
// +inf for doubles and max type values otherwise. Their results will produce
// an is_min() or is_max() TimeDelta. The InXYZF versions return a floating
// point value. The InXYZ versions return a truncated value (aka rounded
// towards zero, std::trunc() behavior). The InXYZFloored() versions round to
// lesser integers (std::floor() behavior). The XYZRoundedUp() versions round
// up to greater integers (std::ceil() behavior). WARNING: Floating point
// arithmetic is such that XXX(t.InXXXF()) may not precisely equal |t|.
// Hence, floating point values should not be used for storage.
constexpr int InDays() const;
constexpr int InDaysFloored() const;
constexpr int InHours() const;
constexpr int InMinutes() const;
constexpr double InSecondsF() const;
constexpr int64_t InSeconds() const;
constexpr int64_t InSecondsFloored() const;
constexpr double InMillisecondsF() const;
constexpr int64_t InMilliseconds() const;
constexpr int64_t InMillisecondsRoundedUp() const;
constexpr int64_t InMicroseconds() const { return delta_; }
constexpr double InMicrosecondsF() const;
constexpr int64_t InNanoseconds() const;
// Computations with other deltas.
constexpr TimeDelta operator+(TimeDelta other) const;
constexpr TimeDelta operator-(TimeDelta other) const;
constexpr TimeDelta& operator+=(TimeDelta other) {
return *this = (*this + other);
}
constexpr TimeDelta& operator-=(TimeDelta other) {
return *this = (*this - other);
}
constexpr TimeDelta operator-() const {
if (!is_inf()) {
return TimeDelta(-delta_);
}
return (delta_ < 0) ? Max() : Min();
}
// Computations with numeric types.
template <typename T>
constexpr TimeDelta operator*(T a) const {
return TimeDelta(int64_t{delta_ * a});
}
template <typename T>
constexpr TimeDelta operator/(T a) const {
return TimeDelta(int64_t{delta_ / a});
}
template <typename T>
constexpr TimeDelta& operator*=(T a) {
return *this = (*this * a);
}
template <typename T>
constexpr TimeDelta& operator/=(T a) {
return *this = (*this / a);
}
// This does floating-point division. For an integer result, either call
// IntDiv(), or (possibly clearer) use this operator with
// base::Clamp{Ceil,Floor,Round}() or base::saturated_cast() (for truncation).
// Note that converting to double here drops precision to 53 bits.
constexpr double operator/(TimeDelta a) const {
// 0/0 and inf/inf (any combination of positive and negative) are invalid
// (they are almost certainly not intentional, and result in NaN, which
// turns into 0 if clamped to an integer; this makes introducing subtle bugs
// too easy).
CHECK(!is_zero() || !a.is_zero());
CHECK(!is_inf() || !a.is_inf());
return ToDouble() / a.ToDouble();
}
constexpr int64_t IntDiv(TimeDelta a) const {
if (!is_inf() && !a.is_zero()) {
return int64_t{delta_ / a.delta_};
}
// For consistency, use the same edge case CHECKs and behavior as the code
// above.
CHECK(!is_zero() || !a.is_zero());
CHECK(!is_inf() || !a.is_inf());
return ((delta_ < 0) == (a.delta_ < 0))
? std::numeric_limits<int64_t>::max()
: std::numeric_limits<int64_t>::min();
}
constexpr TimeDelta operator%(TimeDelta a) const {
return TimeDelta(
(is_inf() || a.is_zero() || a.is_inf()) ? delta_ : (delta_ % a.delta_));
}
constexpr TimeDelta& operator%=(TimeDelta other) {
return *this = (*this % other);
}
// Comparison operators.
friend constexpr bool operator==(TimeDelta, TimeDelta) = default;
friend constexpr std::strong_ordering operator<=>(TimeDelta,
TimeDelta) = default;
// Returns this delta, ceiled/floored/rounded-away-from-zero to the nearest
// multiple of |interval|.
TimeDelta CeilToMultiple(TimeDelta interval) const;
TimeDelta FloorToMultiple(TimeDelta interval) const;
TimeDelta RoundToMultiple(TimeDelta interval) const;
private:
// Constructs a delta given the duration in microseconds. This is private
// to avoid confusion by callers with an integer constructor. Use
// base::Seconds, base::Milliseconds, etc. instead.
constexpr explicit TimeDelta(int64_t delta_us) : delta_(delta_us) {}
constexpr explicit TimeDelta(ClampedNumeric<int64_t> delta_us)
: delta_(delta_us) {}
// Returns a double representation of this TimeDelta's tick count. In
// particular, Max()/Min() are converted to +/-infinity.
constexpr double ToDouble() const {
if (!is_inf()) {
return static_cast<double>(delta_);
}
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
// Delta in microseconds.
ClampedNumeric<int64_t> delta_ = 0;
};
constexpr TimeDelta TimeDelta::operator+(TimeDelta other) const {
if (!other.is_inf()) {
return TimeDelta(delta_ + other.delta_);
}
// Additions involving two infinities are only valid if signs match.
CHECK(!is_inf() || (delta_ == other.delta_));
return other;
}
constexpr TimeDelta TimeDelta::operator-(TimeDelta other) const {
if (!other.is_inf()) {
return TimeDelta(delta_ - other.delta_);
}
// Subtractions involving two infinities are only valid if signs differ.
CHECK_NE(int64_t{delta_}, int64_t{other.delta_});
return (other.delta_ < 0) ? Max() : Min();
}
template <typename T>
constexpr TimeDelta operator*(T a, TimeDelta td) {
return td * a;
}
// For logging use only.
BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeDelta time_delta);
// TimeBase--------------------------------------------------------------------
// Do not reference the time_internal::TimeBase template class directly. Please
// use one of the time subclasses instead, and only reference the public
// TimeBase members via those classes.
namespace time_internal {
// Provides value storage and comparison/math operations common to all time
// classes. Each subclass provides for strong type-checking to ensure
// semantically meaningful comparison/math of time values from the same clock
// source or timeline.
template <class TimeClass>
class TimeBase {
public:
static constexpr int64_t kHoursPerDay = 24;
static constexpr int64_t kSecondsPerMinute = 60;
static constexpr int64_t kMinutesPerHour = 60;
static constexpr int64_t kSecondsPerHour =
kSecondsPerMinute * kMinutesPerHour;
static constexpr int64_t kMillisecondsPerSecond = 1000;
static constexpr int64_t kMillisecondsPerDay =
kMillisecondsPerSecond * kSecondsPerHour * kHoursPerDay;
static constexpr int64_t kMicrosecondsPerMillisecond = 1000;
static constexpr int64_t kMicrosecondsPerSecond =
kMicrosecondsPerMillisecond * kMillisecondsPerSecond;
static constexpr int64_t kMicrosecondsPerMinute =
kMicrosecondsPerSecond * kSecondsPerMinute;
static constexpr int64_t kMicrosecondsPerHour =
kMicrosecondsPerMinute * kMinutesPerHour;
static constexpr int64_t kMicrosecondsPerDay =
kMicrosecondsPerHour * kHoursPerDay;
static constexpr int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7;
static constexpr int64_t kNanosecondsPerMicrosecond = 1000;
static constexpr int64_t kNanosecondsPerMillisecond =
kNanosecondsPerMicrosecond * kMicrosecondsPerMillisecond;
static constexpr int64_t kNanosecondsPerSecond =
kNanosecondsPerMicrosecond * kMicrosecondsPerSecond;
// Warning: Be careful when writing code that performs math on time values,
// since it's possible to produce a valid "zero" result that should not be
// interpreted as a "null" value. If you find yourself using this method or
// the zero-arg default constructor, please consider using an optional to
// express the null state.
//
// Returns true if this object has not been initialized (probably).
constexpr bool is_null() const { return us_ == 0; }
// Returns true if this object represents the maximum/minimum time.
constexpr bool is_max() const { return *this == Max(); }
constexpr bool is_min() const { return *this == Min(); }
constexpr bool is_inf() const { return is_min() || is_max(); }
// Returns the maximum/minimum times, which should be non-null and
// greater/less than than any reasonable time with which we might compare it.
static constexpr TimeClass Max() {
return TimeClass(std::numeric_limits<int64_t>::max());
}
static constexpr TimeClass Min() {
return TimeClass(std::numeric_limits<int64_t>::min());
}
// For legacy serialization only. When serializing to `base::Value`, prefer
// the helpers from //base/json/values_util.h instead. Otherwise, use
// `Time::ToDeltaSinceWindowsEpoch()` for `Time` and
// `TimeDelta::InMicroseconds()` for `TimeDelta`. See http://crbug.com/634507.
constexpr int64_t ToInternalValue() const { return us_; }
// The amount of time since the origin (or "zero") point. This is a syntactic
// convenience to aid in code readability, mainly for debugging/testing use
// cases.
//
// Warning: While the Time subclass has a fixed origin point, the origin for
// the other subclasses can vary each time the application is restarted.
constexpr TimeDelta since_origin() const;
// Compute the difference between two times.
#if !defined(__aarch64__) && BUILDFLAG(IS_ANDROID)
NOINLINE // https://crbug.com/1369775
#endif
constexpr TimeDelta
operator-(const TimeBase<TimeClass>& other) const;
// Return a new time modified by some delta.
constexpr TimeClass operator+(TimeDelta delta) const;
constexpr TimeClass operator-(TimeDelta delta) const;
// Modify by some time delta.
constexpr TimeClass& operator+=(TimeDelta delta) {
return static_cast<TimeClass&>(*this = (*this + delta));
}
constexpr TimeClass& operator-=(TimeDelta delta) {
return static_cast<TimeClass&>(*this = (*this - delta));
}
// Comparison operators
friend constexpr bool operator==(const TimeBase&, const TimeBase&) = default;
friend constexpr std::strong_ordering operator<=>(const TimeBase&,
const TimeBase&) = default;
protected:
constexpr explicit TimeBase(int64_t us) : us_(us) {}
// Time value in a microsecond timebase.
ClampedNumeric<int64_t> us_;
};
#if BUILDFLAG(IS_WIN)
#if defined(ARCH_CPU_ARM64)
// TSCTicksPerSecond is not supported on Windows on Arm systems because the
// cycle-counting methods use the actual CPU cycle count, and not a consistent
// incrementing counter.
#else
// Returns true if the CPU support constant rate TSC.
[[nodiscard]] BASE_EXPORT bool HasConstantRateTSC();
// Returns the frequency of the TSC in ticks per second, or 0 if it hasn't
// been measured yet. Needs to be guarded with a call to HasConstantRateTSC().
[[nodiscard]] BASE_EXPORT double TSCTicksPerSecond();
#endif
#endif // BUILDFLAG(IS_WIN)
} // namespace time_internal
template <class TimeClass>
inline constexpr TimeClass operator+(TimeDelta delta, TimeClass t) {
return t + delta;
}
// Time -----------------------------------------------------------------------
// Represents a wall clock time in UTC. Values are not guaranteed to be
// monotonically non-decreasing and are subject to large amounts of skew.
// Time is stored internally as microseconds since the Windows epoch (1601).
class BASE_EXPORT Time : public time_internal::TimeBase<Time> {
public:
// Offset of UNIX epoch (1970-01-01 00:00:00 UTC) from Windows FILETIME epoch
// (1601-01-01 00:00:00 UTC), in microseconds. This value is derived from the
// following: ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the number
// of leap year days between 1601 and 1970: (1970-1601)/4 excluding 1700,
// 1800, and 1900.
static constexpr int64_t kTimeTToMicrosecondsOffset =
INT64_C(11644473600000000);
#if BUILDFLAG(IS_WIN)
// To avoid overflow in QPC to Microseconds calculations, since we multiply
// by kMicrosecondsPerSecond, then the QPC value should not exceed
// (2^63 - 1) / 1E6. If it exceeds that threshold, we divide then multiply.
static constexpr int64_t kQPCOverflowThreshold = INT64_C(0x8637BD05AF7);
#endif
// kExplodedMinYear and kExplodedMaxYear define the platform-specific limits
// for values passed to FromUTCExploded() and FromLocalExploded(). Those
// functions will return false if passed values outside these limits. The limits
// are inclusive, meaning that the API should support all dates within a given
// limit year.
