1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/math_util.h"
#include <algorithm>
#include <cmath>
#include <limits>
#if defined(ARCH_CPU_X86_FAMILY)
#include <xmmintrin.h>
#endif
#include "base/numerics/angle_conversions.h"
#include "base/trace_event/traced_value.h"
#include "base/values.h"
#include "third_party/skia/include/core/SkPath.h"
#include "ui/gfx/geometry/linear_gradient.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/rrect_f.h"
#include "ui/gfx/geometry/skia_conversions.h"
#include "ui/gfx/geometry/transform.h"
#include "ui/gfx/geometry/vector2d_conversions.h"
#include "ui/gfx/geometry/vector2d_f.h"
#include "ui/gfx/geometry/vector3d_f.h"
namespace cc {
static HomogeneousCoordinate ProjectHomogeneousPoint(
const gfx::Transform& transform,
const gfx::PointF& p) {
SkScalar m22 = transform.rc(2, 2);
// In this case, the layer we are trying to project onto is perpendicular to
// ray (point p and z-axis direction) that we are trying to project. This
// happens when the layer is rotated so that it is infinitesimally thin, or
// when it is co-planar with the camera origin -- i.e. when the layer is
// invisible anyway. Return an invalid point.
if (!std::isnormal(m22)) {
return HomogeneousCoordinate(0.0, 0.0, 0.0, 0.0);
}
SkScalar z = -(transform.rc(2, 0) * p.x() + transform.rc(2, 1) * p.y() +
transform.rc(2, 3)) /
m22;
// Same underlying condition as the previous early return.
if (!std::isfinite(z)) {
return HomogeneousCoordinate(0.0, 0.0, 0.0, 0.0);
}
HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
transform.TransformVector4(result.vec.data());
return result;
}
static HomogeneousCoordinate ProjectHomogeneousPoint(
const gfx::Transform& transform,
const gfx::PointF& p,
bool* clipped) {
HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
*clipped = h.w() <= 0;
return h;
}
static HomogeneousCoordinate MapHomogeneousPoint(
const gfx::Transform& transform,
const gfx::PointF& p) {
HomogeneousCoordinate result(p.x(), p.y(), 0.0, 1.0);
transform.TransformVector4(result.vec.data());
return result;
}
namespace {
// This is the tolerance for detecting an eyepoint-aligned edge.
const float kStationaryPointEpsilon = 0.00001f;
} // namespace
static void homogeneousLimitAtZero(SkScalar a1,
SkScalar w1,
SkScalar a2,
SkScalar w2,
float t,
float* limit) {
if (std::abs(a1 * w2 / w1 / a2 - 1.0f) > kStationaryPointEpsilon) {
// We are going to explode towards an infinity, but we choose the one that
// corresponds to the one on the positive side of w.
if (((1.0f - t) * a1 + t * a2) > 0) {
*limit = HomogeneousCoordinate::kInfiniteCoordinate;
} else {
*limit = -HomogeneousCoordinate::kInfiniteCoordinate;
}
} else {
*limit = a1 / w1; // (== a2 / w2) && == (1.0f - t) * a1 / w1 + t * a2 / w2
}
}
static gfx::PointF ComputeClippedCartesianPoint2dForEdge(
const HomogeneousCoordinate& h1,
const HomogeneousCoordinate& h2) {
// Points h1 and h2 form a line in 4d, and any point on that line can be
// represented as an interpolation between h1 and h2:
// p = (1-t) h1 + (t) h2
//
// We want to compute the limit in 2 space of
// x = ((1-t) h1.x + (t) h2.x) / ((1-t) h1.w + (t) h2.w)
// y = ((1-t) h1.y + (t) h2.y) / ((1-t) h1.w + (t) h2.w)
// as ((1-t) h1.w + (t) h2.w) -> 0+
// The only answers to this are h1.x/h1.w == h2.x/h2.w, +/- infinity
// i.e., either the coordinate is not moving, or is trending to one
// infinity or the other.
// This assertion isn't really as strong as it looks because
// std::isfinite(h1.w()) or std::isfinite(h2.w()) might not be true
// (and they could be NaN).
// TODO(crbug.com/40186138): We should be able to assert something
// stronger here, and avoid dependencies on undefined floating point
// behavior.
