1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#ifndef BASE_WIN_SCOPED_SAFEARRAY_H_
#define BASE_WIN_SCOPED_SAFEARRAY_H_
#include <objbase.h>
#include <optional>
#include "base/base_export.h"
#include "base/check_op.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/win/variant_conversions.h"
namespace base {
namespace win {
// Manages a Windows SAFEARRAY. This is a minimal wrapper that simply provides
// RAII semantics and does not duplicate the extensive functionality that
// CComSafeArray offers.
class BASE_EXPORT ScopedSafearray {
public:
// LockScope<VARTYPE> class for automatically managing the lifetime of a
// SAFEARRAY lock, and granting easy access to the underlying data either
// through random access or as an iterator.
// It is undefined behavior if the underlying SAFEARRAY is destroyed
// before the LockScope.
// LockScope implements std::iterator_traits as a random access iterator, so
// that LockScope is compatible with STL methods that require these traits.
template <VARTYPE ElementVartype>
class BASE_EXPORT LockScope final {
public:
// Type declarations to support std::iterator_traits
using iterator_category = std::random_access_iterator_tag;
using value_type =
typename internal::VariantConverter<ElementVartype>::Type;
using difference_type = ptrdiff_t;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = value_type*;
using const_pointer = const value_type*;
LockScope() = default;
LockScope(LockScope<ElementVartype>&& other)
: safearray_(std::exchange(other.safearray_, nullptr)),
vartype_(std::exchange(other.vartype_, VT_EMPTY)),
array_(std::exchange(other.array_, nullptr)),
array_size_(std::exchange(other.array_size_, 0U)) {}
LockScope<ElementVartype>& operator=(LockScope<ElementVartype>&& other) {
DCHECK_NE(this, &other);
Reset();
safearray_ = std::exchange(other.safearray_, nullptr);
vartype_ = std::exchange(other.vartype_, VT_EMPTY);
array_ = std::exchange(other.array_, nullptr);
array_size_ = std::exchange(other.array_size_, 0U);
return *this;
}
LockScope(const LockScope&) = delete;
LockScope& operator=(const LockScope&) = delete;
~LockScope() { Reset(); }
VARTYPE Type() const { return vartype_; }
size_t size() const { return array_size_; }
pointer begin() { return array_; }
pointer end() { return array_ + array_size_; }
const_pointer begin() const { return array_; }
const_pointer end() const { return array_ + array_size_; }
pointer data() { return array_; }
const_pointer data() const { return array_; }
reference operator[](size_t index) { return at(index); }
const_reference operator[](size_t index) const { return at(index); }
reference at(size_t index) {
DCHECK_NE(array_, nullptr);
DCHECK_LT(index, array_size_);
return array_[index];
}
const_reference at(size_t index) const {
return const_cast<LockScope<ElementVartype>*>(this)->at(index);
}
private:
LockScope(SAFEARRAY* safearray,
VARTYPE vartype,
pointer array,
size_t array_size)
: safearray_(safearray),
vartype_(vartype),
array_(array),
array_size_(array_size) {}
void Reset() {
if (safearray_) {
SafeArrayUnaccessData(safearray_);
}
safearray_ = nullptr;
vartype_ = VT_EMPTY;
array_ = nullptr;
array_size_ = 0U;
}
// RAW_PTR_EXCLUSION: Comes from the operating system and may have been
// laundered. If rewritten, it may generate an incorrect Dangling Pointer
// Detector error.
RAW_PTR_EXCLUSION SAFEARRAY* safearray_ = nullptr;
VARTYPE vartype_ = VT_EMPTY;
pointer array_ = nullptr;
size_t array_size_ = 0U;
friend class ScopedSafearray;
};
explicit ScopedSafearray(SAFEARRAY* safearray = nullptr)
: safearray_(safearray) {}
ScopedSafearray(const ScopedSafearray&) = delete;
ScopedSafearray& operator=(const ScopedSafearray&) = delete;
// Move constructor
ScopedSafearray(ScopedSafearray&& r) noexcept : safearray_(r.safearray_) {
r.safearray_ = nullptr;
}
// Move operator=. Allows assignment from a ScopedSafearray rvalue.
ScopedSafearray& operator=(ScopedSafearray&& rvalue) {
Reset(rvalue.Release());
return *this;
}
~ScopedSafearray() { Destroy(); }
// Creates a LockScope for accessing the contents of a
// single-dimensional SAFEARRAYs.
template <VARTYPE ElementVartype>
std::optional<LockScope<ElementVartype>> CreateLockScope() const {
if (!safearray_ || SafeArrayGetDim(safearray_) != 1) {
return std::nullopt;
}
VARTYPE vartype;
HRESULT hr = SafeArrayGetVartype(safearray_, &vartype);
if (FAILED(hr) ||
!internal::VariantConverter<ElementVartype>::IsConvertibleTo(vartype)) {
return std::nullopt;
}
typename LockScope<ElementVartype>::pointer array = nullptr;
hr = SafeArrayAccessData(safearray_, reinterpret_cast<void**>(&array));
if (FAILED(hr)) {
return std::nullopt;
}
const size_t array_size = GetCount();
return LockScope<ElementVartype>(safearray_, vartype, array, array_size);
}
void Destroy() {
if (safearray_) {
HRESULT hr = SafeArrayDestroy(safearray_);
DCHECK_EQ(S_OK, hr);
safearray_ = nullptr;
}
}
// Give ScopedSafearray ownership over an already allocated SAFEARRAY or
// nullptr.
void Reset(SAFEARRAY* safearray = nullptr) {
if (safearray != safearray_) {
Destroy();
safearray_ = safearray;
}
}
// Releases ownership of the SAFEARRAY to the caller.
SAFEARRAY* Release() {
SAFEARRAY* safearray = safearray_;
safearray_ = nullptr;
return safearray;
}
// Retrieves the pointer address.
// Used to receive SAFEARRAYs as out arguments (and take ownership).
// This function releases any existing references because it will leak
// the existing ref otherwise.
// Usage: GetSafearray(safearray.Receive());
SAFEARRAY** Receive() {
Destroy();
return &safearray_;
}
// Returns the number of elements in a dimension of the array.
size_t GetCount(UINT dimension = 0) const {
DCHECK(safearray_);
// Initialize |lower| and |upper| so this method will return zero if either
// SafeArrayGetLBound or SafeArrayGetUBound returns failure because they
// only write to the output parameter when successful.
LONG lower = 0;
LONG upper = -1;
DCHECK_LT(dimension, SafeArrayGetDim(safearray_));
HRESULT hr = SafeArrayGetLBound(safearray_, dimension + 1, &lower);
DCHECK(SUCCEEDED(hr));
hr = SafeArrayGetUBound(safearray_, dimension + 1, &upper);
DCHECK(SUCCEEDED(hr));
LONG count = upper - lower + 1;
// SafeArrays may have negative lower bounds, so check for wraparound.
DCHECK_GE(count, 0);
return static_cast<size_t>(count);
}
// Returns the internal pointer.
SAFEARRAY* Get() const { return safearray_; }
// Forbid comparison of ScopedSafearray types. You should never have the same
// SAFEARRAY owned by two different scoped_ptrs.
bool operator==(const ScopedSafearray& safearray2) const = delete;
bool operator!=(const ScopedSafearray& safearray2) const = delete;
private:
// RAW_PTR_EXCLUSION: Like LockScope::safearray_, this comes from the
// operating system.
RAW_PTR_EXCLUSION SAFEARRAY* safearray_;
};
} // namespace win
} // namespace base
#endif // BASE_WIN_SCOPED_SAFEARRAY_H_
|