File: variant_vector.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (356 lines) | stat: -rw-r--r-- 11,956 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif

#include "base/win/variant_vector.h"

#include <optional>

#include "base/check_op.h"
#include "base/notreached.h"
#include "base/numerics/checked_math.h"
#include "base/process/memory.h"
#include "base/win/scoped_safearray.h"
#include "base/win/scoped_variant.h"

namespace base {
namespace win {

namespace {

// Lexicographical comparison between the contents of |vector| and |safearray|.
template <VARTYPE ElementVartype>
int CompareAgainstSafearray(const std::vector<ScopedVariant>& vector,
                            const ScopedSafearray& safearray,
                            bool ignore_case) {
  std::optional<ScopedSafearray::LockScope<ElementVartype>> lock_scope =
      safearray.CreateLockScope<ElementVartype>();
  // If we fail to create a lock scope, then arbitrarily treat |this| as
  // greater. This should only happen when the SAFEARRAY fails to be locked,
  // so we cannot compare the contents of the SAFEARRAY.
  if (!lock_scope) {
    return 1;
  }

  // Create a temporary VARIANT which does not own its contents, and is
  // populated with values from the |lock_scope| so it can be compared against.
  VARIANT non_owning_temp;
  V_VT(&non_owning_temp) = ElementVartype;

  auto vector_iter = vector.begin();
  auto scope_iter = lock_scope->begin();
  for (; vector_iter != vector.end() && scope_iter != lock_scope->end();
       ++vector_iter, ++scope_iter) {
    internal::VariantConverter<ElementVartype>::RawSet(&non_owning_temp,
                                                       *scope_iter);
    int compare_result = vector_iter->Compare(non_owning_temp, ignore_case);
    // If there is a difference in values, return the difference.
    if (compare_result) {
      return compare_result;
    }
  }
  // There are more elements in |vector|, so |vector| is
  // greater than |safearray|.
  if (vector_iter != vector.end()) {
    return 1;
  }
  // There are more elements in |safearray|, so |vector| is
  // less than |safearray|.
  if (scope_iter != lock_scope->end()) {
    return -1;
  }
  return 0;
}

}  // namespace

VariantVector::VariantVector() = default;

VariantVector::VariantVector(VariantVector&& other)
    : vartype_(std::exchange(other.vartype_, VT_EMPTY)),
      vector_(std::move(other.vector_)) {}

VariantVector& VariantVector::operator=(VariantVector&& other) {
  DCHECK_NE(this, &other);
  vartype_ = std::exchange(other.vartype_, VT_EMPTY);
  vector_ = std::move(other.vector_);
  return *this;
}

VariantVector::~VariantVector() {
  Reset();
}

void VariantVector::Reset() {
  vector_.clear();
  vartype_ = VT_EMPTY;
}

VARIANT VariantVector::ReleaseAsScalarVariant() {
  ScopedVariant scoped_variant;

  if (!Empty()) {
    DCHECK_EQ(Size(), 1U);
    scoped_variant = std::move(vector_[0]);
    Reset();
  }

  return scoped_variant.Release();
}

VARIANT VariantVector::ReleaseAsSafearrayVariant() {
  ScopedVariant scoped_variant;

  switch (Type()) {
    case VT_EMPTY:
      break;
    case VT_BOOL:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_BOOL>());
      break;
    case VT_I1:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_I1>());
      break;
    case VT_UI1:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_UI1>());
      break;
    case VT_I2:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_I2>());
      break;
    case VT_UI2:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_UI2>());
      break;
    case VT_I4:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_I4>());
      break;
    case VT_UI4:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_UI4>());
      break;
    case VT_I8:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_I8>());
      break;
    case VT_UI8:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_UI8>());
      break;
    case VT_R4:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_R4>());
      break;
    case VT_R8:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_R8>());
      break;
    case VT_DATE:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_DATE>());
      break;
    case VT_BSTR:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_BSTR>());
      break;
    case VT_DISPATCH:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_DISPATCH>());
      break;
    case VT_UNKNOWN:
      scoped_variant.Set(CreateAndPopulateSafearray<VT_UNKNOWN>());
      break;
    // The default case shouldn't be reachable, but if we added support for more
    // VARTYPEs to base::win::internal::VariantConverter<> and they were
    // inserted into a VariantVector then it would be possible to reach the
    // default case for those new types until implemented.
    //
    // Because the switch is against VARTYPE (unsigned short) and not VARENUM,
    // removing the default case will not result in build warnings/errors if
    // there are missing cases. It is important that this uses VARTYPE rather
    // than VARENUM, because in the future we may want to support complex
    // VARTYPES. For example a value within VT_TYPEMASK that's joined something
    // outside the typemask like VT_ARRAY or VT_BYREF.
    default:
      NOTREACHED();
  }

  // CreateAndPopulateSafearray handles resetting |this| to VT_EMPTY because it
  // transfers ownership of each element to the SAFEARRAY.
  return scoped_variant.Release();
}

int VariantVector::Compare(const VARIANT& other, bool ignore_case) const {
  // If the element variant types are different, compare against the types.
  if (Type() != (V_VT(&other) & VT_TYPEMASK)) {
    return (Type() < (V_VT(&other) & VT_TYPEMASK)) ? (-1) : 1;
  }

  // Both have an empty variant type so they are the same.
  if (Type() == VT_EMPTY) {
    return 0;
  }

  int compare_result = 0;
  if (V_ISARRAY(&other)) {
    compare_result = Compare(V_ARRAY(&other), ignore_case);
  } else {
    compare_result = vector_[0].Compare(other, ignore_case);
    // If the first element is equal to |other|, and |vector_|
    // has more than one element, then |vector_| is greater.
    if (!compare_result && Size() > 1) {
      compare_result = 1;
    }
  }
  return compare_result;
}

int VariantVector::Compare(const VariantVector& other, bool ignore_case) const {
  // If the element variant types are different, compare against the types.
  if (Type() != other.Type()) {
    return (Type() < other.Type()) ? (-1) : 1;
  }

