1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/390223051): Remove C-library calls to fix the errors.
#pragma allow_unsafe_libc_calls
#endif
// Windows Timer Primer
//
// A good article: http://www.ddj.com/windows/184416651
// A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258
//
// The default windows timer, GetSystemTimePreciseAsFileTime is quite precise.
// However it is not always fast on some hardware and is slower than the
// performance counters.
//
// QueryPerformanceCounter is the logical choice for a high-precision timer.
// However, it is known to be buggy on some hardware. Specifically, it can
// sometimes "jump". On laptops, QPC can also be very expensive to call.
// It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
// on laptops. A unittest exists which will show the relative cost of various
// timers on any system.
//
// The next logical choice is timeGetTime(). timeGetTime has a precision of
// 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
// applications on the system. By default, precision is only 15.5ms.
// Unfortunately, we don't want to call timeBeginPeriod because we don't
// want to affect other applications. Further, on mobile platforms, use of
// faster multimedia timers can hurt battery life. See the intel
// article about this here:
// http://softwarecommunity.intel.com/articles/eng/1086.htm
//
// To work around all this, we're going to generally use timeGetTime(). We
// will only increase the system-wide timer if we're not running on battery
// power.
#include "base/time/time.h"
#include <windows.h>
#include <mmsystem.h>
#include <stdint.h>
#include <windows.foundation.h>
#include <atomic>
#include <ostream>
#include "base/base_switches.h"
#include "base/bit_cast.h"
#include "base/check_op.h"
#include "base/command_line.h"
#include "base/cpu.h"
#include "base/notreached.h"
#include "base/rand_util.h"
#include "base/synchronization/lock.h"
#include "base/threading/platform_thread.h"
#include "base/time/time_override.h"
#include "build/build_config.h"
namespace base {
namespace {
// From MSDN, FILETIME "Contains a 64-bit value representing the number of
// 100-nanosecond intervals since January 1, 1601 (UTC)."
int64_t FileTimeToMicroseconds(const FILETIME& ft) {
// Need to bit_cast to fix alignment, then divide by 10 to convert
// 100-nanoseconds to microseconds. This only works on little-endian
// machines.
return bit_cast<int64_t, FILETIME>(ft) / 10;
}
bool CanConvertToFileTime(int64_t us) {
return us >= 0 && us <= (std::numeric_limits<int64_t>::max() / 10);
}
FILETIME MicrosecondsToFileTime(int64_t us) {
DCHECK(CanConvertToFileTime(us)) << "Out-of-range: Cannot convert " << us
<< " microseconds to FILETIME units.";
// Multiply by 10 to convert microseconds to 100-nanoseconds. Bit_cast will
// handle alignment problems. This only works on little-endian machines.
return bit_cast<FILETIME, int64_t>(us * 10);
}
int64_t CurrentWallclockMicroseconds() {
FILETIME ft;
::GetSystemTimePreciseAsFileTime(&ft);
return FileTimeToMicroseconds(ft);
}
// Time between resampling the un-granular clock for this API.
constexpr TimeDelta kMaxTimeToAvoidDrift = Seconds(60);
int64_t g_initial_time = 0;
TimeTicks g_initial_ticks;
void InitializeClock() {
g_initial_ticks = subtle::TimeTicksNowIgnoringOverride();
g_initial_time = CurrentWallclockMicroseconds();
}
// Track the last value passed to timeBeginPeriod so that we can cancel that
// call by calling timeEndPeriod with the same value. A value of zero means that
// the timer frequency is not currently raised.
UINT g_last_interval_requested_ms = 0;
// Track if kMinTimerIntervalHighResMs or kMinTimerIntervalLowResMs is active.
// For most purposes this could also be named g_is_on_ac_power.
bool g_high_res_timer_enabled = false;
// How many times the high resolution timer has been called.
uint32_t g_high_res_timer_count = 0;
// Start time of the high resolution timer usage monitoring. This is needed
// to calculate the usage as percentage of the total elapsed time.
TimeTicks g_high_res_timer_usage_start;
// The cumulative time the high resolution timer has been in use since
// |g_high_res_timer_usage_start| moment.
TimeDelta g_high_res_timer_usage;
// Timestamp of the last activation change of the high resolution timer. This
// is used to calculate the cumulative usage.
TimeTicks g_high_res_timer_last_activation;
// The lock to control access to the above set of variables.
Lock* GetHighResLock() {
static auto* lock = new Lock();
return lock;
}
// The two values that ActivateHighResolutionTimer uses to set the systemwide
// timer interrupt frequency on Windows. These control how precise timers are
// but also have a big impact on battery life.
