1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
|
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/input/scroll_snap_data.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <memory>
#include <optional>
#include "base/auto_reset.h"
#include "base/check.h"
#include "base/notreached.h"
#include "cc/input/snap_selection_strategy.h"
#include "ui/gfx/geometry/vector2d_f.h"
namespace cc {
namespace {
gfx::Vector2dF DistanceFromCorridor(double dx,
double dy,
const gfx::RectF& area) {
gfx::Vector2dF distance;
if (dx < 0)
distance.set_x(-dx);
else if (dx > area.width())
distance.set_x(dx - area.width());
else
distance.set_x(0);
if (dy < 0)
distance.set_y(-dy);
else if (dy > area.height())
distance.set_y(dy - area.height());
else
distance.set_y(0);
return distance;
}
bool IsMutualVisible(const SnapSearchResult& a, const SnapSearchResult& b) {
return gfx::RangeF(b.snap_offset()).IsBoundedBy(a.visible_range()) &&
gfx::RangeF(a.snap_offset()).IsBoundedBy(b.visible_range());
}
void SetOrUpdateResult(const SnapSearchResult& candidate,
std::optional<SnapSearchResult>* result) {
if (result->has_value()) {
result->value().Union(candidate);
if (candidate.has_focus_within()) {
result->value().set_element_id(candidate.element_id());
}
} else {
*result = candidate;
}
}
const std::optional<SnapSearchResult>& ClosestSearchResult(
const gfx::PointF reference_point,
SearchAxis axis,
const std::optional<SnapSearchResult>& a,
const std::optional<SnapSearchResult>& b) {
if (!a.has_value())
return b;
if (!b.has_value())
return a;
float reference_position =
axis == SearchAxis::kX ? reference_point.x() : reference_point.y();
float position_a = a.value().snap_offset();
float position_b = b.value().snap_offset();
DCHECK(
(reference_position <= position_a && reference_position <= position_b) ||
(reference_position >= position_a && reference_position >= position_b));
float distance_a = std::abs(position_a - reference_position);
float distance_b = std::abs(position_b - reference_position);
return distance_a < distance_b ? a : b;
}
std::optional<SnapSearchResult> SearchResultForDodgingRange(
const gfx::RangeF& area_range,
const gfx::RangeF& dodging_range,
const SnapSearchResult& aligned_candidate,
float preferred_offset,
float scroll_padding,
float snapport_size,
SnapAlignment alignment) {
if (dodging_range.is_empty() || dodging_range.is_reversed()) {
return std::nullopt;
}
// Use aligned_candidate as a template (we will override snap_offset and
// covered_range).
SnapSearchResult result = aligned_candidate;
float min_offset = dodging_range.start() - scroll_padding;
float max_offset = dodging_range.end() - scroll_padding - snapport_size;
if (max_offset > min_offset) {
result.set_snap_offset(
std::clamp(preferred_offset, min_offset, max_offset));
result.set_covered_range(gfx::RangeF(min_offset, max_offset));
return result;
}
// The scrollport does not fit in the dodging range, but we should still
// return a snap position so that the content inside the dodging range is not
// unreachable. Choose a position by applying the snap area's alignment.
