1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CC_BASE_PROTECTED_SEQUENCE_SYNCHRONIZER_H_
#define CC_BASE_PROTECTED_SEQUENCE_SYNCHRONIZER_H_
#include <memory>
#include <utility>
namespace cc {
// ProtectedSequenceSynchronizer can be used to enforce thread safety of data
// that are owned and produced by an "owner" thread; and then passed by
// reference to another thread to use for a limited duration (a "protected
// sequence"). A protected sequence must be initiated on the owning thread, and
// it must be concluded on the non-owning thread. See the code comment above
// InProtectedSequence() for more on this requirement.
class ProtectedSequenceSynchronizer {
public:
ProtectedSequenceSynchronizer() = default;
ProtectedSequenceSynchronizer(const ProtectedSequenceSynchronizer&) = delete;
ProtectedSequenceSynchronizer& operator=(
const ProtectedSequenceSynchronizer&) = delete;
virtual ~ProtectedSequenceSynchronizer() = default;
// Returns true if the current thread is the owner and producer of these data.
virtual bool IsOwnerThread() const = 0;
// Returns true if a non-owner thread is currently running a protected
// sequence. The owner thread must be responsible for transitioning the return
// value from false to true, and the non-owner thread must be responsible for
// transitioning from true to false. Failure to adhere to these guidelines
// will likely cause race conditions and/or deadlock.
virtual bool InProtectedSequence() const = 0;
// Blocks execution of the owner thread until a non-owner thread finishes
// executing a protected sequence. It is an error for this to be called on a
// non-owner thread.
virtual void WaitForProtectedSequenceCompletion() const = 0;
};
// ProtectedSequenceForbidden values cannot be accessed for read or write by any
// non-owner thread. There are no restrictions on access by the owner thread.
template <typename T>
class ProtectedSequenceForbidden {
public:
template <typename... Args>
explicit ProtectedSequenceForbidden(Args&&... args)
: value_(std::forward<Args>(args)...) {}
ProtectedSequenceForbidden(const ProtectedSequenceForbidden&) = delete;
ProtectedSequenceForbidden& operator=(const ProtectedSequenceForbidden&) =
delete;
const T& Read(const ProtectedSequenceSynchronizer& synchronizer) const {
DCHECK(synchronizer.IsOwnerThread());
return value_;
}
T& Write(const ProtectedSequenceSynchronizer& synchronizer) {
DCHECK(synchronizer.IsOwnerThread());
return value_;
}
private:
T value_;
};
// ProtectedSequenceReadable values are...
// - readable by the owner thread at any time without blocking
// - writable by the owner thread, but not during a protected sequence
// - readable by a non-owner thread during a protected sequence
// - never writable by a non-owner thread
template <typename T>
class ProtectedSequenceReadable {
public:
template <typename... Args>
explicit ProtectedSequenceReadable(Args&&... args)
: value_(std::forward<Args>(args)...) {}
ProtectedSequenceReadable(const ProtectedSequenceReadable&) = delete;
ProtectedSequenceReadable& operator=(const ProtectedSequenceReadable&) =
delete;
const T& Read(const ProtectedSequenceSynchronizer& synchronizer) const {
DCHECK(synchronizer.IsOwnerThread() || synchronizer.InProtectedSequence());
return value_;
}
T& Write(const ProtectedSequenceSynchronizer& synchronizer) {
DCHECK(synchronizer.IsOwnerThread());
synchronizer.WaitForProtectedSequenceCompletion();
return value_;
}
private:
T value_;
};
// ProtectedSequenceWritable values are...
// - readable by the owner thread, but not during a protected sequence
// - writable by the owner thread, but not during a protected sequence
// - readable by a non-owner thread during a protected sequence
// - writable by a non-owner thread during a protected sequence
//
// Note that it is not safe to use ProtectedSequenceWritable values concurrently
// on two or more non-owner threads.
template <typename T>
class ProtectedSequenceWritable {
public:
template <typename... Args>
explicit ProtectedSequenceWritable(Args&&... args)
: value_(std::forward<Args>(args)...) {}
ProtectedSequenceWritable(const ProtectedSequenceWritable&) = delete;
ProtectedSequenceWritable& operator=(const ProtectedSequenceWritable&) =
delete;
const T& Read(const ProtectedSequenceSynchronizer& synchronizer) const {
DCHECK(synchronizer.IsOwnerThread() || synchronizer.InProtectedSequence());
if (synchronizer.IsOwnerThread())
synchronizer.WaitForProtectedSequenceCompletion();
return value_;
}
T& Write(const ProtectedSequenceSynchronizer& synchronizer) {
DCHECK(synchronizer.IsOwnerThread() || synchronizer.InProtectedSequence());
if (synchronizer.IsOwnerThread())
synchronizer.WaitForProtectedSequenceCompletion();
return value_;
}
private:
T value_;
};
// Type specializations for various containers.
template <typename T>
class ProtectedSequenceForbidden<std::unique_ptr<T>> {
public:
template <typename... Args>
explicit ProtectedSequenceForbidden(Args&&... args)
: value_(std::forward<Args>(args)...) {}
ProtectedSequenceForbidden(const ProtectedSequenceForbidden&) = delete;
ProtectedSequenceForbidden& operator=(const ProtectedSequenceForbidden&) =
delete;
const T* Read(const ProtectedSequenceSynchronizer& synchronizer) const {
DCHECK(synchronizer.IsOwnerThread());
return value_.get();
}
std::unique_ptr<T>& Write(const ProtectedSequenceSynchronizer& synchronizer) {
DCHECK(synchronizer.IsOwnerThread());
return value_;
}
private:
std::unique_ptr<T> value_;
};
template <typename T>
class ProtectedSequenceReadable<std::unique_ptr<T>> {
public:
template <typename... Args>
explicit ProtectedSequenceReadable(Args&&... args)
: value_(std::forward<Args>(args)...) {}
ProtectedSequenceReadable(const ProtectedSequenceReadable&) = delete;
ProtectedSequenceReadable& operator=(const ProtectedSequenceReadable&) =
delete;
const T* Read(const ProtectedSequenceSynchronizer& synchronizer) const {
return value_.get();
}
std::unique_ptr<T>& Write(const ProtectedSequenceSynchronizer& synchronizer) {
DCHECK(synchronizer.IsOwnerThread());
synchronizer.WaitForProtectedSequenceCompletion();
return value_;
}
private:
std::unique_ptr<T> value_;
};
template <typename T>
class ProtectedSequenceWritable<std::unique_ptr<T>> {
public:
template <typename... Args>
explicit ProtectedSequenceWritable(Args&&... args)
: value_(std::forward<Args>(args)...) {}
ProtectedSequenceWritable(const ProtectedSequenceWritable&) = delete;
ProtectedSequenceWritable& operator=(const ProtectedSequenceWritable&) =
delete;
const T* Read(const ProtectedSequenceSynchronizer& synchronizer) const {
DCHECK(synchronizer.IsOwnerThread() || synchronizer.InProtectedSequence());
if (synchronizer.IsOwnerThread())
synchronizer.WaitForProtectedSequenceCompletion();
return value_.get();
}
std::unique_ptr<T>& Write(const ProtectedSequenceSynchronizer& synchronizer) {
DCHECK(synchronizer.IsOwnerThread() || synchronizer.InProtectedSequence());
if (synchronizer.IsOwnerThread())
synchronizer.WaitForProtectedSequenceCompletion();
return value_;
}
private:
std::unique_ptr<T> value_;
};
} // namespace cc
#endif // CC_BASE_PROTECTED_SEQUENCE_SYNCHRONIZER_H_
|