// Used when a faster timer has been requested (g_high_res_timer_count > 0) and
// the computer is running on AC power (plugged in) so that it's okay to go to
// the highest frequency.
constexpr UINT kMinTimerIntervalHighResMs = 1;
// Used when a faster timer has been requested (g_high_res_timer_count > 0) and
// the computer is running on DC power (battery) so that we don't want to raise
// the timer frequency as much.
constexpr UINT kMinTimerIntervalLowResMs = 8;
// Calculate the desired timer interrupt interval. Note that zero means that the
// system default should be used.
UINT GetIntervalMs() {
if (!g_high_res_timer_count) {
return 0; // Use the default, typically 15.625
}
if (g_high_res_timer_enabled) {
return kMinTimerIntervalHighResMs;
}
return kMinTimerIntervalLowResMs;
}
// Compare the currently requested timer interrupt interval to the last interval
// requested and update if necessary (by cancelling the old request and making a
// new request). If there is no change then do nothing.
void UpdateTimerIntervalLocked() {
UINT new_interval = GetIntervalMs();
if (new_interval == g_last_interval_requested_ms) {
return;
}
if (g_last_interval_requested_ms) {
// Record how long the timer interrupt frequency was raised.
g_high_res_timer_usage += subtle::TimeTicksNowIgnoringOverride() -
g_high_res_timer_last_activation;
// Reset the timer interrupt back to the default.
timeEndPeriod(g_last_interval_requested_ms);
}
g_last_interval_requested_ms = new_interval;
if (g_last_interval_requested_ms) {
// Record when the timer interrupt was raised.
g_high_res_timer_last_activation = subtle::TimeTicksNowIgnoringOverride();
timeBeginPeriod(g_last_interval_requested_ms);
}
}
// Returns the current value of the performance counter.
int64_t QPCNowRaw() {
LARGE_INTEGER perf_counter_now = {};
// According to the MSDN documentation for QueryPerformanceCounter(), this
// will never fail on systems that run XP or later.
// https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx
::QueryPerformanceCounter(&perf_counter_now);
return perf_counter_now.QuadPart;
}
#if !defined(ARCH_CPU_ARM64)
// Returns the performance frequency.
int64_t QPFRaw() {
LARGE_INTEGER perf_counter_frequency = {};
// According to the MSDN documentation for QueryPerformanceFrequency(), this
// will never fail on systems that run XP or later.
// https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancefrequency
::QueryPerformanceFrequency(&perf_counter_frequency);
return perf_counter_frequency.QuadPart;
}
#endif
bool SafeConvertToWord(int in, WORD* out) {
CheckedNumeric<WORD> result = in;
*out = result.ValueOrDefault(std::numeric_limits<WORD>::max());
return result.IsValid();
}
} // namespace
// Time -----------------------------------------------------------------------
namespace subtle {
Time TimeNowIgnoringOverride() {
if (g_initial_time == 0) {
InitializeClock();
}
// We implement time using the high-resolution timers so that we can get
// timeouts which likely are smaller than those if we just used
// CurrentWallclockMicroseconds().
//
// To make this work, we initialize the clock (g_initial_time) and the
// counter (initial_ctr). To compute the initial time, we can check
// the number of ticks that have elapsed, and compute the delta.
//
// To avoid any drift, we periodically resync the counters to the system
// clock.
while (true) {
TimeTicks ticks = TimeTicksNowIgnoringOverride();
// Calculate the time elapsed since we started our timer
TimeDelta elapsed = ticks - g_initial_ticks;
// Check if enough time has elapsed that we need to resync the clock.
if (elapsed > kMaxTimeToAvoidDrift) {
InitializeClock();
continue;
}
return Time() + elapsed + Microseconds(g_initial_time);
}
}
Time TimeNowFromSystemTimeIgnoringOverride() {
// Force resync.
InitializeClock();
return Time() + Microseconds(g_initial_time);
}
} // namespace subtle
// static
Time Time::FromFileTime(FILETIME ft) {
if (bit_cast<int64_t, FILETIME>(ft) == 0) {
return Time();
}
if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() &&
ft.dwLowDateTime == std::numeric_limits<DWORD>::max()) {
return Max();
}
return Time(FileTimeToMicroseconds(ft));
}
FILETIME Time::ToFileTime() const {
if (is_null()) {
return bit_cast<FILETIME, int64_t>(0);
}
if (is_max()) {
FILETIME result;
result.dwHighDateTime = std::numeric_limits<DWORD>::max();
result.dwLowDateTime = std::numeric_limits<DWORD>::max();
return result;
}
return MicrosecondsToFileTime(us_);
}
// static
// Enable raising of the system-global timer interrupt frequency to 1 kHz (when
// enable is true, which happens when on AC power) or some lower frequency when
// on battery power (when enable is false). If the g_high_res_timer_enabled
// setting hasn't actually changed or if if there are no outstanding requests
// (if g_high_res_timer_count is zero) then do nothing.