//
// WARNING: These are not the same limits for the inverse functionality,
// UTCExplode() and LocalExplode(). See method comments for further details.
#if BUILDFLAG(IS_WIN)
static constexpr int kExplodedMinYear = 1601;
static constexpr int kExplodedMaxYear = 30827;
#elif BUILDFLAG(IS_IOS) && !__LP64__
static constexpr int kExplodedMinYear = std::numeric_limits<int>::min();
static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
#elif BUILDFLAG(IS_APPLE)
static constexpr int kExplodedMinYear = 1902;
static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
#elif BUILDFLAG(IS_ANDROID)
// Though we use 64-bit time APIs on both 32 and 64 bit Android, some OS
// versions like KitKat (ARM but not x86 emulator) can't handle some early
// dates (e.g. before 1170). So we set min conservatively here.
static constexpr int kExplodedMinYear = 1902;
static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
#else
static constexpr int kExplodedMinYear =
(sizeof(time_t) == 4 ? 1902 : std::numeric_limits<int>::min());
static constexpr int kExplodedMaxYear =
(sizeof(time_t) == 4 ? 2037 : std::numeric_limits<int>::max());
#endif
// Represents an exploded time. This is kind of like the Win32 SYSTEMTIME
// structure or the Unix "struct tm" with a few additions and changes to
// prevent errors.
//
// This structure always represents dates in the Gregorian calendar and always
// encodes day_of_week as Sunday==0, Monday==1, .., Saturday==6. This means
// that base::Time::LocalExplode and base::Time::FromLocalExploded only
// respect the current local time zone in the conversion and do *not* use a
// calendar or day-of-week encoding from the current locale.
//
// NOTE: Generally, you should prefer the functions in
// base/i18n/time_formatting.h (in particular,
// `UnlocalizedTimeFormatWithPattern()`) over trying to create a formatted
// time string from this object.
struct BASE_EXPORT Exploded {
int year; // Four digit year "2007"
int month; // 1-based month (values 1 = January, etc.)
int day_of_week; // 0-based day of week (0 = Sunday, etc.)
int day_of_month; // 1-based day of month (1-31)
int hour; // Hour within the current day (0-23)
int minute; // Minute within the current hour (0-59)
int second; // Second within the current minute (0-59 plus leap
// seconds which may take it up to 60).
int millisecond; // Milliseconds within the current second (0-999)
// A cursory test for whether the data members are within their
// respective ranges. A 'true' return value does not guarantee the
// Exploded value can be successfully converted to a Time value.
bool HasValidValues() const;
};
// Warning: Be careful when writing code that performs math on time values,
// since it's possible to produce a valid "zero" result that should not be
// interpreted as a "null" value. If you find yourself using this constructor
// or the is_null() method, please consider using an optional to express the
// null state.
//
// Contains the NULL time. Use Time::Now() to get the current time.
constexpr Time() : TimeBase(0) {}
// Returns the time for epoch in Unix-like system (Jan 1, 1970).
static constexpr Time UnixEpoch() { return Time(kTimeTToMicrosecondsOffset); }
// Returns the current time. Watch out, the system might adjust its clock
// in which case time will actually go backwards. We don't guarantee that
// times are increasing, or that two calls to Now() won't be the same.
static Time Now();
// Returns the current time. Same as Now() except that this function always
// uses system time so that there are no discrepancies between the returned
// time and system time even on virtual environments including our test bot.
// For timing sensitive unittests, this function should be used.
static Time NowFromSystemTime();
// Converts to/from TimeDeltas relative to the Windows epoch (1601-01-01
// 00:00:00 UTC).
//
// For serialization, when handling `base::Value`, prefer the helpers in
// //base/json/values_util.h instead. Otherwise, use these methods for
// opaque serialization and deserialization, e.g.
//
// // Serialization:
// base::Time last_updated = ...;
// SaveToDatabase(last_updated.ToDeltaSinceWindowsEpoch().InMicroseconds());
//
// // Deserialization:
// base::Time last_updated = base::Time::FromDeltaSinceWindowsEpoch(
// base::Microseconds(LoadFromDatabase()));
//
// Do not use `FromInternalValue()` or `ToInternalValue()` for this purpose.
static constexpr Time FromDeltaSinceWindowsEpoch(TimeDelta delta) {
return Time(delta.InMicroseconds());
}
constexpr TimeDelta ToDeltaSinceWindowsEpoch() const {
return Microseconds(us_);
}
// Converts to/from time_t in UTC and a Time class.
static constexpr Time FromTimeT(time_t tt);
constexpr time_t ToTimeT() const;
// Converts time to/from a number of seconds since the Unix epoch (Jan 1,
// 1970).
//
// TODO(crbug.com/40286582): Add integral versions and use them.
// TODO(crbug.com/40286584): Add ...PreservingNull() versions; see comments in
// the implementation of FromSecondsSinceUnixEpoch().
static constexpr Time FromSecondsSinceUnixEpoch(double dt);
constexpr double InSecondsFSinceUnixEpoch() const;
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
// Converts the timespec structure to time. MacOS X 10.8.3 (and tentatively,
// earlier versions) will have the |ts|'s tv_nsec component zeroed out,
// having a 1 second resolution, which agrees with
// https://developer.apple.com/legacy/library/#technotes/tn/tn1150.html#HFSPlusDates.
static constexpr Time FromTimeSpec(const timespec& ts);
#endif
// Converts to/from a number of milliseconds since the Unix epoch.