DCHECK_NE(h1.w() <= 0, h2.w() <= 0);
float t = h1.w() / (h1.w() - h2.w());
float x;
float y;
homogeneousLimitAtZero(h1.x(), h1.w(), h2.x(), h2.w(), t, &x);
homogeneousLimitAtZero(h1.y(), h1.w(), h2.y(), h2.w(), t, &y);
return gfx::PointF(x, y);
}
static void homogeneousLimitNearZero(SkScalar a1,
SkScalar w1,
SkScalar a2,
SkScalar w2,
float t,
float* limit) {
if (std::abs(a1 * w2 / w1 / a2 - 1.0f) > kStationaryPointEpsilon) {
// t has been computed so that w is near but not at zero.
*limit = ((1.0f - t) * a1 + t * a2) / ((1.0f - t) * w1 + t * w2);
// std::abs(*limit) should now be somewhere near
// HomogeneousCoordinate::kInfiniteCoordinate, preferably smaller than it,
// but there are edge cases where it will be larger (for example, if the
// point where a crosses 0 is very close to the point where w crosses 0),
// so it's hard to DCHECK() that this is the case.
} else {
*limit = a1 / w1; // (== a2 / w2) && == (1.0f - t) * a1 / w1 + t * a2 / w2
}
}
static gfx::Point3F ComputeClippedCartesianPoint3dForEdge(
const HomogeneousCoordinate& h1,
const HomogeneousCoordinate& h2) {
// Points h1 and h2 form a line in 4d, and any point on that line can be
// represented as an interpolation between h1 and h2:
// p = (1-t) h1 + (t) h2
//
// We want to compute the limit in 3 space of
// x = ((1-t) h1.x + (t) h2.x) / ((1-t) h1.w + (t) h2.w)
// y = ((1-t) h1.y + (t) h2.y) / ((1-t) h1.w + (t) h2.w)
// z = ((1-t) h1.z + (t) h2.z) / ((1-t) h1.w + (t) h2.w)
// as ((1-t) h1.w + (t) h2.w) -> 0+
// The only answers to this are h1.x/h1.w == h2.x/h2.w, +/- infinity
// i.e., either the coordinate is not moving, or is trending to one
// infinity or the other.
// When we clamp to HomogeneousCoordinate::kInfiniteCoordinate we want
// to keep the result in the correct plane, which we do by computing
// a t that will result in the largest (in absolute value) of x, y, or
// z being HomogeneousCoordinate::kInfiniteCoordinate
// This assertion isn't really as strong as it looks because
// std::isfinite(h1.w()) or std::isfinite(h2.w()) might not be true
// (and they could be NaN).
// TODO(crbug.com/40186138): We should be able to assert something
// stronger here, and avoid dependencies on undefined floating point
// behavior.
DCHECK_NE(h1.w() <= 0, h2.w() <= 0);
float w_diff = h1.w() - h2.w();
float t = h1.w() / w_diff;
float max_numerator = std::max({std::abs((1.0f - t) * h1.x() + t * h2.x()),
std::abs((1.0f - t) * h1.y() + t * h2.y()),
std::abs((1.0f - t) * h1.z() + t * h2.z())});
// Shift t away from the point where w is zero, far enough so that the
// largest of the resulting x, y, and z will be about
// kInfiniteCoordinate. Add an extra epsilon() / 2.0 so that there's
// always enough movement (in case t_shift is very small, which it
// often is).
const float t_shift =
max_numerator / w_diff / HomogeneousCoordinate::kInfiniteCoordinate;
constexpr float half_epsilon = std::numeric_limits<float>::epsilon() / 2.0f;
DCHECK_EQ(w_diff > 0, t_shift > 0);
if (w_diff > 0) {
t = std::max(0.0f, t - (t_shift + half_epsilon));
} else {
t = std::min(1.0f, t - (t_shift - half_epsilon));
}
float x;
float y;
float z;
homogeneousLimitNearZero(h1.x(), h1.w(), h2.x(), h2.w(), t, &x);
homogeneousLimitNearZero(h1.y(), h1.w(), h2.y(), h2.w(), t, &y);
homogeneousLimitNearZero(h1.z(), h1.w(), h2.z(), h2.w(), t, &z);
return gfx::Point3F(x, y, z);
}
static inline void ExpandBoundsToIncludePoint(float* xmin,
float* xmax,
float* ymin,
float* ymax,
const gfx::PointF& p) {
*xmin = std::min(p.x(), *xmin);
*xmax = std::max(p.x(), *xmax);
*ymin = std::min(p.y(), *ymin);
*ymax = std::max(p.y(), *ymax);
}
static inline bool IsNearlyTheSame(float f, float g) {
// The idea behind this is to use this fraction of the larger of the
// two numbers as the limit of the difference. This breaks down near
// zero, so we reuse this as the minimum absolute size we will use
// for the base of the scale too.