// TL;DR - call this when going from AC to DC power or vice-versa.
void Time::EnableHighResolutionTimer(bool enable) {
AutoLock lock(*GetHighResLock());
g_high_res_timer_enabled = enable;
UpdateTimerIntervalLocked();
}
// static
// Request that the system-global Windows timer interrupt frequency be raised.
// How high the frequency is raised depends on the system's power state and
// possibly other options.
// TL;DR - call this at the beginning and end of a time period where you want
// higher frequency timer interrupts. Each call with activating=true must be
// paired with a subsequent activating=false call.
bool Time::ActivateHighResolutionTimer(bool activating) {
// We only do work on the transition from zero to one or one to zero so we
// can easily undo the effect (if necessary) when EnableHighResolutionTimer is
// called.
const uint32_t max = std::numeric_limits<uint32_t>::max();
AutoLock lock(*GetHighResLock());
if (activating) {
DCHECK_NE(g_high_res_timer_count, max);
++g_high_res_timer_count;
} else {
DCHECK_NE(g_high_res_timer_count, 0u);
--g_high_res_timer_count;
}
UpdateTimerIntervalLocked();
return true;
}
// static
// See if the timer interrupt interval has been set to the lowest value.
bool Time::IsHighResolutionTimerInUse() {
AutoLock lock(*GetHighResLock());
return g_last_interval_requested_ms == kMinTimerIntervalHighResMs;
}
// static
void Time::ResetHighResolutionTimerUsage() {
AutoLock lock(*GetHighResLock());
g_high_res_timer_usage = TimeDelta();
g_high_res_timer_usage_start = subtle::TimeTicksNowIgnoringOverride();
if (g_high_res_timer_count > 0) {
g_high_res_timer_last_activation = g_high_res_timer_usage_start;
}
}
// static
double Time::GetHighResolutionTimerUsage() {
AutoLock lock(*GetHighResLock());
TimeTicks now = subtle::TimeTicksNowIgnoringOverride();
TimeDelta elapsed_time = now - g_high_res_timer_usage_start;
if (elapsed_time.is_zero()) {
// This is unexpected but possible if TimeTicks resolution is low and
// GetHighResolutionTimerUsage() is called promptly after
// ResetHighResolutionTimerUsage().
return 0.0;
}
TimeDelta used_time = g_high_res_timer_usage;
if (g_high_res_timer_count > 0) {
// If currently activated add the remainder of time since the last
// activation.
used_time += now - g_high_res_timer_last_activation;
}
return used_time / elapsed_time * 100;
}
// static
bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) {
// Create the system struct representing our exploded time. It will either be
// in local time or UTC.If casting from int to WORD results in overflow,
// fail and return Time(0).
SYSTEMTIME st;
if (!SafeConvertToWord(exploded.year, &st.wYear) ||
!SafeConvertToWord(exploded.month, &st.wMonth) ||
!SafeConvertToWord(exploded.day_of_week, &st.wDayOfWeek) ||
!SafeConvertToWord(exploded.day_of_month, &st.wDay) ||
!SafeConvertToWord(exploded.hour, &st.wHour) ||
!SafeConvertToWord(exploded.minute, &st.wMinute) ||
!SafeConvertToWord(exploded.second, &st.wSecond) ||
!SafeConvertToWord(exploded.millisecond, &st.wMilliseconds)) {
*time = Time(0);
return false;
}
FILETIME ft;
bool success = true;
// Ensure that it's in UTC.
if (is_local) {
SYSTEMTIME utc_st;
success = TzSpecificLocalTimeToSystemTime(nullptr, &st, &utc_st) &&
SystemTimeToFileTime(&utc_st, &ft);
} else {
success = !!SystemTimeToFileTime(&st, &ft);
}
*time = Time(success ? FileTimeToMicroseconds(ft) : 0);
return success;
}
void Time::Explode(bool is_local, Exploded* exploded) const {
if (!CanConvertToFileTime(us_)) {
// We are not able to convert it to FILETIME.
ZeroMemory(exploded, sizeof(*exploded));
return;
}
const FILETIME utc_ft = MicrosecondsToFileTime(us_);
// FILETIME in local time if necessary.
bool success = true;
// FILETIME in SYSTEMTIME (exploded).