// TODO(crbug.com/40286584): Add ...PreservingNull() versions; see comments in
// the implementation of FromMillisecondsSinceUnixEpoch().
static constexpr Time FromMillisecondsSinceUnixEpoch(int64_t dt);
static constexpr Time FromMillisecondsSinceUnixEpoch(double dt);
// Explicitly forward calls with smaller integral types to the int64_t
// version; otherwise such calls would need to manually cast their args to
// int64_t, since the compiler isn't sure whether to promote to int64_t or
// double.
template <typename T>
requires(std::integral<T> && !std::same_as<T, int64_t> &&
(sizeof(T) < sizeof(int64_t) ||
(sizeof(T) == sizeof(int64_t) && std::is_signed_v<T>)))
static constexpr Time FromMillisecondsSinceUnixEpoch(T ms_since_epoch) {
return FromMillisecondsSinceUnixEpoch(int64_t{ms_since_epoch});
}
constexpr int64_t InMillisecondsSinceUnixEpoch() const;
// Don't use InMillisecondsFSinceUnixEpoch() in new code, since it contains a
// subtle hack (only exactly 1601-01-01 00:00 UTC is represented as 1970-01-01
// 00:00 UTC), and that is not appropriate for general use. Try to use
// InMillisecondsFSinceUnixEpochIgnoringNull() unless you have a very good
// reason to use InMillisecondsFSinceUnixEpoch().
//
// TODO(crbug.com/40286584): Rename the no-suffix version to
// "...PreservingNull()" and remove the suffix from the other version, to
// guide people to the preferable API.
constexpr double InMillisecondsFSinceUnixEpoch() const;
constexpr double InMillisecondsFSinceUnixEpochIgnoringNull() const;
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
static Time FromTimeVal(struct timeval t);
struct timeval ToTimeVal() const;
#endif
#if BUILDFLAG(IS_FUCHSIA)
static Time FromZxTime(zx_time_t time);
zx_time_t ToZxTime() const;
#endif
#if BUILDFLAG(IS_APPLE)
static Time FromCFAbsoluteTime(CFAbsoluteTime t);
CFAbsoluteTime ToCFAbsoluteTime() const;
#if defined(__OBJC__)
static Time FromNSDate(NSDate* date);
NSDate* ToNSDate() const;
#endif
#endif
#if BUILDFLAG(IS_WIN)
static Time FromFileTime(FILETIME ft);
FILETIME ToFileTime() const;
// The minimum time of a low resolution timer. This is basically a windows
// constant of ~15.6ms. While it does vary on some older OS versions, we'll
// treat it as static across all windows versions.
static const int kMinLowResolutionThresholdMs = 16;
// Enable or disable Windows high resolution timer.
static void EnableHighResolutionTimer(bool enable);
// Activates or deactivates the high resolution timer based on the |activate|
// flag. If the HighResolutionTimer is not Enabled (see
// EnableHighResolutionTimer), this function will return false. Otherwise
// returns true. Each successful activate call must be paired with a
// subsequent deactivate call.
// All callers to activate the high resolution timer must eventually call
// this function to deactivate the high resolution timer.
static bool ActivateHighResolutionTimer(bool activate);
// Returns true if the high resolution timer is both enabled and activated.
// This is provided for testing only, and is not tracked in a thread-safe
// way.
static bool IsHighResolutionTimerInUse();
// The following two functions are used to report the fraction of elapsed time
// that the high resolution timer is activated.
// ResetHighResolutionTimerUsage() resets the cumulative usage and starts the
// measurement interval and GetHighResolutionTimerUsage() returns the
// percentage of time since the reset that the high resolution timer was
// activated.
// ResetHighResolutionTimerUsage() must be called at least once before calling
// GetHighResolutionTimerUsage(); otherwise the usage result would be
// undefined.
static void ResetHighResolutionTimerUsage();
static double GetHighResolutionTimerUsage();
#endif // BUILDFLAG(IS_WIN)
// Converts an exploded structure representing either the local time or UTC
// into a Time class. Returns false on a failure when, for example, a day of
// month is set to 31 on a 28-30 day month. Returns Time(0) on overflow.
// FromLocalExploded respects the current time zone but does not attempt to
// use the calendar or day-of-week encoding from the current locale - see the
// comments on Exploded for more information.
[[nodiscard]] static bool FromUTCExploded(const Exploded& exploded,
Time* time) {
return FromExploded(false, exploded, time);
}
[[nodiscard]] static bool FromLocalExploded(const Exploded& exploded,
Time* time) {
return FromExploded(true, exploded, time);
}
// Converts a string representation of time to a Time object.
// An example of a time string which is converted is as below:-
// "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
// in the input string, FromString assumes local time and FromUTCString
// assumes UTC. A timezone that cannot be parsed (e.g. "UTC" which is not
// specified in RFC822) is treated as if the timezone is not specified.
//
// WARNING: the underlying converter is very permissive. For example: it is
// not checked whether a given day of the week matches the date; Feb 29
// silently becomes Mar 1 in non-leap years; under certain conditions, whole
// English sentences may be parsed successfully and yield unexpected results.
//
// TODO(iyengar) Move the FromString/FromTimeT/ToTimeT/FromFileTime to
// a new time converter class.
[[nodiscard]] static bool FromString(const char* time_string,
Time* parsed_time) {
return FromStringInternal(time_string, true, parsed_time);
}
[[nodiscard]] static bool FromUTCString(const char* time_string,
Time* parsed_time) {
return FromStringInternal(time_string, false, parsed_time);
}
// Fills the given |exploded| structure with either the local time or UTC from
// this Time instance. If the conversion cannot be made, the output will be
// assigned invalid values. Use Exploded::HasValidValues() to confirm a
// successful conversion.
//
// Y10K compliance: This method will successfully convert all Times that
// represent dates on/after the start of the year 1601 and on/before the start
// of the year 30828. Some platforms might convert over a wider input range.