static const float epsilon_scale = 0.00001f;
return std::abs(f - g) <
epsilon_scale * std::max({std::abs(f), std::abs(g), epsilon_scale});
}
static inline bool IsNearlyTheSame(const gfx::PointF& lhs,
const gfx::PointF& rhs) {
return IsNearlyTheSame(lhs.x(), rhs.x()) && IsNearlyTheSame(lhs.y(), rhs.y());
}
static inline bool IsNearlyTheSame(const gfx::Point3F& lhs,
const gfx::Point3F& rhs) {
return IsNearlyTheSame(lhs.x(), rhs.x()) &&
IsNearlyTheSame(lhs.y(), rhs.y()) && IsNearlyTheSame(lhs.z(), rhs.z());
}
static inline void AddVertexToClippedQuad3d(
const gfx::Point3F& new_vertex,
base::span<gfx::Point3F, 6> clipped_quad,
int* num_vertices_in_clipped_quad,
bool* need_to_clamp) {
CHECK(num_vertices_in_clipped_quad);
CHECK_GE(*num_vertices_in_clipped_quad, 0);
if (*num_vertices_in_clipped_quad > 0 &&
IsNearlyTheSame(
clipped_quad[static_cast<size_t>(*num_vertices_in_clipped_quad - 1)],
new_vertex)) {
return;
}
CHECK_LT(*num_vertices_in_clipped_quad, 6);
clipped_quad[static_cast<size_t>(*num_vertices_in_clipped_quad)] = new_vertex;
++*num_vertices_in_clipped_quad;
if (new_vertex.x() < -HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.x() > HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.y() < -HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.y() > HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.z() < -HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.z() > HomogeneousCoordinate::kInfiniteCoordinate) {
*need_to_clamp = true;
}
}
gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
const gfx::Rect& src_rect) {
return MapEnclosingClippedRectIgnoringError(transform, src_rect, 0.f);
}
gfx::Rect MathUtil::MapEnclosingClippedRectIgnoringError(
const gfx::Transform& transform,
const gfx::Rect& src_rect,
float ignore_error) {
if (transform.IsIdentityOrIntegerTranslation())
return src_rect + gfx::ToFlooredVector2d(transform.To2dTranslation());
gfx::RectF mapped_rect = MapClippedRect(transform, gfx::RectF(src_rect));
return gfx::ToEnclosingRectIgnoringError(mapped_rect, ignore_error);
}
gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
const gfx::RectF& src_rect) {
if (transform.IsIdentityOrTranslation())
return src_rect + transform.To2dTranslation();
// Apply the transform, but retain the result in homogeneous coordinates.
HomogeneousCoordinate hc0 = MapHomogeneousPoint(transform, src_rect.origin());
HomogeneousCoordinate hc1 =
MapHomogeneousPoint(transform, src_rect.top_right());
HomogeneousCoordinate hc2 =
MapHomogeneousPoint(transform, src_rect.bottom_right());
HomogeneousCoordinate hc3 =
MapHomogeneousPoint(transform, src_rect.bottom_left());
return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
}
gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
const gfx::Rect& src_rect) {
if (transform.IsIdentityOrIntegerTranslation())
return src_rect + gfx::ToFlooredVector2d(transform.To2dTranslation());
gfx::RectF projected_rect =
ProjectClippedRect(transform, gfx::RectF(src_rect));
// gfx::ToEnclosingRect crashes if called on a RectF with any NaN coordinate.
if (std::isnan(projected_rect.x()) || std::isnan(projected_rect.y()) ||
std::isnan(projected_rect.right()) || std::isnan(projected_rect.bottom()))
return gfx::Rect();
return gfx::ToEnclosingRect(projected_rect);
}
gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
const gfx::RectF& src_rect) {
if (transform.IsIdentityOrTranslation())
return src_rect + transform.To2dTranslation();
// Perform the projection, but retain the result in homogeneous coordinates.