SYSTEMTIME st = {0};
if (is_local) {
SYSTEMTIME utc_st;
// We don't use FileTimeToLocalFileTime here, since it uses the current
// settings for the time zone and daylight saving time. Therefore, if it is
// daylight saving time, it will take daylight saving time into account,
// even if the time you are converting is in standard time.
success = FileTimeToSystemTime(&utc_ft, &utc_st) &&
SystemTimeToTzSpecificLocalTime(nullptr, &utc_st, &st);
} else {
success = !!FileTimeToSystemTime(&utc_ft, &st);
}
if (!success) {
ZeroMemory(exploded, sizeof(*exploded));
return;
}
exploded->year = st.wYear;
exploded->month = st.wMonth;
exploded->day_of_week = st.wDayOfWeek;
exploded->day_of_month = st.wDay;
exploded->hour = st.wHour;
exploded->minute = st.wMinute;
exploded->second = st.wSecond;
exploded->millisecond = st.wMilliseconds;
}
// TimeTicks ------------------------------------------------------------------
namespace {
// We define a wrapper to adapt between the __stdcall and __cdecl call of the
// mock function, and to avoid a static constructor. Assigning an import to a
// function pointer directly would require setup code to fetch from the IAT.
DWORD timeGetTimeWrapper() {
return timeGetTime();
}
DWORD (*g_tick_function)(void) = &timeGetTimeWrapper;
// A structure holding the most significant bits of "last seen" and a
// "rollover" counter.
union LastTimeAndRolloversState {
// The state as a single 32-bit opaque value.
std::atomic<int32_t> as_opaque_32{0};
// The state as usable values.
struct {
// The top 8-bits of the "last" time. This is enough to check for rollovers
// and the small bit-size means fewer CompareAndSwap operations to store
// changes in state, which in turn makes for fewer retries.
uint8_t last_8;
// A count of the number of detected rollovers. Using this as bits 47-32
// of the upper half of a 64-bit value results in a 48-bit tick counter.
// This extends the total rollover period from about 49 days to about 8800
// years while still allowing it to be stored with last_8 in a single
// 32-bit value.
uint16_t rollovers;
} as_values;
};
std::atomic<int32_t> g_last_time_and_rollovers = 0;
static_assert(sizeof(LastTimeAndRolloversState) <=
sizeof(g_last_time_and_rollovers),
"LastTimeAndRolloversState does not fit in a single atomic word");
// We use timeGetTime() to implement TimeTicks::Now(). This can be problematic
// because it returns the number of milliseconds since Windows has started,
// which will roll over the 32-bit value every ~49 days. We try to track
// rollover ourselves, which works if TimeTicks::Now() is called at least every
// 48.8 days (not 49 days because only changes in the top 8 bits get noticed).
TimeTicks RolloverProtectedNow() {
LastTimeAndRolloversState state;
DWORD now; // DWORD is always unsigned 32 bits.
while (true) {
// Fetch the "now" and "last" tick values, updating "last" with "now" and
// incrementing the "rollovers" counter if the tick-value has wrapped back
// around. Atomic operations ensure that both "last" and "rollovers" are
// always updated together.
int32_t original =
g_last_time_and_rollovers.load(std::memory_order_acquire);
state.as_opaque_32 = original;
now = g_tick_function();
uint8_t now_8 = static_cast<uint8_t>(now >> 24);
if (now_8 < state.as_values.last_8) {
++state.as_values.rollovers;
}
state.as_values.last_8 = now_8;
// If the state hasn't changed, exit the loop.
if (state.as_opaque_32 == original) {
break;
}
// Save the changed state. If the existing value is unchanged from the
// original so that the operation is successful. Exit the loop.
bool success = g_last_time_and_rollovers.compare_exchange_strong(
original, state.as_opaque_32, std::memory_order_release);
if (success) {
break;
}
// Another thread has done something in between so retry from the top.
}
return TimeTicks() +
Milliseconds(now +
(static_cast<uint64_t>(state.as_values.rollovers) << 32));
}
// Discussion of tick counter options on Windows:
//
// (1) CPU cycle counter. (Retrieved via RDTSC)
// The CPU counter provides the highest resolution time stamp and is the least
// expensive to retrieve. However, on older CPUs, two issues can affect its
// reliability: First it is maintained per processor and not synchronized
// between processors. Also, the counters will change frequency due to thermal
// and power changes, and stop in some states.
//
// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
// resolution (<1 microsecond) time stamp. On most hardware running today, it
// auto-detects and uses the constant-rate RDTSC counter to provide extremely
// efficient and reliable time stamps.
//
// On older CPUs where RDTSC is unreliable, it falls back to using more
// expensive (20X to 40X more costly) alternate clocks, such as HPET or the ACPI
// PM timer, and can involve system calls; and all this is up to the HAL (with
// some help from ACPI). According to
// http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx, in the
// worst case, it gets the counter from the rollover interrupt on the
// programmable interrupt timer. In best cases, the HAL may conclude that the
// RDTSC counter runs at a constant frequency, then it uses that instead. On
// multiprocessor machines, it will try to verify the values returned from
// RDTSC on each processor are consistent with each other, and apply a handful
// of workarounds for known buggy hardware. In other words, QPC is supposed to
// give consistent results on a multiprocessor computer, but for older CPUs it
// can be unreliable due bugs in BIOS or HAL.