float offset;
switch (alignment) {
case SnapAlignment::kStart:
offset = min_offset;
break;
case SnapAlignment::kCenter:
offset = (min_offset + max_offset) / 2;
break;
case SnapAlignment::kEnd:
offset = max_offset;
break;
default:
NOTREACHED();
}
min_offset = area_range.start() - scroll_padding;
max_offset = area_range.end() - scroll_padding - snapport_size;
if (max_offset < min_offset) {
return std::nullopt;
}
result.set_snap_offset(std::clamp(offset, min_offset, max_offset));
return result;
}
bool CanCoverSnapportOnAxis(SearchAxis axis,
const gfx::RectF& container_rect,
const gfx::RectF& area_rect) {
return (axis == SearchAxis::kY &&
area_rect.height() >= container_rect.height()) ||
(axis == SearchAxis::kX &&
area_rect.width() >= container_rect.width());
}
} // namespace
SnapSearchResult::SnapSearchResult(float offset,
SearchAxis axis,
gfx::RangeF snapport_visible_range,
float snapport_max_visible)
: snap_offset_(offset),
axis_(axis),
snapport_visible_range_(snapport_visible_range),
snapport_max_visible_(snapport_max_visible) {}
void SnapSearchResult::Clip(float max_snap) {
snap_offset_ = std::clamp(snap_offset_, 0.0f, max_snap);
}
void SnapSearchResult::Union(const SnapSearchResult& other) {
DCHECK(snap_offset_ == other.snap_offset_);
DCHECK(rect_.has_value() && other.rect().has_value());
if (rect_ && other.rect().has_value()) {
rect_->Union(other.rect().value());
}
}
SnapContainerData::SnapContainerData()
: proximity_range_(gfx::PointF(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max())) {}
SnapContainerData::SnapContainerData(ScrollSnapType type)
: scroll_snap_type_(type),
proximity_range_(gfx::PointF(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max())) {}
SnapContainerData::SnapContainerData(ScrollSnapType type,
const gfx::RectF& rect,
const gfx::PointF& max)
: scroll_snap_type_(type),
rect_(rect),
max_position_(max),
proximity_range_(gfx::PointF(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max())) {}
SnapContainerData::SnapContainerData(const SnapContainerData& other) = default;
SnapContainerData::SnapContainerData(SnapContainerData&& other) = default;
SnapContainerData::~SnapContainerData() = default;
SnapContainerData& SnapContainerData::operator=(
const SnapContainerData& other) = default;
SnapContainerData& SnapContainerData::operator=(SnapContainerData&& other) =
default;
void SnapContainerData::AddSnapAreaData(SnapAreaData snap_area_data) {
snap_area_list_.push_back(snap_area_data);
}
SnapPositionData SnapContainerData::FindSnapPositionWithViewportAdjustment(
const SnapSelectionStrategy& strategy,
double snapport_height_adjustment) {
base::AutoReset<double> resetter{&snapport_height_adjustment_,
snapport_height_adjustment};
return FindSnapPosition(strategy);
}
SnapPositionData SnapContainerData::FindSnapPosition(
const SnapSelectionStrategy& strategy) const {
SnapPositionData result;
result.target_element_ids = TargetSnapAreaElementIds();
if (scroll_snap_type_.is_none)
return result;
gfx::PointF base_position = strategy.base_position();
SnapAxis axis = scroll_snap_type_.axis;
bool should_snap_on_x = strategy.ShouldSnapOnX() &&
(axis == SnapAxis::kX || axis == SnapAxis::kBoth);
bool should_snap_on_y = strategy.ShouldSnapOnY() &&
(axis == SnapAxis::kY || axis == SnapAxis::kBoth);
if (!should_snap_on_x && !should_snap_on_y) {
// We may arrive here because the strategy wants to snap in an axis in
// which we do not snap, and doesn't want to snap in an axis in which we do
// snap. Ensure that we retain the id of the target in any axis where we are
// snapped.
if (axis == SnapAxis::kY) {
result.target_element_ids.y = target_snap_area_element_ids_.y;
} else {
result.target_element_ids.x = target_snap_area_element_ids_.x;
}
return result;
}
bool should_prioritize_x_target =
strategy.ShouldPrioritizeSnapTargets() &&
target_snap_area_element_ids_.x != ElementId();
bool should_prioritize_y_target =
strategy.ShouldPrioritizeSnapTargets() &&
target_snap_area_element_ids_.y != ElementId();
std::optional<SnapSearchResult> selected_x, selected_y;
if (should_snap_on_x) {
// Start from current position in the cross axis. The search algorithm
// expects the cross axis position to be inside scroller bounds. But since
// we cannot always assume that the incoming value fits this criteria we
// clamp it to the bounds to ensure this variant.