gfx::QuadF q = gfx::QuadF(src_rect);
HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
return ComputeEnclosingClippedRect(h1, h2, h3, h4);
}
gfx::QuadF MathUtil::InverseMapQuadToLocalSpace(
const gfx::Transform& device_transform,
const gfx::QuadF& device_quad) {
DCHECK(device_transform.IsFlat());
gfx::Transform inverse_device_transform =
device_transform.GetCheckedInverse();
bool clipped = false;
gfx::QuadF local_quad =
MathUtil::MapQuad(inverse_device_transform, device_quad, &clipped);
// We should not DCHECK(!clipped) here, because anti-aliasing inflation may
// cause device_quad to become clipped. To our knowledge this scenario does
// not need to be handled differently than the unclipped case.
return local_quad;
}
gfx::Rect MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
const gfx::Transform& transform,
const gfx::Rect& rect) {
DCHECK(transform.Preserves2dAxisAlignment());
DCHECK_GT(transform.rc(3, 3), 0);
DCHECK(std::isnormal(transform.rc(3, 3)));
if (transform.IsIdentityOrIntegerTranslation())
return rect + gfx::ToFlooredVector2d(transform.To2dTranslation());
if (transform.IsIdentityOrTranslation()) {
gfx::Vector2dF offset = transform.To2dTranslation();
return gfx::ToEnclosedRect(gfx::RectF(rect) + offset);
}
HomogeneousCoordinate hc0 =
MapHomogeneousPoint(transform, gfx::PointF(rect.origin()));
HomogeneousCoordinate hc1 =
MapHomogeneousPoint(transform, gfx::PointF(rect.bottom_right()));
DCHECK(!hc0.ShouldBeClipped());
DCHECK(!hc1.ShouldBeClipped());
gfx::PointF top_left(hc0.CartesianPoint2d());
gfx::PointF bottom_right(hc1.CartesianPoint2d());
return gfx::ToEnclosedRect(gfx::BoundingRect(top_left, bottom_right));
}
bool MathUtil::MapClippedQuad3d(const gfx::Transform& transform,
const gfx::QuadF& src_quad,
base::span<gfx::Point3F, 6> clipped_quad,
int* num_vertices_in_clipped_quad) {
// This is different from the 2D version because, when we clamp
// coordinates to [-HomogeneousCoordinate::kInfiniteCoordinate,
// HomogeneousCoordinate::kInfiniteCoordinate], we need to do the
// clamping while keeping the points coplanar.
HomogeneousCoordinate h1 = MapHomogeneousPoint(transform, src_quad.p1());
HomogeneousCoordinate h2 = MapHomogeneousPoint(transform, src_quad.p2());
HomogeneousCoordinate h3 = MapHomogeneousPoint(transform, src_quad.p3());
HomogeneousCoordinate h4 = MapHomogeneousPoint(transform, src_quad.p4());
// The order of adding the vertices to the array is chosen so that
// clockwise / counter-clockwise orientation is retained.
*num_vertices_in_clipped_quad = 0;
bool need_to_clamp = false;
if (!h1.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h1.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h1, h2),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (!h2.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h2.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h2, h3),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (!h3.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h3.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h3, h4),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (!h4.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h4.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h4, h1),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (*num_vertices_in_clipped_quad > 2 &&
IsNearlyTheSame(clipped_quad[0],
clipped_quad[static_cast<size_t>(
*num_vertices_in_clipped_quad - 1)])) {
--*num_vertices_in_clipped_quad;
}
if (need_to_clamp) {
// Some of the values need to be clamped, but we need to keep them
// coplanar while doing so.
// First, build a normal vector to the plane by averaging the
// cross products of adjacent edges.
gfx::Vector3dF normal(0.0f, 0.0f, 0.0f);
if (*num_vertices_in_clipped_quad > 2) {
gfx::Vector3dF loop_vector =
clipped_quad[0] -
clipped_quad[static_cast<size_t>(*num_vertices_in_clipped_quad - 1)];
gfx::Vector3dF prev_vector(loop_vector);
for (size_t i = 1; i < static_cast<size_t>(*num_vertices_in_clipped_quad);
++i) {
gfx::Vector3dF cur_vector = clipped_quad[i] - clipped_quad[i - 1];
normal += CrossProduct(prev_vector, cur_vector);
prev_vector = cur_vector;
}
normal += CrossProduct(prev_vector, loop_vector);
}
bool clamp_by_points = false;
float length = normal.Length();
if (std::isnormal(length)) { // exclude 0, denormals, +/- inf, NaN
normal.InvScale(length);
// Find the vector to the point in the plane closest to (0,0,0).