//
// (3) System time. The system time provides a low-resolution (from ~1 to ~15.6
// milliseconds) time stamp but is comparatively less expensive to retrieve and
// more reliable. Time::EnableHighResolutionTimer() and
// Time::ActivateHighResolutionTimer() can be called to alter the resolution of
// this timer; and also other Windows applications can alter it, affecting this
// one.
TimeTicks InitialNowFunction();
// See "threading notes" in InitializeNowFunctionPointer() for details on how
// concurrent reads/writes to these globals has been made safe.
std::atomic<TimeTicksNowFunction> g_time_ticks_now_ignoring_override_function{
&InitialNowFunction};
int64_t g_qpc_ticks_per_second = 0;
TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) {
// Ensure that the assignment to |g_qpc_ticks_per_second|, made in
// InitializeNowFunctionPointer(), has happened by this point.
std::atomic_thread_fence(std::memory_order_acquire);
DCHECK_GT(g_qpc_ticks_per_second, 0);
// If the QPC Value is below the overflow threshold, we proceed with
// simple multiply and divide.
if (qpc_value < Time::kQPCOverflowThreshold) {
return Microseconds(qpc_value * Time::kMicrosecondsPerSecond /
g_qpc_ticks_per_second);
}
// Otherwise, calculate microseconds in a round about manner to avoid
// overflow and precision issues.
int64_t whole_seconds = qpc_value / g_qpc_ticks_per_second;
int64_t leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second);
return Microseconds((whole_seconds * Time::kMicrosecondsPerSecond) +
((leftover_ticks * Time::kMicrosecondsPerSecond) /
g_qpc_ticks_per_second));
}
TimeTicks QPCNow() {
return TimeTicks() + QPCValueToTimeDelta(QPCNowRaw());
}
std::atomic<bool> g_opted_out_of_qpc_trial_because_no_command_line = false;
void InitializeNowFunctionPointer() {
LARGE_INTEGER ticks_per_sec = {};
// `QueryPerformanceFrequency` always succeeds and sets its out parameter to a
// nonzero value on Windows versions more recent than Windows XP:
// https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancefrequency
// Once these `CHECK`s are shown to not trigger in the wild, this condition
// can be changed to a CHECK and `ticks_per_sec.QuadPart <= 0 ` can be removed
// from the ternary below that selects the function pointer.
if (!QueryPerformanceFrequency(&ticks_per_sec)) {
ticks_per_sec.QuadPart = 0;
NOTREACHED(base::NotFatalUntil::M138);
} else {
CHECK(ticks_per_sec.QuadPart > 0, base::NotFatalUntil::M138);
}
// If the QPC implementation is expensive and/or unreliable, TimeTicks::Now()
// will still use the low-resolution clock. A CPU lacking a non-stop time
// counter will cause Windows to provide an alternate QPC implementation that
// works, but is expensive to use.
//
// Otherwise, Now uses the high-resolution QPC clock. As of 9 September 2024,
// ~97% of users fall within this category.
bool eligible_for_high_res_time_ticks = false;
// To debug an issue where in the field, all clients are in the Control group.
// We suspect it might be due to the command line not being ready before this
// function is called in some build configurations.
bool opted_out_because_no_command_line = false;
// `ticks_per_sec.QuadPart <= 0` shouldn't happen post-WinXP (see CHECKs
// above) but if it does, QPC is broken and shouldn't be used for any reason.
if (ticks_per_sec.QuadPart > 0) {
CPU cpu;
// QPC is enabled for all devices with invariant TSCs.
// On devices where the CPU doesn't report having an invariant TSC, we would
// previously have considered the QPC overhead to be unacceptable. For this
// field trial, try enabling the high-res, QPC-based implementation of
// TimeTicks on 50% of such devices.
bool force_high_res_time_ticks = false;
// There is an explicit check for
// `base::CommandLine::InitializedForCurrentProcess()` not being null here,
// because some targets (like `generate_colors_info`) use `TimeTicks` during
// the build without initializing this command line object. In those cases,
// it's also not necessary to roll the dice to force high res timer since
// we're not running a browser.
if (base::CommandLine::InitializedForCurrentProcess()) {
if (base::CommandLine::ForCurrentProcess()->HasSwitch(
switches::kForceHighResTimeTicks)) {
// If `switches::kForceHighResTimeTicks` is present, it's because this
// is a child process that is being instructed to use the same clock as
// its parent browser process. In this case, force the use of high
// resolution TimeTicks iff `switches::kForceHighResTimeTicks` is set to
// "enabled". It can also take the value of "disabled" when the browser
// is in either the "Control" or "Excluded" groups.
