1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CC_BASE_MATH_UTIL_H_
#define CC_BASE_MATH_UTIL_H_
#include <algorithm>
#include <array>
#include <cmath>
#include <limits>
#include "base/check.h"
#include "base/containers/span.h"
#include "build/build_config.h"
#include "cc/base/base_export.h"
#include "third_party/skia/include/core/SkM44.h"
#include "third_party/skia/include/core/SkScalar.h"
#include "ui/gfx/geometry/box_f.h"
#include "ui/gfx/geometry/point3_f.h"
#include "ui/gfx/geometry/point_f.h"
class SkPath;
namespace base {
class Value;
namespace trace_event {
class TracedValue;
}
} // namespace base
namespace gfx {
class QuadF;
class Rect;
class RectF;
class RRectF;
class Size;
class SizeF;
class Transform;
class Vector2dF;
class Vector2d;
class Vector3dF;
class LinearGradient;
} // namespace gfx
namespace cc {
struct HomogeneousCoordinate {
// This needs to be big enough that it does not incorrectly clip the projected
// coordinate. For local to device projection, this must be bigger than the
// expected size of a display. For inverse projection, this is hopefully
// larger than the required local layer size of page content. If it is made
// too big then bounding box calculations based on projected coordinates can
// lose precision and lead to incorrect page rendering.
static constexpr float kInfiniteCoordinate = 1000000.0f;
HomogeneousCoordinate(SkScalar x, SkScalar y, SkScalar z, SkScalar w) {
vec[0] = x;
vec[1] = y;
vec[2] = z;
vec[3] = w;
}
bool ShouldBeClipped() const { return w() <= 0.0; }
gfx::PointF CartesianPoint2d() const {
if (w() == SK_Scalar1)
return gfx::PointF(x(), y());
// For now, because this code is used privately only by MathUtil, it should
// never be called when w == 0, and we do not yet need to handle that case.
DCHECK(w());
SkScalar inv_w = SK_Scalar1 / w();
// However, w may be close to 0 and we lose precision on our geometry
// calculations if we allow scaling to extremely large values.
return gfx::PointF(std::clamp(x() * inv_w, -kInfiniteCoordinate,
float{kInfiniteCoordinate}),
std::clamp(y() * inv_w, -kInfiniteCoordinate,
float{kInfiniteCoordinate}));
}
gfx::Point3F CartesianPoint3dUnclamped() const {
if (w() == SK_Scalar1)
return gfx::Point3F(x(), y(), z());
// For now, because this code is used privately only by MathUtil, it should
// never be called when w == 0, and we do not yet need to handle that case.
DCHECK(w());
SkScalar inv_w = SK_Scalar1 / w();
// However, w may be close to 0 and we lose precision on our geometry
// calculations if we allow scaling to extremely large values.
return gfx::Point3F(x() * inv_w, y() * inv_w, z() * inv_w);
}
SkScalar x() const { return vec[0]; }
SkScalar y() const { return vec[1]; }
SkScalar z() const { return vec[2]; }
SkScalar w() const { return vec[3]; }
std::array<SkScalar, 4> vec;
};
class CC_BASE_EXPORT MathUtil {
public:
// Returns true if rounded up value does not overflow, false otherwise.
template <typename T>
requires std::integral<T>
static constexpr bool VerifyRoundup(T n, T mul) {
return mul && (n <= (std::numeric_limits<T>::max() -
(std::numeric_limits<T>::max() % mul)));
}
// Rounds up a given |n| to be a multiple of |mul|, but may overflow.
// Examples:
// - RoundUp(123, 50) returns 150.