gfx::Vector3dF shortest_from_zero(normal);
shortest_from_zero.Scale(
DotProduct(normal, clipped_quad[0] - gfx::Point3F(0.0f, 0.0f, 0.0f)));
// Find the the point in the plane that is at x=0 and y=0
float z_at_xy_zero = 0.0f;
if (shortest_from_zero.x() == 0.0f && shortest_from_zero.y() == 0.0f) {
z_at_xy_zero = shortest_from_zero.z();
} else if (shortest_from_zero.z() != 0) {
// Compute the vector v pointing from the shortest_from_zero
// point to the point with x=0 and y=0. If both v and normal
// are projected into the x/y plane, they should point in
// opposite directions.
gfx::Vector3dF v = CrossProduct(
normal, CrossProduct(gfx::Vector3dF(0.0f, 0.0f, 1.0f), normal));
DCHECK(std::abs(normal.x() * v.y() - normal.y() * v.x()) < 0.00001f);
// It doesn't matter whether we use x or y, unless one of them
// is zero or very close to it.
float r = std::abs(v.x()) > std::abs(v.y())
? shortest_from_zero.x() / v.x()
: shortest_from_zero.y() / v.y();
z_at_xy_zero = shortest_from_zero.z() - v.z() * r;
} else {
// Plane is parallel to the z axis. This means it's not
// visible, so just fall back to clamping by points.
clamp_by_points = true;
}
if (!clamp_by_points) {
// If z_at_xy_zero is more than 3/4 of kInfiniteCoordinate
// distance from zero, move everything in the z axis so
// z_at_xy_zero is that distance from zero, so that we don't end
// up clamping away the parts that fit within what's likely to
// be the visible area.
constexpr float max_distance =
0.75 * HomogeneousCoordinate::kInfiniteCoordinate;
if (std::abs(z_at_xy_zero) > max_distance) {
float z_delta;
if (z_at_xy_zero > 0) {
z_delta = max_distance - z_at_xy_zero;
} else {
z_delta = -max_distance - z_at_xy_zero;
}
for (size_t i = 0;
i < static_cast<size_t>(*num_vertices_in_clipped_quad); ++i) {
clipped_quad[i].set_z(clipped_quad[i].z() + z_delta);
}
z_at_xy_zero += z_delta;
}
// Move all the points towards (0, 0, z_at_xy_zero) until all
// their coordinates are less than kInfiniteCoordinate.
for (size_t i = 0;
i < static_cast<size_t>(*num_vertices_in_clipped_quad); ++i) {
gfx::Point3F& point = clipped_quad[i];
float t = 1.0f;
float x_abs = std::abs(point.x());
if (x_abs > HomogeneousCoordinate::kInfiniteCoordinate) {
t = std::min(t, HomogeneousCoordinate::kInfiniteCoordinate / x_abs);
}
float y_abs = std::abs(point.y());
if (y_abs > HomogeneousCoordinate::kInfiniteCoordinate) {
t = std::min(t, HomogeneousCoordinate::kInfiniteCoordinate / y_abs);
}
float z = point.z();
if (std::abs(z) > HomogeneousCoordinate::kInfiniteCoordinate) {
// From the clamping to max_distance above, we should have
// made std::abs(z_at_xy_zero) < kInfiniteCoordinate.
// However, if it started off very large we might not have.
float z_at_xy_zero_clamped =
std::min(float{HomogeneousCoordinate::kInfiniteCoordinate},
std::max(-HomogeneousCoordinate::kInfiniteCoordinate,
z_at_xy_zero));
float z_offset = z - z_at_xy_zero_clamped;
float z_space =
(z > 0 ? HomogeneousCoordinate::kInfiniteCoordinate
: -HomogeneousCoordinate::kInfiniteCoordinate) -
z_at_xy_zero_clamped;
DCHECK_NE(z_offset, 0.0f);
DCHECK_NE(z_space, 0.0f);
DCHECK_EQ(z_offset > 0, z_space > 0);
t = std::min(t, z_space / z_offset);
}
if (t != 1.0f) {
DCHECK(0.0f <= t && t < 1.0f);
point.set_x(t * point.x());
point.set_y(t * point.y());
point.set_z((1.0f - t) * z_at_xy_zero + t * point.z());
}
}
}
} else {
// Our points were colinear, so there's no plane to maintain.
clamp_by_points = true;
}
if (clamp_by_points) {
// Just clamp each point separately in each axis, just like we do
// for 2D.