auto switch_value =
base::CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
switches::kForceHighResTimeTicks);
if (switch_value == "enabled") {
force_high_res_time_ticks = true;
}
} else {
// If `switches::kForceHighResTimeTicks` isn't present, this is either
// the browser process so we should roll a dice to determine if we're in
// the field trial, or this device already uses high resolution
// TimeTicks so the dice roll will not be used.
force_high_res_time_ticks = base::RandDouble() < 0.5;
}
} else {
opted_out_because_no_command_line = true;
}
eligible_for_high_res_time_ticks =
cpu.has_non_stop_time_stamp_counter() || force_high_res_time_ticks;
}
const TimeTicksNowFunction now_function =
eligible_for_high_res_time_ticks ? &QPCNow : &RolloverProtectedNow;
// Threading note 1: In an unlikely race condition, it's possible for two or
// more threads to enter InitializeNowFunctionPointer() in parallel. This is
// not a problem since all threads end up writing out the same values
// to the global variables, and those variable being atomic are safe to read
// from other threads.
//
// Under the high resolution field trial for low resolution devices, multiple
// threads racing could roll a different dice roll and attempt to set the
// functions to different values. To avoid having thread A set the "now"
// function to something, and thread B set the "now without override" function
// to something else, only the thread where the first compare_exchange
// succeeds is allowed to proceed with setting the remainder of the global
// state.
//
// Threading note 2: A release fence is placed here to ensure, from the
// perspective of other threads using the function pointers, that the
// assignment to |g_qpc_ticks_per_second| happens before the function pointers
// are changed.
g_qpc_ticks_per_second = ticks_per_sec.QuadPart;
std::atomic_thread_fence(std::memory_order_release);
// memory_order_relaxed is sufficient since an explicit fence was inserted
// above.
base::TimeTicksNowFunction initial_time_ticks_now_function =
&InitialNowFunction;
if (g_time_ticks_now_ignoring_override_function.compare_exchange_strong(
initial_time_ticks_now_function, now_function,
std::memory_order_relaxed)) {
// Also set g_time_ticks_now_function to avoid the additional indirection
// via TimeTicksNowIgnoringOverride() for future calls to TimeTicks::Now().
internal::g_time_ticks_now_function.store(now_function,
std::memory_order_relaxed);
// Only the thread setting the functions should report whether its command
// line was ready.
g_opted_out_of_qpc_trial_because_no_command_line.store(
opted_out_because_no_command_line, std::memory_order_relaxed);
}
}
TimeTicks InitialNowFunction() {
InitializeNowFunctionPointer();
return g_time_ticks_now_ignoring_override_function.load(
std::memory_order_relaxed)();
}
enum class HighResolutionTrialState {
kAlreadyHighResolution,
kExcludedFromTrial,
kDontUseHighResolution,
kUseHighResolution,
kExcludedBecauseNoCommandLine,
};
HighResolutionTrialState GetHighResolutionTrialState() {
// This is a copy of the conditions in `InitializeNowFunctionPointer`, minus
// the work around global atomics. The return value of this function shouldn't
// vary on the same device.
// TODO(crbug.com/410560675): Remove this function once experimentation with
// QPC is concluded.
// IsHighResolution() initializes the clock if it hasn't been done.
bool is_high_res = TimeTicks::IsHighResolution();
if (g_qpc_ticks_per_second == 0) {
// QPC is broken and can't be enabled.
return HighResolutionTrialState::kExcludedFromTrial;
}
CPU cpu;
if (!cpu.has_non_stop_time_stamp_counter()) {
if (g_opted_out_of_qpc_trial_because_no_command_line.load(
std::memory_order_relaxed)) {
// If there was no command line ready when initializing the time
// functions, put the client in a separate group.
return HighResolutionTrialState::kExcludedBecauseNoCommandLine;
} else if (is_high_res) {
// If the device isn't considered eligible for QPC-based TimeTicks but is
// using it regardless, it means that it's part of the experimental QPC
// group.
return HighResolutionTrialState::kUseHighResolution;
} else {
// Otherwise, the device is expectedly using low-res TimeTicks, add it to
// the control group.
return HighResolutionTrialState::kDontUseHighResolution;
}
}
// Don't add clients with ideal QPC implementations to the trial at all.
return HighResolutionTrialState::kAlreadyHighResolution;
}
} // namespace
// static
TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
TickFunctionType ticker) {
TickFunctionType old = g_tick_function;
g_tick_function = ticker;
g_last_time_and_rollovers.store(0, std::memory_order_relaxed);
return old;
}
namespace subtle {
TimeTicks TimeTicksNowIgnoringOverride() {
return g_time_ticks_now_ignoring_override_function.load(
std::memory_order_relaxed)();
}
TimeTicks TimeTicksLowResolutionNowIgnoringOverride() {
return RolloverProtectedNow();
}
} // namespace subtle
// static
bool TimeTicks::IsHighResolution() {
if (g_time_ticks_now_ignoring_override_function == &InitialNowFunction) {
InitializeNowFunctionPointer();
}
return g_time_ticks_now_ignoring_override_function == &QPCNow;
}
// static
bool TimeTicks::IsConsistentAcrossProcesses() {
// According to Windows documentation [1] QPC is consistent post-Windows
// Vista. So if we are using QPC then we are consistent which is the same as
// being high resolution.