SnapSearchResult initial_snap_position_y = {
std::clamp(base_position.y(), 0.f, max_position_.y()), SearchAxis::kY,
gfx::RangeF(rect_.x(), rect_.right()), max_position_.x()};
if (should_prioritize_x_target) {
selected_x = GetTargetSnapAreaSearchResult(strategy, SearchAxis::kX,
initial_snap_position_y);
}
if (!selected_x) {
selected_x = FindClosestValidArea(SearchAxis::kX, strategy,
initial_snap_position_y);
}
}
if (should_snap_on_y) {
SnapSearchResult initial_snap_position_x = {
std::clamp(base_position.x(), 0.f, max_position_.x()), SearchAxis::kX,
gfx::RangeF(rect_.y(), rect_.bottom()), max_position_.y()};
if (should_prioritize_y_target) {
selected_y = GetTargetSnapAreaSearchResult(strategy, SearchAxis::kY,
initial_snap_position_x);
}
if (!selected_y) {
selected_y = FindClosestValidArea(SearchAxis::kY, strategy,
initial_snap_position_x);
}
}
if (!selected_x.has_value() && !selected_y.has_value()) {
// Searching along each axis separately can miss valid snap positions if
// snapping along both axes and the snap positions are off screen.
if (should_snap_on_x && should_snap_on_y &&
!strategy.ShouldRespectSnapStop() &&
FindSnapPositionForMutualSnap(strategy, &result.position)) {
result.type = SnapPositionData::Type::kAligned;
}
return result;
}
if (selected_x.has_value() && selected_y.has_value() &&
!IsMutualVisible(selected_x.value(), selected_y.value())) {
SnapAxis axis_to_follow = SelectAxisToFollowForMutualVisibility(
strategy, selected_x.value(), selected_y.value());
if (axis_to_follow == SnapAxis::kX) {
selected_y =
FindClosestValidArea(SearchAxis::kY, strategy, selected_x.value());
} else {
selected_x =
FindClosestValidArea(SearchAxis::kX, strategy, selected_y.value());
}
}
// For each axis, the alternative makes a better selection if it is also
// aligned in the cross axis.
if (selected_y && selected_y->alternative()) {
SelectAlternativeIdForSearchResult(*selected_y, selected_x,
strategy.current_position().x(),
max_position_.x());
}
if (selected_x && selected_x->alternative()) {
SelectAlternativeIdForSearchResult(*selected_x, selected_y,
strategy.current_position().y(),
max_position_.y());
}
result.type = SnapPositionData::Type::kAligned;
result.position = strategy.current_position();
// Make sure that |result| retains what we are currently snapped to in each
// axis in case this search had no result for one axis. This ensures we don't
// incorrectly trigger a snap event. Don't retain ids of areas that may no
// longer exist.
for (const auto& area : snap_area_list_) {
if (area.element_id == target_snap_area_element_ids_.x) {
result.target_element_ids.x = target_snap_area_element_ids_.x;
}
if (area.element_id == target_snap_area_element_ids_.y) {
result.target_element_ids.y = target_snap_area_element_ids_.y;
}
}
if (selected_x) {
result.position.set_x(selected_x->snap_offset());
result.target_element_ids.x = selected_x->element_id();
result.covered_range_x = selected_x->covered_range();
}
if (selected_y) {
result.position.set_y(selected_y->snap_offset());
result.target_element_ids.y = selected_y->element_id();
result.covered_range_y = selected_y->covered_range();
}
if ((!selected_x || result.covered_range_x) &&
(!selected_y || result.covered_range_y)) {
result.type = SnapPositionData::Type::kCovered;
}
return result;
}
// This method is called only if the preferred algorithm fails to find either an
// x or a y snap position.
// The base algorithm searches on x (if appropriate) and then y (if
// appropriate). Each search is along the corridor in the search direction.
// For a search in the x-direction, areas as excluded from consideration if the
// range in the y-direction does not overlap the y base position (i.e. can
// scroll-snap in the x-direction without scrolling in the y-direction). Rules
// for scroll-snap in the y-direction are symmetric. This is the preferred
// approach, though the ordering of the searches should perhaps be determined
// based on axis locking.