for (size_t i = 0; i < static_cast<size_t>(*num_vertices_in_clipped_quad);
++i) {
gfx::Point3F& point = clipped_quad[i];
point.set_x(
std::clamp(point.x(), -HomogeneousCoordinate::kInfiniteCoordinate,
float{HomogeneousCoordinate::kInfiniteCoordinate}));
point.set_y(
std::clamp(point.y(), -HomogeneousCoordinate::kInfiniteCoordinate,
float{HomogeneousCoordinate::kInfiniteCoordinate}));
point.set_z(
std::clamp(point.z(), -HomogeneousCoordinate::kInfiniteCoordinate,
float{HomogeneousCoordinate::kInfiniteCoordinate}));
}
}
}
DCHECK_LE(*num_vertices_in_clipped_quad, 6);
return *num_vertices_in_clipped_quad >= 4;
}
gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
base::span<const gfx::PointF> vertices) {
if (vertices.size() < 2) {
return gfx::RectF();
}
float xmin = std::numeric_limits<float>::max();
float xmax = -std::numeric_limits<float>::max();
float ymin = std::numeric_limits<float>::max();
float ymax = -std::numeric_limits<float>::max();
for (auto& vertex : vertices) {
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertex);
}
return gfx::RectF(gfx::PointF(xmin, ymin),
gfx::SizeF(xmax - xmin, ymax - ymin));
}
gfx::RectF MathUtil::ComputeEnclosingClippedRect(
const HomogeneousCoordinate& h1,
const HomogeneousCoordinate& h2,
const HomogeneousCoordinate& h3,
const HomogeneousCoordinate& h4) {
// This function performs clipping as necessary and computes the enclosing 2d
// gfx::RectF of the vertices. Doing these two steps simultaneously allows us
// to avoid the overhead of storing an unknown number of clipped vertices.
// If no vertices on the quad are clipped, then we can simply return the
// enclosing rect directly.
bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
h3.ShouldBeClipped() || h4.ShouldBeClipped();
if (!something_clipped) {
gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
h2.CartesianPoint2d(),
h3.CartesianPoint2d(),
h4.CartesianPoint2d());
return mapped_quad.BoundingBox();
}
bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
h3.ShouldBeClipped() && h4.ShouldBeClipped();
if (everything_clipped)
return gfx::RectF();
float xmin = std::numeric_limits<float>::max();
float xmax = -std::numeric_limits<float>::max();
float ymin = std::numeric_limits<float>::max();
float ymax = -std::numeric_limits<float>::max();
if (!h1.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h1.CartesianPoint2d());
if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h1, h2));
if (!h2.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h2.CartesianPoint2d());
if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h2, h3));
if (!h3.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h3.CartesianPoint2d());
if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h3, h4));
if (!h4.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h4.CartesianPoint2d());
if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h4, h1));
return gfx::RectF(gfx::PointF(xmin, ymin),
gfx::SizeF(xmax - xmin, ymax - ymin));
}
gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
const gfx::QuadF& q,
bool* clipped) {
if (transform.IsIdentityOrTranslation()) {
gfx::QuadF mapped_quad(q);
mapped_quad += transform.To2dTranslation();
*clipped = false;
return mapped_quad;
}
HomogeneousCoordinate h1 = MapHomogeneousPoint(transform, q.p1());
HomogeneousCoordinate h2 = MapHomogeneousPoint(transform, q.p2());
HomogeneousCoordinate h3 = MapHomogeneousPoint(transform, q.p3());
HomogeneousCoordinate h4 = MapHomogeneousPoint(transform, q.p4());
*clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
h3.ShouldBeClipped() || h4.ShouldBeClipped();
// Result will be invalid if clipped == true. But, compute it anyway just in
// case, to emulate existing behavior.
return gfx::QuadF(h1.CartesianPoint2d(),
h2.CartesianPoint2d(),
h3.CartesianPoint2d(),
h4.CartesianPoint2d());
}
gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
const gfx::PointF& p,
bool* clipped) {
HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
if (h.w() > 0) {
*clipped = false;
return h.CartesianPoint2d();
}
// The cartesian coordinates will be invalid after dividing by w.