//
// [1]
// https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
//
// "In general, the performance counter results are consistent across all
// processors in multi-core and multi-processor systems, even when measured on
// different threads or processes. Here are some exceptions to this rule:
// - Pre-Windows Vista operating systems that run on certain processors might
// violate this consistency because of one of these reasons:
// 1. The hardware processors have a non-invariant TSC and the BIOS
// doesn't indicate this condition correctly.
// 2. The TSC synchronization algorithm that was used wasn't suitable for
// systems with large numbers of processors."
return IsHighResolution();
}
// static
TimeTicks::Clock TimeTicks::GetClock() {
return IsHighResolution() ? Clock::WIN_QPC
: Clock::WIN_ROLLOVER_PROTECTED_TIME_GET_TIME;
}
// LiveTicks ------------------------------------------------------------------
namespace subtle {
LiveTicks LiveTicksNowIgnoringOverride() {
ULONGLONG unbiased_interrupt_time;
QueryUnbiasedInterruptTimePrecise(&unbiased_interrupt_time);
// QueryUnbiasedInterruptTimePrecise gets the interrupt time in system time
// units of 100 nanoseconds.
return LiveTicks() + Nanoseconds(unbiased_interrupt_time * 100);
}
} // namespace subtle
// ThreadTicks ----------------------------------------------------------------
namespace subtle {
ThreadTicks ThreadTicksNowIgnoringOverride() {
return ThreadTicks::GetForThread(PlatformThread::CurrentHandle());
}
} // namespace subtle
// static
ThreadTicks ThreadTicks::GetForThread(
const PlatformThreadHandle& thread_handle) {
DCHECK(IsSupported());
#if defined(ARCH_CPU_ARM64)
// QueryThreadCycleTime versus TSCTicksPerSecond doesn't have much relation to
// actual elapsed time on Windows on Arm, because QueryThreadCycleTime is
// backed by the actual number of CPU cycles executed, rather than a
// constant-rate timer like Intel. To work around this, use GetThreadTimes
// (which isn't as accurate but is meaningful as a measure of elapsed
// per-thread time).
FILETIME creation_time, exit_time, kernel_time, user_time;
::GetThreadTimes(thread_handle.platform_handle(), &creation_time, &exit_time,
&kernel_time, &user_time);
const int64_t us = FileTimeToMicroseconds(user_time);
#else
// Get the number of TSC ticks used by the current thread.
ULONG64 thread_cycle_time = 0;
::QueryThreadCycleTime(thread_handle.platform_handle(), &thread_cycle_time);
// Get the frequency of the TSC.
const double tsc_ticks_per_second = time_internal::TSCTicksPerSecond();
if (tsc_ticks_per_second == 0) {
return ThreadTicks();
}
// Return the CPU time of the current thread.
const double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second;
const int64_t us =
static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond);
#endif
return ThreadTicks(us);
}
// static
bool ThreadTicks::IsSupportedWin() {
#if defined(ARCH_CPU_ARM64)
// The Arm implementation does not use QueryThreadCycleTime and therefore does
// not care about the time stamp counter.
return true;
#else
return time_internal::HasConstantRateTSC();
#endif
}
// static
void ThreadTicks::WaitUntilInitializedWin() {
#if !defined(ARCH_CPU_ARM64)
while (time_internal::TSCTicksPerSecond() == 0) {
::Sleep(10);
}
#endif
}
// static
TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) {
return TimeTicks() + QPCValueToTimeDelta(qpc_value);
}
// static
bool TimeTicks::GetHighResolutionTimeTicksFieldTrial(std::string* trial_name,
std::string* group_name) {
auto state = GetHighResolutionTrialState();
switch (state) {
case HighResolutionTrialState::kAlreadyHighResolution:
return false;
case HighResolutionTrialState::kExcludedFromTrial:
*group_name = "Excluded";
break;
case HighResolutionTrialState::kDontUseHighResolution:
*group_name = "Control";
break;
case HighResolutionTrialState::kUseHighResolution:
*group_name = "Enabled";
break;
case HighResolutionTrialState::kExcludedBecauseNoCommandLine:
*group_name = "ExcludedBecauseNoCommandLine";
break;
}
*trial_name = "HighResolutionTimeTicks";
return true;
}
// static
void TimeTicks::MaybeAddHighResolutionTimeTicksSwitch(
base::CommandLine* command_line) {
auto state = GetHighResolutionTrialState();
switch (state) {
case HighResolutionTrialState::kAlreadyHighResolution:
// If the device is already using an ideal QPC implementation for
// TimeTicks, don't pass any command line flag.
break;
case HighResolutionTrialState::kExcludedFromTrial:
case HighResolutionTrialState::kExcludedBecauseNoCommandLine:
// In the cases of "Control" and "Excluded", tell the child process not to
// use QPC for TimeTicks to match the browser process.