  // Both have an empty variant type so they are the same.
  if (Type() == VT_EMPTY) {
    return 0;
  }

  auto iter1 = vector_.begin();
  auto iter2 = other.vector_.begin();
  for (; (iter1 != vector_.end()) && (iter2 != other.vector_.end());
       ++iter1, ++iter2) {
    int compare_result = iter1->Compare(*iter2, ignore_case);
    if (compare_result) {
      return compare_result;
    }
  }
  // There are more elements in |this|, so |this| is greater than |other|.
  if (iter1 != vector_.end()) {
    return 1;
  }
  // There are more elements in |other|, so |this| is less than |other|.
  if (iter2 != other.vector_.end()) {
    return -1;
  }
  return 0;
}

int VariantVector::Compare(SAFEARRAY* safearray, bool ignore_case) const {
  VARTYPE safearray_vartype;
  // If we fail to get the element variant type for the SAFEARRAY, then
  // arbitrarily treat |this| as greater.
  if (FAILED(SafeArrayGetVartype(safearray, &safearray_vartype))) {
    return 1;
  }

  // If the element variant types are different, compare against the types.
  if (Type() != safearray_vartype) {
    return (Type() < safearray_vartype) ? (-1) : 1;
  }

  ScopedSafearray scoped_safearray(safearray);
  int compare_result = 0;
  switch (Type()) {
    case VT_BOOL:
      compare_result = CompareAgainstSafearray<VT_BOOL>(
          vector_, scoped_safearray, ignore_case);
      break;
    case VT_I1:
      compare_result = CompareAgainstSafearray<VT_I1>(vector_, scoped_safearray,
                                                      ignore_case);
      break;
    case VT_UI1:
      compare_result = CompareAgainstSafearray<VT_UI1>(
          vector_, scoped_safearray, ignore_case);
      break;
    case VT_I2:
      compare_result = CompareAgainstSafearray<VT_I2>(vector_, scoped_safearray,
                                                      ignore_case);
      break;
    case VT_UI2:
      compare_result = CompareAgainstSafearray<VT_UI2>(
          vector_, scoped_safearray, ignore_case);
      break;
    case VT_I4:
      compare_result = CompareAgainstSafearray<VT_I4>(vector_, scoped_safearray,
                                                      ignore_case);
      break;
    case VT_UI4:
      compare_result = CompareAgainstSafearray<VT_UI4>(
          vector_, scoped_safearray, ignore_case);
      break;
    case VT_I8:
      compare_result = CompareAgainstSafearray<VT_I8>(vector_, scoped_safearray,
                                                      ignore_case);
      break;
    case VT_UI8:
      compare_result = CompareAgainstSafearray<VT_UI8>(
          vector_, scoped_safearray, ignore_case);
      break;
    case VT_R4:
      compare_result = CompareAgainstSafearray<VT_R4>(vector_, scoped_safearray,
                                                      ignore_case);
      break;
    case VT_R8:
      compare_result = CompareAgainstSafearray<VT_R8>(vector_, scoped_safearray,
                                                      ignore_case);
      break;
    case VT_DATE:
      compare_result = CompareAgainstSafearray<VT_DATE>(
          vector_, scoped_safearray, ignore_case);
      break;
    case VT_BSTR:
      compare_result = CompareAgainstSafearray<VT_BSTR>(
          vector_, scoped_safearray, ignore_case);
      break;
    case VT_DISPATCH:
      compare_result = CompareAgainstSafearray<VT_DISPATCH>(
          vector_, scoped_safearray, ignore_case);
      break;
    case VT_UNKNOWN:
      compare_result = CompareAgainstSafearray<VT_UNKNOWN>(
          vector_, scoped_safearray, ignore_case);
      break;
    // The default case shouldn't be reachable, but if we added support for more
    // VARTYPEs to base::win::internal::VariantConverter<> and they were
    // inserted into a VariantVector then it would be possible to reach the
    // default case for those new types until implemented.
    //
    // Because the switch is against VARTYPE (unsigned short) and not VARENUM,
    // removing the default case will not result in build warnings/errors if
    // there are missing cases. It is important that this uses VARTYPE rather
    // than VARENUM, because in the future we may want to support complex
    // VARTYPES. For example a value within VT_TYPEMASK that's joined something
    // outside the typemask like VT_ARRAY or VT_BYREF.
    default:
      NOTREACHED();
  }

  scoped_safearray.Release();
  return compare_result;
}

template <VARTYPE ElementVartype>
SAFEARRAY* VariantVector::CreateAndPopulateSafearray() {
  DCHECK(!Empty());

  ScopedSafearray scoped_safearray(
      SafeArrayCreateVector(ElementVartype, 0, checked_cast<ULONG>(Size())));
  if (!scoped_safearray.Get()) {
    constexpr size_t kElementSize =
        sizeof(typename internal::VariantConverter<ElementVartype>::Type);
    base::TerminateBecauseOutOfMemory(sizeof(SAFEARRAY) +
                                      (Size() * kElementSize));
  }

  std::optional<ScopedSafearray::LockScope<ElementVartype>> lock_scope =
      scoped_safearray.CreateLockScope<ElementVartype>();
  DCHECK(lock_scope);

  for (size_t i = 0; i < Size(); ++i) {
    VARIANT element = vector_[i].Release();
    (*lock_scope)[i] =
        internal::VariantConverter<ElementVartype>::RawGet(element);
  }
  Reset();

  return scoped_safearray.Release();
}

}  // namespace win
}  // namespace base