*clipped = true;
// Avoid dividing by w if w == 0.
if (!h.w())
return gfx::PointF();
// This return value will be invalid because clipped == true, but (1) users of
// this code should be ignoring the return value when clipped == true anyway,
// and (2) this behavior is more consistent with existing behavior of WebKit
// transforms if the user really does not ignore the return value.
return h.CartesianPoint2d();
}
gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
const gfx::PointF& p,
bool* clipped) {
HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
// Avoid dividing by w if w == 0.
if (!h.w())
return gfx::PointF();
// This return value will be invalid if clipped == true, but (1) users of
// this code should be ignoring the return value when clipped == true anyway,
// and (2) this behavior is more consistent with existing behavior of WebKit
// transforms if the user really does not ignore the return value.
return h.CartesianPoint2d();
}
gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
const gfx::RectF& scale_outer_rect,
const gfx::RectF& scale_inner_rect) {
gfx::RectF output_inner_rect = input_outer_rect;
float scale_rect_to_input_scale_x =
scale_outer_rect.width() / input_outer_rect.width();
float scale_rect_to_input_scale_y =
scale_outer_rect.height() / input_outer_rect.height();
gfx::Vector2dF top_left_diff =
scale_inner_rect.origin() - scale_outer_rect.origin();
gfx::Vector2dF bottom_right_diff =
scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
output_inner_rect.Inset(
gfx::InsetsF::TLBR(top_left_diff.y() / scale_rect_to_input_scale_y,
top_left_diff.x() / scale_rect_to_input_scale_x,
-bottom_right_diff.y() / scale_rect_to_input_scale_y,
-bottom_right_diff.x() / scale_rect_to_input_scale_x));
return output_inner_rect;
}
float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
const gfx::Vector2dF& v2) {
double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
// Clamp to compensate for rounding errors.
dot_product = std::clamp(dot_product, -1.0, 1.0);
return static_cast<float>(base::RadToDeg(std::acos(dot_product)));
}
gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
const gfx::Vector2dF& destination) {
float projected_length =
gfx::DotProduct(source, destination) / destination.LengthSquared();
return gfx::Vector2dF(projected_length * destination.x(),
projected_length * destination.y());
}
bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
if (!raw_value->is_list())
return false;
const base::Value::List& list = raw_value->GetList();
if (list.size() != 4)
return false;
for (const auto& val : list) {
if (!val.is_int()) {
return false;
}
}
int x = list[0].GetInt();
int y = list[1].GetInt();
int w = list[2].GetInt();
int h = list[3].GetInt();
*out_rect = gfx::Rect(x, y, w, h);
return true;
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Size& s,
base::trace_event::TracedValue* res) {
res->BeginDictionary(name);
res->SetDouble("width", s.width());
res->SetDouble("height", s.height());
res->EndDictionary();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::SizeF& s,
base::trace_event::TracedValue* res) {
res->BeginDictionary(name);
res->SetDouble("width", s.width());
res->SetDouble("height", s.height());
res->EndDictionary();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Rect& r,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(r.x());
res->AppendInteger(r.y());
res->AppendInteger(r.width());
res->AppendInteger(r.height());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Point& pt,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(pt.x());
res->AppendInteger(pt.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::PointF& pt,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(pt.x());
res->AppendDouble(pt.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Point3F& pt,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(pt.x());
res->AppendDouble(pt.y());
res->AppendDouble(pt.z());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Vector2d& v,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(v.x());
res->AppendInteger(v.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Vector2dF& v,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(v.x());
res->AppendDouble(v.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::QuadF& q,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(q.p1().x());
res->AppendDouble(q.p1().y());
res->AppendDouble(q.p2().x());
res->AppendDouble(q.p2().y());
res->AppendDouble(q.p3().x());
res->AppendDouble(q.p3().y());
res->AppendDouble(q.p4().x());