// LocalExplode respects the current time zone but does not attempt to use the
// calendar or day-of-week encoding from the current locale - see the comments
// on Exploded for more information.
void UTCExplode(Exploded* exploded) const { Explode(false, exploded); }
void LocalExplode(Exploded* exploded) const { Explode(true, exploded); }
// The following two functions round down the time to the nearest day in
// either UTC or local time. It will represent midnight on that day.
Time UTCMidnight() const { return Midnight(false); }
Time LocalMidnight() const { return Midnight(true); }
// For legacy deserialization only. Converts an integer value representing
// Time to a class. This may be used when deserializing a |Time| structure,
// using a value known to be compatible. It is not provided as a constructor
// because the integer type may be unclear from the perspective of a caller.
//
// DEPRECATED - Do not use in new code. When deserializing from `base::Value`,
// prefer the helpers from //base/json/values_util.h instead.
// Otherwise, use `Time::FromDeltaSinceWindowsEpoch()` for `Time` and
// `Microseconds()` for `TimeDelta`. http://crbug.com/634507
static constexpr Time FromInternalValue(int64_t us) { return Time(us); }
private:
friend class time_internal::TimeBase<Time>;
constexpr explicit Time(int64_t microseconds_since_win_epoch)
: TimeBase(microseconds_since_win_epoch) {}
// Explodes the given time to either local time |is_local = true| or UTC
// |is_local = false|.
void Explode(bool is_local, Exploded* exploded) const;
// Unexplodes a given time assuming the source is either local time
// |is_local = true| or UTC |is_local = false|. Function returns false on
// failure and sets |time| to Time(0). Otherwise returns true and sets |time|
// to non-exploded time.
[[nodiscard]] static bool FromExploded(bool is_local,
const Exploded& exploded,
Time* time);
// Some platforms use the ICU library to provide To/FromExploded, when their
// native library implementations are insufficient in some way.
static void ExplodeUsingIcu(int64_t millis_since_unix_epoch,
bool is_local,
Exploded* exploded);
[[nodiscard]] static bool FromExplodedUsingIcu(
bool is_local,
const Exploded& exploded,
int64_t* millis_since_unix_epoch);
// Rounds down the time to the nearest day in either local time
// |is_local = true| or UTC |is_local = false|.
Time Midnight(bool is_local) const;
// Converts a string representation of time to a Time object.
// An example of a time string which is converted is as below:-
// "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
// in the input string, local time |is_local = true| or
// UTC |is_local = false| is assumed. A timezone that cannot be parsed
// (e.g. "UTC" which is not specified in RFC822) is treated as if the
// timezone is not specified.
[[nodiscard]] static bool FromStringInternal(const char* time_string,
bool is_local,
Time* parsed_time);
// Comparison does not consider |day_of_week| when doing the operation.
[[nodiscard]] static bool ExplodedMostlyEquals(const Exploded& lhs,
const Exploded& rhs);
// Converts the provided time in milliseconds since the Unix epoch (1970) to a
// Time object, avoiding overflows.
[[nodiscard]] static bool FromMillisecondsSinceUnixEpoch(
int64_t unix_milliseconds,
Time* time);
// Returns the milliseconds since the Unix epoch (1970), rounding the
// microseconds towards -infinity.
int64_t ToRoundedDownMillisecondsSinceUnixEpoch() const;
};
// Factory methods that return a TimeDelta of the given unit.
// WARNING: Floating point arithmetic is such that XXX(t.InXXXF()) may not
// precisely equal |t|. Hence, floating point values should not be used for
// storage.
template <typename T>
constexpr TimeDelta Days(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
Time::kMicrosecondsPerDay);
}
template <typename T>
constexpr TimeDelta Hours(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
Time::kMicrosecondsPerHour);
}
template <typename T>
constexpr TimeDelta Minutes(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
Time::kMicrosecondsPerMinute);
}
template <typename T>
constexpr TimeDelta Seconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
Time::kMicrosecondsPerSecond);
}
template <typename T>
constexpr TimeDelta Milliseconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
Time::kMicrosecondsPerMillisecond);
}
template <typename T>
constexpr TimeDelta Microseconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n));
}
template <typename T>
constexpr TimeDelta Nanoseconds(T n) {
return TimeDelta::FromInternalValue(MakeClampedNum(n) /
Time::kNanosecondsPerMicrosecond);
}
template <typename T>
constexpr TimeDelta Hertz(T n) {
return n ? TimeDelta::FromInternalValue(Time::kMicrosecondsPerSecond /
MakeClampedNum(n))
: TimeDelta::Max();
}
// TimeDelta functions that must appear below the declarations of Time/TimeDelta
constexpr double TimeDelta::ToHz() const {
return Seconds(1) / *this;
}
constexpr int TimeDelta::InDays() const {
if (!is_inf()) {
return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
}
return (delta_ < 0) ? std::numeric_limits<int>::min()
: std::numeric_limits<int>::max();
}
constexpr int TimeDelta::InDaysFloored() const {
if (!is_inf()) {
const int result = delta_ / Time::kMicrosecondsPerDay;
// Convert |result| from truncating to flooring.
return (result * Time::kMicrosecondsPerDay > delta_) ? (result - 1)
: result;
}
return (delta_ < 0) ? std::numeric_limits<int>::min()
: std::numeric_limits<int>::max();
}
constexpr int TimeDelta::InHours() const {
// saturated_cast<> is necessary since very large (but still less than
// min/max) deltas would result in overflow.
return saturated_cast<int>(delta_ / Time::kMicrosecondsPerHour);
}
constexpr int TimeDelta::InMinutes() const {
// saturated_cast<> is necessary since very large (but still less than
// min/max) deltas would result in overflow.
return saturated_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
}
constexpr double TimeDelta::InSecondsF() const {
if (!is_inf()) {
return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
}
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
constexpr int64_t TimeDelta::InSeconds() const {
return is_inf() ? delta_ : (delta_ / Time::kMicrosecondsPerSecond);
}
constexpr int64_t TimeDelta::InSecondsFloored() const {
if (!is_inf()) {
const int64_t result = delta_ / Time::kMicrosecondsPerSecond;
// Convert |result| from truncating to flooring.