// - RoundUp(-123, 50) returns -100.
template <typename T>
requires std::integral<T>
static constexpr T UncheckedRoundUp(T n, T mul) {
return RoundUpInternal(n, mul);
}
// Similar to UncheckedRoundUp(), but dies with a CRASH() if rounding up a
// given |n| overflows T.
template <typename T>
requires std::integral<T>
static constexpr T CheckedRoundUp(T n, T mul) {
CHECK(VerifyRoundup(n, mul));
return RoundUpInternal(n, mul);
}
// Returns true if rounded down value does not underflow, false otherwise.
template <typename T>
requires std::integral<T>
static constexpr bool VerifyRoundDown(T n, T mul) {
return mul && (n >= (std::numeric_limits<T>::min() -
(std::numeric_limits<T>::min() % mul)));
}
// Rounds down a given |n| to be a multiple of |mul|, but may underflow.
// Examples:
// - RoundDown(123, 50) returns 100.
// - RoundDown(-123, 50) returns -150.
template <typename T>
requires std::integral<T>
static constexpr T UncheckedRoundDown(T n, T mul) {
return RoundDownInternal(n, mul);
}
// Similar to UncheckedRoundDown(), but dies with a CRASH() if rounding down a
// given |n| underflows T.
template <typename T>
requires std::integral<T>
static constexpr T CheckedRoundDown(T n, T mul) {
CHECK(VerifyRoundDown(n, mul));
return RoundDownInternal(n, mul);
}
template <typename T>
static constexpr bool IsWithinEpsilon(T a, T b) {
return std::abs(a - b) < std::numeric_limits<T>::epsilon();
}
// Background: Existing transform code does not do the right thing in
// MapRect / MapQuad / ProjectQuad when there is a perspective projection that
// causes one of the transformed vertices to go to w < 0. In those cases, it
// is necessary to perform clipping in homogeneous coordinates, after applying
// the transform, before dividing-by-w to convert to cartesian coordinates.
//
// These functions return the axis-aligned rect that encloses the correctly
// clipped, transformed polygon.
static gfx::Rect MapEnclosingClippedRect(const gfx::Transform& transform,
const gfx::Rect& rect);
static gfx::Rect MapEnclosingClippedRectIgnoringError(
const gfx::Transform& transform,
const gfx::Rect& rect,
float ignore_error);
static gfx::RectF MapClippedRect(const gfx::Transform& transform,
const gfx::RectF& rect);
static gfx::Rect ProjectEnclosingClippedRect(const gfx::Transform& transform,
const gfx::Rect& rect);
static gfx::RectF ProjectClippedRect(const gfx::Transform& transform,
const gfx::RectF& rect);
// Map device space quad to local space. Device_transform has no 3d
// component since it was flattened, so we don't need to project. We should
// have already checked that the transform was invertible before this call.
static gfx::QuadF InverseMapQuadToLocalSpace(
const gfx::Transform& device_transform,
const gfx::QuadF& device_quad);
// This function is only valid when the transform preserves 2d axis
// alignment and the resulting rect will not be clipped.
static gfx::Rect MapEnclosedRectWith2dAxisAlignedTransform(
const gfx::Transform& transform,
const gfx::Rect& rect);
// Returns an array of vertices that represent the clipped polygon. After
// returning, indexes from 0 to num_vertices_in_clipped_quad are valid in the
// clipped_quad array. Note that num_vertices_in_clipped_quad may be zero,
// which means the entire quad was clipped, and none of the vertices in the
// array are valid.
static bool MapClippedQuad3d(const gfx::Transform& transform,
const gfx::QuadF& src_quad,
base::span<gfx::Point3F, 6> clipped_quad,
int* num_vertices_in_clipped_quad);
static gfx::RectF ComputeEnclosingRectOfVertices(
base::span<const gfx::PointF> vertices);
static gfx::RectF ComputeEnclosingClippedRect(
const HomogeneousCoordinate& h1,
const HomogeneousCoordinate& h2,
const HomogeneousCoordinate& h3,
const HomogeneousCoordinate& h4);
// NOTE: These functions do not do correct clipping against w = 0 plane, but
// they correctly detect the clipped condition via the boolean clipped.