res->AppendDouble(q.p4().y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::RectF& rect,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(rect.x());
res->AppendDouble(rect.y());
res->AppendDouble(rect.width());
res->AppendDouble(rect.height());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Transform& transform,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col)
res->AppendDouble(transform.rc(row, col));
}
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::BoxF& box,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(box.x());
res->AppendInteger(box.y());
res->AppendInteger(box.z());
res->AppendInteger(box.width());
res->AppendInteger(box.height());
res->AppendInteger(box.depth());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::RRectF& rect,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(rect.rect().x());
res->AppendDouble(rect.rect().y());
res->AppendDouble(rect.rect().width());
res->AppendDouble(rect.rect().height());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const SkPath& path,
base::trace_event::TracedValue* res) {
SkRRect rrect;
if (path.isRRect(&rrect)) {
AddToTracedValue(name, gfx::RRectF(rrect), res);
} else {
res->BeginDictionary(name);
AddToTracedValue("bounds", gfx::SkRectToRectF(path.getBounds()), res);
res->SetInteger("num_points", path.countPoints());
res->SetInteger("num_verbs", path.countVerbs());
res->EndDictionary();
}
}
void MathUtil::AddCornerRadiiToTracedValue(
const char* name,
const gfx::RRectF& rect,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::LinearGradient& gradient,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(gradient.angle());
res->AppendInteger(gradient.step_count());
for (size_t i = 0; i < gradient.step_count(); i++) {
res->AppendDouble(gradient.steps()[i].fraction);
res->AppendInteger(gradient.steps()[i].alpha);
}
res->EndArray();
}
double MathUtil::AsDoubleSafely(double value) {
return std::min(value, std::numeric_limits<double>::max());
}
float MathUtil::AsFloatSafely(float value) {
return std::min(value, std::numeric_limits<float>::max());
}
gfx::Vector3dF MathUtil::GetXAxis(const gfx::Transform& transform) {
if (transform.IsScaleOrTranslation()) {
return gfx::Vector3dF(transform.To2dScale().x(), 0, 0);
}
return gfx::Vector3dF(transform.rc(0, 0), transform.rc(1, 0),
transform.rc(2, 0));
}
gfx::Vector3dF MathUtil::GetYAxis(const gfx::Transform& transform) {
if (transform.IsScaleOrTranslation()) {
return gfx::Vector3dF(0, transform.To2dScale().y(), 0);
}
return gfx::Vector3dF(transform.rc(0, 1), transform.rc(1, 1),
transform.rc(2, 1));
}
ScopedSubnormalFloatDisabler::ScopedSubnormalFloatDisabler() {
#if defined(ARCH_CPU_X86_FAMILY)
// Turn on "subnormals are zero" and "flush to zero" CSR flags.
orig_state_ = _mm_getcsr();
_mm_setcsr(orig_state_ | 0x8040);
#endif
}
ScopedSubnormalFloatDisabler::~ScopedSubnormalFloatDisabler() {
#if defined(ARCH_CPU_X86_FAMILY)
_mm_setcsr(orig_state_);
#endif
}
bool MathUtil::IsFloatNearlyTheSame(float left, float right) {
return IsNearlyTheSame(left, right);
}
bool MathUtil::IsNearlyTheSameForTesting(const gfx::PointF& left,
const gfx::PointF& right) {
return IsNearlyTheSame(left, right);
}
bool MathUtil::IsNearlyTheSameForTesting(const gfx::Point3F& left,
const gfx::Point3F& right) {
return IsNearlyTheSame(left, right);
}
// Equivalent to SkMatrix::HasPerspective
bool MathUtil::SkM44HasPerspective(const SkM44& m) {
return (m.rc(3, 0) != 0 || m.rc(3, 1) != 0 || m.rc(3, 2) != 0 ||
m.rc(3, 3) != 1);
}
// Since some operations assume a 2d transformation, check to make sure that
// is the case by seeing that the z-axis is identity
bool MathUtil::SkM44Is2D(const SkM44& m) {
return (m.rc(0, 2) == 0 && m.rc(1, 2) == 0 && m.rc(2, 2) == 1 &&
m.rc(2, 0) == 0 && m.rc(2, 1) == 0 && m.rc(2, 3) == 0 &&
m.rc(3, 2) == 0);
}
// Equivalent to SkMatrix::PreservesAxisAlignment
// Checks if the transformation is a 90 degree rotation or scaling
// See SkMatrix::computeTypeMask
bool MathUtil::SkM44Preserves2DAxisAlignment(const SkM44& m) {
// Conservatively assume that perspective transforms would not preserve
// axis-alignment
if (!SkM44Is2D(m) || SkM44HasPerspective(m))
return false;
// Does the matrix have skew components
if (m.rc(0, 1) != 0 || m.rc(1, 0) != 0) {
// Rects only map to rects if both skews are non-zero and both scale
// components are zero (i.e. it's a +/-90-degree rotation)
return (m.rc(0, 0) == 0 && m.rc(1, 1) == 0 && m.rc(0, 1) != 0 &&
m.rc(1, 0) != 0);
}
// Since the matrix has no skewing, it maps to a rectangle so long as the
// scale components are non-zero
return (m.rc(0, 0) != 0 && m.rc(1, 1) != 0);
}
} // namespace cc
|