// In cases where no valid snap points are found via searches along the axis
// corridors, the snap selection strategy allows for selection of areas outside
// of the corridors.
bool SnapContainerData::FindSnapPositionForMutualSnap(
const SnapSelectionStrategy& strategy,
gfx::PointF* snap_position) const {
DCHECK(strategy.ShouldSnapOnX() && strategy.ShouldSnapOnY());
bool found = false;
gfx::Vector2dF smallest_distance(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max());
// Snap to same element for x & y if possible.
for (const SnapAreaData& area : snap_area_list_) {
if (!strategy.IsValidSnapArea(SearchAxis::kX, area))
continue;
if (!strategy.IsValidSnapArea(SearchAxis::kY, area))
continue;
SnapSearchResult x_candidate = GetSnapSearchResult(SearchAxis::kX, area);
float dx = x_candidate.snap_offset() - strategy.current_position().x();
if (std::abs(dx) > proximity_range_.x())
continue;
SnapSearchResult y_candidate = GetSnapSearchResult(SearchAxis::kY, area);
float dy = y_candidate.snap_offset() - strategy.current_position().y();
if (std::abs(dy) > proximity_range_.y())
continue;
// Preferentially minimize block scrolling distance. Ties in block scrolling
// distance are resolved by considering inline scrolling distance.
gfx::Vector2dF distance = DistanceFromCorridor(dx, dy, snapport());
if (distance.y() < smallest_distance.y() ||
(distance.y() == smallest_distance.y() &&
distance.x() < smallest_distance.x())) {
smallest_distance = distance;
snap_position->set_x(x_candidate.snap_offset());
snap_position->set_y(y_candidate.snap_offset());
found = true;
}
}
return found;
}
std::optional<SnapSearchResult>
SnapContainerData::GetTargetSnapAreaSearchResult(
const SnapSelectionStrategy& strategy,
SearchAxis axis,
SnapSearchResult cross_axis_snap_result) const {
ElementId target_id = axis == SearchAxis::kX
? target_snap_area_element_ids_.x
: target_snap_area_element_ids_.y;
if (target_id == ElementId())
return std::nullopt;
for (const SnapAreaData& area : snap_area_list_) {
if (area.element_id == target_id && strategy.IsValidSnapArea(axis, area)) {
auto aligned_result = GetSnapSearchResult(axis, area);
if (CanCoverSnapportOnAxis(axis, snapport(), area.rect)) {
// This code path handles snapping after layout changes. If the
// target snap area is larger than the snapport, we need to consider
// snap areas nested within it, which may themselves be large snap areas
// containing nested snap areas.
gfx::RangeF area_range =
axis == SearchAxis::kX
? gfx::RangeF(area.rect.x(), area.rect.right())
: gfx::RangeF(area.rect.y(), area.rect.bottom());
auto covering_result = FindClosestValidAreaInternal(
axis, strategy, cross_axis_snap_result, true, area_range);
return covering_result.has_value() ? covering_result.value()
: aligned_result;
}
return aligned_result;
}
}
return std::nullopt;
}
void SnapContainerData::UpdateSnapAreaForTesting(ElementId element_id,
SnapAreaData snap_area_data) {
for (SnapAreaData& area : snap_area_list_) {
if (area.element_id == element_id) {
area = snap_area_data;
}
}
}
const TargetSnapAreaElementIds& SnapContainerData::GetTargetSnapAreaElementIds()
const {
return target_snap_area_element_ids_;
}
bool SnapContainerData::SetTargetSnapAreaElementIds(
TargetSnapAreaElementIds ids) {
if (target_snap_area_element_ids_ == ids)
return false;
target_snap_area_element_ids_ = ids;
return true;
}
std::optional<SnapSearchResult> SnapContainerData::FindClosestValidArea(
SearchAxis axis,
const SnapSelectionStrategy& strategy,
const SnapSearchResult& cross_axis_snap_result) const {
std::optional<SnapSearchResult> result =
FindClosestValidAreaInternal(axis, strategy, cross_axis_snap_result);
// For EndAndDirectionStrategy, if there is a snap area with snap-stop:always,
// and is between the starting position and the above result, we should choose
// the first snap area with snap-stop:always.