return (result * Time::kMicrosecondsPerSecond > delta_) ? (result - 1)
: result;
}
return delta_;
}
constexpr double TimeDelta::InMillisecondsF() const {
if (!is_inf()) {
return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
}
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
constexpr int64_t TimeDelta::InMilliseconds() const {
if (!is_inf()) {
return delta_ / Time::kMicrosecondsPerMillisecond;
}
return (delta_ < 0) ? std::numeric_limits<int64_t>::min()
: std::numeric_limits<int64_t>::max();
}
constexpr int64_t TimeDelta::InMillisecondsRoundedUp() const {
if (!is_inf()) {
const int64_t result = delta_ / Time::kMicrosecondsPerMillisecond;
// Convert |result| from truncating to ceiling.
return (delta_ > result * Time::kMicrosecondsPerMillisecond) ? (result + 1)
: result;
}
return delta_;
}
constexpr double TimeDelta::InMicrosecondsF() const {
if (!is_inf()) {
return static_cast<double>(delta_);
}
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
constexpr int64_t TimeDelta::InNanoseconds() const {
return base::ClampMul(delta_, Time::kNanosecondsPerMicrosecond);
}
// static
constexpr TimeDelta TimeDelta::Max() {
return TimeDelta(std::numeric_limits<int64_t>::max());
}
// static
constexpr TimeDelta TimeDelta::Min() {
return TimeDelta(std::numeric_limits<int64_t>::min());
}
// static
constexpr TimeDelta TimeDelta::FiniteMax() {
return TimeDelta(std::numeric_limits<int64_t>::max() - 1);
}
// static
constexpr TimeDelta TimeDelta::FiniteMin() {
return TimeDelta(std::numeric_limits<int64_t>::min() + 1);
}
// TimeBase functions that must appear below the declarations of Time/TimeDelta
namespace time_internal {
template <class TimeClass>
constexpr TimeDelta TimeBase<TimeClass>::since_origin() const {
return Microseconds(us_);
}
template <class TimeClass>
constexpr TimeDelta TimeBase<TimeClass>::operator-(
const TimeBase<TimeClass>& other) const {
return Microseconds(us_ - other.us_);
}
template <class TimeClass>
constexpr TimeClass TimeBase<TimeClass>::operator+(TimeDelta delta) const {
return TimeClass((Microseconds(us_) + delta).InMicroseconds());
}
template <class TimeClass>
constexpr TimeClass TimeBase<TimeClass>::operator-(TimeDelta delta) const {
return TimeClass((Microseconds(us_) - delta).InMicroseconds());
}
} // namespace time_internal
// Time functions that must appear below the declarations of Time/TimeDelta
// static
constexpr Time Time::FromTimeT(time_t tt) {
if (tt == 0) {
return Time(); // Preserve 0 so we can tell it doesn't exist.
}
return (tt == std::numeric_limits<time_t>::max())
? Max()
: (UnixEpoch() + Seconds(tt));
}
constexpr time_t Time::ToTimeT() const {
if (is_null()) {
return 0; // Preserve 0 so we can tell it doesn't exist.
}
if (!is_inf()) {
return saturated_cast<time_t>((*this - UnixEpoch()).InSecondsFloored());
}
return (us_ < 0) ? std::numeric_limits<time_t>::min()
: std::numeric_limits<time_t>::max();
}
// static
constexpr Time Time::FromSecondsSinceUnixEpoch(double dt) {
// Preserve 0.
//
// TODO(crbug.com/40286584): This is an unfortunate artifact of WebKit using 0
// to mean "no time". Add a "...PreservingNull()" version that does this,
// convert the minimum necessary set of callers to use it, and remove the zero
// check here.
return (dt == 0 || isnan(dt)) ? Time() : (UnixEpoch() + Seconds(dt));
}
constexpr double Time::InSecondsFSinceUnixEpoch() const {
// Preserve 0.
if (is_null()) {
return 0;
}
if (!is_inf()) {
return (*this - UnixEpoch()).InSecondsF();
}
return (us_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
// static
constexpr Time Time::FromTimeSpec(const timespec& ts) {
return FromSecondsSinceUnixEpoch(ts.tv_sec + static_cast<double>(ts.tv_nsec) /
kNanosecondsPerSecond);
}
#endif
// static
constexpr Time Time::FromMillisecondsSinceUnixEpoch(int64_t dt) {
// TODO(crbug.com/40286584): The lack of zero-preservation here doesn't match
// InMillisecondsSinceUnixEpoch(), which is dangerous since it means
// round-trips are not necessarily idempotent. Add "...PreservingNull()"
// versions that explicitly check for zeros, convert the minimum necessary set
// of callers to use them, and remove the null-check in
// InMillisecondsSinceUnixEpoch().
return UnixEpoch() + Milliseconds(dt);
}
// static
constexpr Time Time::FromMillisecondsSinceUnixEpoch(double dt) {
return isnan(dt) ? Time() : (UnixEpoch() + Milliseconds(dt));
}
constexpr int64_t Time::InMillisecondsSinceUnixEpoch() const {
// Preserve 0.
if (is_null()) {
return 0;
}
if (!is_inf()) {
return (*this - UnixEpoch()).InMilliseconds();
}
return (us_ < 0) ? std::numeric_limits<int64_t>::min()
: std::numeric_limits<int64_t>::max();
}
constexpr double Time::InMillisecondsFSinceUnixEpoch() const {
// Preserve 0.
return is_null() ? 0 : InMillisecondsFSinceUnixEpochIgnoringNull();
}
constexpr double Time::InMillisecondsFSinceUnixEpochIgnoringNull() const {
// Preserve max and min without offset to prevent over/underflow.
if (!is_inf()) {
return (*this - UnixEpoch()).InMillisecondsF();
}
return (us_ < 0) ? -std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::infinity();
}
// For logging use only.