static gfx::QuadF MapQuad(const gfx::Transform& transform,
const gfx::QuadF& quad,
bool* clipped);
static gfx::PointF MapPoint(const gfx::Transform& transform,
const gfx::PointF& point,
bool* clipped);
static gfx::PointF ProjectPoint(const gfx::Transform& transform,
const gfx::PointF& point,
bool* clipped);
// Makes a rect that has the same relationship to input_outer_rect as
// scale_inner_rect has to scale_outer_rect. scale_inner_rect should be
// contained within scale_outer_rect, and likewise the rectangle that is
// returned will be within input_outer_rect at a similar relative, scaled
// position.
static gfx::RectF ScaleRectProportional(const gfx::RectF& input_outer_rect,
const gfx::RectF& scale_outer_rect,
const gfx::RectF& scale_inner_rect);
// Returns the smallest angle between the given two vectors in degrees.
// Neither vector is assumed to be normalized.
static float SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
const gfx::Vector2dF& v2);
// Projects the |source| vector onto |destination|. Neither vector is assumed
// to be normalized.
static gfx::Vector2dF ProjectVector(const gfx::Vector2dF& source,
const gfx::Vector2dF& destination);
static bool FromValue(const base::Value*, gfx::Rect* out_rect);
static void AddToTracedValue(const char* name,
const gfx::Size& s,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::SizeF& s,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::Rect& r,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::Point& q,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::PointF& q,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::Point3F&,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::Vector2d& v,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::Vector2dF& v,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::QuadF& q,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::RectF& rect,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::Transform& transform,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::BoxF& box,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::RRectF& rect,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const SkPath&,
base::trace_event::TracedValue* res);
static void AddCornerRadiiToTracedValue(const char* name,
const gfx::RRectF& rect,
base::trace_event::TracedValue* res);
static void AddToTracedValue(const char* name,
const gfx::LinearGradient& gradient,
base::trace_event::TracedValue* res);
// Returns a base::Value representation of the floating point value.
// If the value is inf, returns max double/float representation.
static double AsDoubleSafely(double value);
static float AsFloatSafely(float value);
// Returns vector that x axis (1,0,0) transforms to under given transform.
static gfx::Vector3dF GetXAxis(const gfx::Transform& transform);
// Returns vector that y axis (0,1,0) transforms to under given transform.
static gfx::Vector3dF GetYAxis(const gfx::Transform& transform);
static bool IsFloatNearlyTheSame(float left, float right);
static bool IsNearlyTheSameForTesting(const gfx::PointF& l,
const gfx::PointF& r);
static bool IsNearlyTheSameForTesting(const gfx::Point3F& l,
const gfx::Point3F& r);
// Helper functions for migration from SkMatrix->SkM44. It may make sense to
// move these to skia itself at some point.
static bool SkM44HasPerspective(const SkM44& m);
static bool SkM44Is2D(const SkM44& m);
static bool SkM44Preserves2DAxisAlignment(const SkM44& m);
private:
template <typename T>
static constexpr T RoundUpInternal(T n, T mul) {
T remainder = n % mul;
if (remainder == 0) {
return n;
}
return (n > 0) ? n + mul - remainder : n - remainder;
}
template <typename T>
static constexpr T RoundDownInternal(T n, T mul) {
T remainder = n % mul;
if (remainder == 0) {
return n;
}
return (n > 0) ? n - remainder : n - mul - remainder;
}
};
class CC_BASE_EXPORT ScopedSubnormalFloatDisabler {
public:
ScopedSubnormalFloatDisabler();
ScopedSubnormalFloatDisabler(const ScopedSubnormalFloatDisabler&) = delete;
~ScopedSubnormalFloatDisabler();
ScopedSubnormalFloatDisabler& operator=(const ScopedSubnormalFloatDisabler&) =
delete;
#if defined(ARCH_CPU_X86_FAMILY)
private:
unsigned int orig_state_;
#endif
};
} // namespace cc
#endif // CC_BASE_MATH_UTIL_H_
|