// This additional search is executed only if we found a result, while the
// additional search for the relaxed_strategy is executed only if we didn't
// find a result. So we put this search first so we can return early if we
// could find a result.
if (result.has_value() && strategy.ShouldRespectSnapStop()) {
std::unique_ptr<SnapSelectionStrategy> must_only_strategy =
SnapSelectionStrategy::CreateForDirection(
strategy.current_position(),
strategy.intended_position() - strategy.current_position(),
strategy.UsingFractionalOffsets(), SnapStopAlwaysFilter::kRequire);
std::optional<SnapSearchResult> must_only_result =
FindClosestValidAreaInternal(axis, *must_only_strategy,
cross_axis_snap_result, false);
result = ClosestSearchResult(strategy.current_position(), axis, result,
must_only_result);
}
// Our current direction based strategies are too strict ignoring the other
// directions even when we have no candidate in the given direction. This is
// particularly problematic with mandatory snap points and for fling
// gestures. To counteract this, if the direction based strategy finds no
// candidates, we do a second search ignoring the direction (this is
// implemented by using an equivalent EndPosition strategy).
if (result.has_value() ||
scroll_snap_type_.strictness == SnapStrictness::kProximity ||
!strategy.HasIntendedDirection())
return result;
std::unique_ptr<SnapSelectionStrategy> relaxed_strategy =
SnapSelectionStrategy::CreateForEndPosition(strategy.current_position(),
strategy.ShouldSnapOnX(),
strategy.ShouldSnapOnY());
return FindClosestValidAreaInternal(axis, *relaxed_strategy,
cross_axis_snap_result);
}
std::optional<SnapSearchResult> SnapContainerData::FindClosestValidAreaInternal(
SearchAxis axis,
const SnapSelectionStrategy& strategy,
const SnapSearchResult& cross_axis_snap_result,
bool should_consider_covering,
std::optional<gfx::RangeF> active_element_range) const {
bool horiz = axis == SearchAxis::kX;
// The cross axis result is expected to be within bounds otherwise no snap
// area will meet the mutual visibility requirement.
DCHECK(cross_axis_snap_result.snap_offset() >= 0 &&
cross_axis_snap_result.snap_offset() <=
(horiz ? max_position_.y() : max_position_.x()));
// The search result from the snap area that's closest to the search origin.
std::optional<SnapSearchResult> closest;
// The search result with the intended position if it makes a snap area cover
// the snapport.
std::optional<SnapSearchResult> covering_intended;
// The intended position of the scroll operation if there's no snap. This
// scroll position becomes the covering candidate if there is a snap area that
// fully covers the snapport if this position is scrolled to.
float intended_position = horiz ? strategy.intended_position().x()
: strategy.intended_position().y();
// The position from which we search for the closest snap position.
float base_position =
horiz ? strategy.base_position().x() : strategy.base_position().y();
// True if we have found a "preferred" candidate.
bool preferred_candidate = false;
float smallest_distance = horiz ? proximity_range_.x() : proximity_range_.y();
float proximity_distance =
horiz ? proximity_range_.x() : proximity_range_.y();
auto evaluate = [&](const SnapSearchResult& candidate,
const SnapAreaData& area) {
if (!IsMutualVisible(candidate, cross_axis_snap_result)) {
return;
}
if (!strategy.IsValidSnapPosition(axis, candidate.snap_offset())) {
return;
}
float distance = std::abs(candidate.snap_offset() - base_position);
if (distance > proximity_distance) {
return;
}
bool is_preferred_candidate =
strategy.IsPreferredSnapPosition(axis, candidate.snap_offset());
// If we have a preferred candidate, skip those which are not preferred.
if (preferred_candidate && !is_preferred_candidate) {
return;
}
// If this snap area is further away from the best candidate, and
// we either already have a preferred candidate or this candidate is not
// preferred, then skip it.
if (distance > smallest_distance &&
(preferred_candidate || !is_preferred_candidate)) {
return;
}
// Aligned snap areas that have focus should be given preference when
// selecting snap targets.
if (distance < smallest_distance ||
(is_preferred_candidate &&
(!preferred_candidate || candidate.has_focus_within()))) {
smallest_distance = distance;
closest = candidate;
preferred_candidate = is_preferred_candidate;
} else if (closest && !closest->has_focus_within()) {
if (closest->element_id() == targeted_area_id_) {
return;
}
if (candidate.element_id() == targeted_area_id_) {
closest = candidate;
preferred_candidate = is_preferred_candidate;
return;
}
const auto candidate_rect = candidate.rect();
const auto closest_rect = closest->rect();
// Prefer snapping to innermost elements when nesting snap areas.