[[fallthrough]];
case HighResolutionTrialState::kDontUseHighResolution:
command_line->AppendSwitchASCII(switches::kForceHighResTimeTicks,
"disabled");
break;
case HighResolutionTrialState::kUseHighResolution:
// If the device doesn't report having an invariant TSC, but the browser
// process has rolled a dice and is being included in the high-resolution
// trial's "enabled" group, pass this information to the child process.
command_line->AppendSwitchASCII(switches::kForceHighResTimeTicks,
"enabled");
break;
}
}
// TimeDelta ------------------------------------------------------------------
// static
TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) {
return QPCValueToTimeDelta(qpc_value);
}
// static
TimeDelta TimeDelta::FromFileTime(FILETIME ft) {
return Microseconds(FileTimeToMicroseconds(ft));
}
// static
TimeDelta TimeDelta::FromWinrtDateTime(ABI::Windows::Foundation::DateTime dt) {
// UniversalTime is 100 ns intervals since January 1, 1601 (UTC)
return Microseconds(dt.UniversalTime / 10);
}
ABI::Windows::Foundation::DateTime TimeDelta::ToWinrtDateTime() const {
ABI::Windows::Foundation::DateTime date_time;
date_time.UniversalTime = InMicroseconds() * 10;
return date_time;
}
// static
TimeDelta TimeDelta::FromWinrtTimeSpan(ABI::Windows::Foundation::TimeSpan ts) {
// Duration is 100 ns intervals
return Microseconds(ts.Duration / 10);
}
ABI::Windows::Foundation::TimeSpan TimeDelta::ToWinrtTimeSpan() const {
ABI::Windows::Foundation::TimeSpan time_span;
time_span.Duration = InMicroseconds() * 10;
return time_span;
}
#if !defined(ARCH_CPU_ARM64)
namespace time_internal {
bool HasConstantRateTSC() {
static bool is_supported = CPU().has_non_stop_time_stamp_counter();
return is_supported;
}
double TSCTicksPerSecond() {
DCHECK(HasConstantRateTSC());
// The value returned by QueryPerformanceFrequency() cannot be used as the TSC
// frequency, because there is no guarantee that the TSC frequency is equal to
// the performance counter frequency.
// The TSC frequency is cached in a static variable because it takes some time
// to compute it.
static double tsc_ticks_per_second = 0;
if (tsc_ticks_per_second != 0) {
return tsc_ticks_per_second;
}
// Increase the thread priority to reduces the chances of having a context
// switch during a reading of the TSC and the performance counter.
const int previous_priority = ::GetThreadPriority(::GetCurrentThread());
::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
// The first time that this function is called, make an initial reading of the
// TSC and the performance counter.
static const uint64_t tsc_initial = __rdtsc();
static const int64_t perf_counter_initial = QPCNowRaw();
static const int64_t perf_counter_frequency = QPFRaw();
// Make a another reading of the TSC and the performance counter every time
// that this function is called.
const uint64_t tsc_now = __rdtsc();
const int64_t perf_counter_now = QPCNowRaw();
// Reset the thread priority.
::SetThreadPriority(::GetCurrentThread(), previous_priority);
// Make sure that at least 50 ms elapsed between the 2 readings. The first
// time that this function is called, we don't expect this to be the case.
// Note: The longer the elapsed time between the 2 readings is, the more
// accurate the computed TSC frequency will be. The 50 ms value was
// chosen because local benchmarks show that it allows us to get a
// stddev of less than 1 tick/us between multiple runs.
DCHECK_GE(perf_counter_now, perf_counter_initial);
const int64_t perf_counter_ticks = perf_counter_now - perf_counter_initial;
const double elapsed_time_seconds =
perf_counter_ticks / static_cast<double>(perf_counter_frequency);
constexpr double kMinimumEvaluationPeriodSeconds = 0.05;
if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds) {
return 0;
}
// Compute the frequency of the TSC.
DCHECK_GE(tsc_now, tsc_initial);
const uint64_t tsc_ticks = tsc_now - tsc_initial;
tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds;
return tsc_ticks_per_second;
}
} // namespace time_internal
#endif // defined(ARCH_CPU_ARM64)
} // namespace base
|