BASE_EXPORT std::ostream& operator<<(std::ostream& os, Time time);
// TimeTicks ------------------------------------------------------------------
// Represents monotonically non-decreasing clock time.
class BASE_EXPORT TimeTicks : public time_internal::TimeBase<TimeTicks> {
public:
// The underlying clock used to generate new TimeTicks.
enum class Clock {
FUCHSIA_ZX_CLOCK_MONOTONIC,
LINUX_CLOCK_MONOTONIC,
IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME,
MAC_MACH_ABSOLUTE_TIME,
WIN_QPC,
WIN_ROLLOVER_PROTECTED_TIME_GET_TIME
};
constexpr TimeTicks() : TimeBase(0) {}
// Platform-dependent tick count representing "right now." When
// IsHighResolution() returns false, the resolution of the clock could be
// as coarse as ~15.6ms. Otherwise, the resolution should be no worse than one
// microsecond.
static TimeTicks Now();
// Lower overhead, lower resolution platform-dependent tick count representing
// "right now." The resolution may be as coarse as ~15.6ms on Windows and
// single digit ms on other platforms. LowResolutionNow() can be used in place
// of Now() to reduce overhead of high frequency timekeeping where the finer
// resolution of Now() is not required. Generally, prefer to use Now() over
// LowResolutionNow() unless profiling shows measurable overhead.
//
// Note: LowResolutionNow() and Now() are NOT comparable. They use different
// underlying clocks on some platforms (e.g. Mac, iOS). On other platforms the
// monotonically non-decreasing property of TimeTicks does not hold for mixed
// comparisons.
static TimeTicks LowResolutionNow();
// Returns true if the high resolution clock is working on this system and
// Now() will return high resolution values. Note that, on systems where the
// high resolution clock works but is deemed inefficient, the low resolution
// clock will be used instead.
[[nodiscard]] static bool IsHighResolution();
// Returns true if TimeTicks is consistent across processes, meaning that
// timestamps taken on different processes can be safely compared with one
// another. (Note that, even on platforms where this returns true, time values
// from different threads that are within one tick of each other must be
// considered to have an ambiguous ordering.)
[[nodiscard]] static bool IsConsistentAcrossProcesses();
#if BUILDFLAG(IS_FUCHSIA)
// Converts between TimeTicks and an ZX_CLOCK_MONOTONIC zx_time_t value.
static TimeTicks FromZxTime(zx_time_t nanos_since_boot);
zx_time_t ToZxTime() const;
#endif
#if BUILDFLAG(IS_WIN)
// Translates an absolute QPC timestamp into a TimeTicks value. The returned
// value has the same origin as Now(). Do NOT attempt to use this if
// IsHighResolution() returns false.
static TimeTicks FromQPCValue(LONGLONG qpc_value);
// If this device doesn't have an invariant TSC, it may be added to the
// client-side trial to try to use QPC anyway. This function returns true for
// all devices in the trial (which is all the devices without an invariant
// TSC), and populates `trial_name` and `group_name` for them. `group_name`
// can be "Enabled" and "Control", as well as "Excluded" for devices where
// QueryPerformanceFrequency returns 0 (which shouldn't happen, but the
// assertion to validate this is new).
static bool GetHighResolutionTimeTicksFieldTrial(std::string* trial_name,
std::string* group_name);
static void MaybeAddHighResolutionTimeTicksSwitch(CommandLine* command_line);
#endif
#if BUILDFLAG(IS_APPLE)
static TimeTicks FromMachAbsoluteTime(uint64_t mach_absolute_time);
// Sets the current Mach timebase to `timebase`. Returns the old timebase.
static mach_timebase_info_data_t SetMachTimebaseInfoForTesting(
mach_timebase_info_data_t timebase);
#endif // BUILDFLAG(IS_APPLE)
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS)
// Converts to TimeTicks the value obtained from SystemClock.uptimeMillis().
// Note: this conversion may be non-monotonic in relation to previously
// obtained TimeTicks::Now() values because of the truncation (to
// milliseconds) performed by uptimeMillis().
static TimeTicks FromUptimeMillis(int64_t uptime_millis_value);
#endif // BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS)
#if BUILDFLAG(IS_ANDROID)
// Converts to TimeTicks the value obtained from System.nanoTime(). This
// conversion will be monotonic in relation to previously obtained
// TimeTicks::Now() values as the clocks are based on the same posix monotonic
// clock, with nanoTime() potentially providing higher resolution.
static TimeTicks FromJavaNanoTime(int64_t nano_time_value);
// Truncates the TimeTicks value to the precision of SystemClock#uptimeMillis.
// Note that the clocks already share the same monotonic clock source.
jlong ToUptimeMillis() const;
// Returns the TimeTicks value as microseconds in the timebase of
// SystemClock#uptimeMillis.
// Note that the clocks already share the same monotonic clock source.
//
// System.nanoTime() may be used to get sub-millisecond precision in Java code
// and may be compared against this value as the two share the same clock
// source (though be sure to convert nanos to micros).
jlong ToUptimeMicros() const;
#endif // BUILDFLAG(IS_ANDROID)
// Get an estimate of the TimeTick value at the time of the UnixEpoch. Because
// Time and TimeTicks respond differently to user-set time and NTP
// adjustments, this number is only an estimate. Nevertheless, this can be
// useful when you need to relate the value of TimeTicks to a real time and
// date. Note: Upon first invocation, this function takes a snapshot of the
// realtime clock to establish a reference point. This function will return
// the same value for the duration of the application, but will be different
// in future application runs.
// DEPRECATED:
// Because TimeTicks increments can get suspended on some platforms (e.g. Mac)
// and because this function returns a static value, this value will not get
// suspension time into account on those platforms.
// As TimeTicks is intended to be used to track a process duration and not an
// absolute time, if you plan to use this function, please consider using a
// Time instead.
// TODO(crbug.com/355423207): Remove function.
static TimeTicks UnixEpoch();
static void SetSharedUnixEpoch(TimeTicks);
// Returns |this| snapped to the next tick, given a |tick_phase| and
// repeating |tick_interval| in both directions. |this| may be before,
// after, or equal to the |tick_phase|.
TimeTicks SnappedToNextTick(TimeTicks tick_phase,
TimeDelta tick_interval) const;
// Returns an enum indicating the underlying clock being used to generate
// TimeTicks timestamps. This function should only be used for debugging and
// logging purposes.
static Clock GetClock();
// Converts an integer value representing TimeTicks to a class. This may be
// used when deserializing a |TimeTicks| structure, using a value known to be
// compatible. It is not provided as a constructor because the integer type
// may be unclear from the perspective of a caller.
//
// DEPRECATED - Do not use in new code. For deserializing TimeTicks values,
// prefer TimeTicks + TimeDelta(); however, be aware that the origin is not
// fixed and may vary. Serializing for persistence is strongly discouraged.
// http://crbug.com/634507
static constexpr TimeTicks FromInternalValue(int64_t us) {
return TimeTicks(us);
}
protected:
#if BUILDFLAG(IS_WIN)
typedef DWORD (*TickFunctionType)(void);
static TickFunctionType SetMockTickFunction(TickFunctionType ticker);
#endif
private:
friend class time_internal::TimeBase<TimeTicks>;
// Please use Now() to create a new object. This is for internal use
// and testing.
constexpr explicit TimeTicks(int64_t us) : TimeBase(us) {}
};
// For logging use only.
BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks);
// LiveTicks ------------------------------------------------------------------
// Behaves similarly to `TimeTicks` (a monotonically non-decreasing clock time)
// with the main difference being that `LiveTicks` is guaranteed not to advance
// while the system is suspended.
class BASE_EXPORT LiveTicks : public time_internal::TimeBase<LiveTicks> {
public:
constexpr LiveTicks() : TimeBase(0) {}
static LiveTicks Now();
private:
friend class time_internal::TimeBase<LiveTicks>;
// Please use Now() to create a new object. This is for internal use
// and testing.
constexpr explicit LiveTicks(int64_t us) : TimeBase(us) {}
};
// For logging use only.
BASE_EXPORT std::ostream& operator<<(std::ostream& os, LiveTicks live_ticks);
// ThreadTicks ----------------------------------------------------------------
// Represents a thread-specific clock that runs only while the thread is
// scheduled. This has the effect of counting time spent actually executing
// code, but not time spent blocked (e.g. on I/O), or ready and waiting to be
// run.
//
// Note: This is typically significantly more expensive than TimeTicks. For
// instance, on Linux-based systems, it requires a true system call, whereas
// TimeTicks::Now() calls are usually handled through the vDSO. This does not
// matter if a couple us of overhead is not important to you, but do not call
// this in a tight loop, or for sub-microsecond intervals.
//
// For instance, in 2024 on a Linux system, in a simple loop:
// - TimeTicks::Now() takes 27ns per loop iteration
// - ThreadTicks::Now() takes 875ns per loop iteration. Actual cost is likely
// higher in Chromium due to the sandbox (seccomp-BPF).
class BASE_EXPORT ThreadTicks : public time_internal::TimeBase<ThreadTicks> {
public:
constexpr ThreadTicks() : TimeBase(0) {}
// Returns true if ThreadTicks::Now() is supported on this system.
[[nodiscard]] static bool IsSupported() {
#if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_FUCHSIA)
return true;
#elif BUILDFLAG(IS_WIN)
return IsSupportedWin();
#else
return false;
#endif
}
// Waits until the initialization is completed. Needs to be guarded with a
// call to IsSupported().
static void WaitUntilInitialized() {
#if BUILDFLAG(IS_WIN)
WaitUntilInitializedWin();
#endif
}
// Returns thread-specific CPU-time on systems that support this feature.
// Needs to be guarded with a call to IsSupported(). Use this timer
// to (approximately) measure how much time the calling thread spent doing
// actual work vs. being de-scheduled. May return bogus results if the thread
// migrates to another CPU between two calls. Returns an empty ThreadTicks
// object until the initialization is completed. If a clock reading is
// absolutely needed, call WaitUntilInitialized() before this method.
static ThreadTicks Now();
#if BUILDFLAG(IS_WIN)
// Similar to Now() above except this returns thread-specific CPU time for an
// arbitrary thread. All comments for Now() method above apply apply to this
// method as well.
// TODO(crbug.com/420681350): Migrate the only use of this to
// PlatformThreadMetrics, to minimize the platform differences in base::Time.
static ThreadTicks GetForThread(const PlatformThreadHandle& thread_handle);
#endif
// Converts an integer value representing ThreadTicks to a class. This may be
// used when deserializing a |ThreadTicks| structure, using a value known to
// be compatible. It is not provided as a constructor because the integer type
// may be unclear from the perspective of a caller.
//
// DEPRECATED - Do not use in new code. For deserializing ThreadTicks values,
// prefer ThreadTicks + TimeDelta(); however, be aware that the origin is not
// fixed and may vary. Serializing for persistence is strongly
// discouraged. http://crbug.com/634507
static constexpr ThreadTicks FromInternalValue(int64_t us) {
return ThreadTicks(us);
}
private:
friend class time_internal::TimeBase<ThreadTicks>;
// Please use Now() or GetForThread() to create a new object. This is for
// internal use and testing.
constexpr explicit ThreadTicks(int64_t us) : TimeBase(us) {}
#if BUILDFLAG(IS_WIN)
[[nodiscard]] static bool IsSupportedWin();
static void WaitUntilInitializedWin();
#endif
};
// For logging use only.
BASE_EXPORT std::ostream& operator<<(std::ostream& os, ThreadTicks time_ticks);
} // namespace base
#endif // BASE_TIME_TIME_H_
|