// RectF::Contains allows equality but the candidate should only prevail
// if it is smaller.
DCHECK(closest_rect && candidate_rect);
if (closest_rect && candidate_rect &&
closest_rect->Contains(candidate_rect.value()) &&
closest_rect != candidate_rect) {
smallest_distance = distance;
closest = candidate;
preferred_candidate = is_preferred_candidate;
} else if ((scroll_snap_type_.axis == SnapAxis::kBoth) &&
(area.scroll_snap_align.alignment_block !=
SnapAlignment::kNone) &&
(area.scroll_snap_align.alignment_inline !=
SnapAlignment::kNone) &&
is_preferred_candidate == preferred_candidate) {
// This candidate is equally aligned with the current closest. Since it
// can be snapped to in both axes, designate it a potential alternative
// if we don't already have a potential alternative or it is a better
// alternative than the current one.
UpdateSearchAlternative(*closest, candidate, area, strategy);
}
}
};
for (const SnapAreaData& area : snap_area_list_) {
if (!strategy.IsValidSnapArea(axis, area))
continue;
if (active_element_range) {
gfx::RangeF area_range =
horiz ? gfx::RangeF(area.rect.x(), area.rect.right())
: gfx::RangeF(area.rect.y(), area.rect.bottom());
if (!active_element_range->Intersects(area_range)) {
continue;
}
}
SnapSearchResult candidate = GetSnapSearchResult(axis, area);
evaluate(candidate, area);
if (should_consider_covering &&
CanCoverSnapportOnAxis(axis, snapport(), area.rect)) {
if (std::optional<SnapSearchResult> covering =
FindCoveringCandidate(area, axis, candidate, intended_position)) {
covering->set_has_focus_within(area.has_focus_within);
covering->set_rect(area.rect);
if (covering->snap_offset() == intended_position) {
SetOrUpdateResult(*covering, &covering_intended);
} else {
// A covering candidate that is displaced from the intended position
// should behave similarly to an aligned snap position, competing on
// distance with other aligned snap positions - unlike a covering
// candidate at the intended position which may be given a higher
// priority in ScrollSnapStrategy::PickBestResult.
evaluate(*covering, area);
}
}
}
// Even if a snap area covers the snapport, we need to continue this
// search to find previous and next snap positions and also to have
// alternative snap candidates if this covering candidate is ultimately
// rejected. And this covering snap area has its own alignment that may
// generates a snap position rejecting the current inplace candidate.
}
const std::optional<SnapSearchResult>& picked =
strategy.PickBestResult(closest, covering_intended);
return picked;
}
SnapSearchResult SnapContainerData::GetSnapSearchResult(
SearchAxis axis,
const SnapAreaData& area) const {
SnapSearchResult result;
gfx::RectF rect = snapport();
if (axis == SearchAxis::kX) {
// https://www.w3.org/TR/css-scroll-snap-1/#scroll-snap-align
// Snap alignment has been normalized for a horizontal left to right and top
// to bottom writing mode.
switch (area.scroll_snap_align.alignment_inline) {
case SnapAlignment::kStart:
result.set_snap_offset(area.rect.x() - rect.x());
break;
case SnapAlignment::kCenter:
result.set_snap_offset(area.rect.CenterPoint().x() -
rect.CenterPoint().x());
break;
case SnapAlignment::kEnd:
result.set_snap_offset(area.rect.right() - rect.right());
break;
default:
NOTREACHED();
}
result.Clip(max_position_.x());
result.set_snapport_max_visible(max_position_.y());
result.set_snapport_visible_range(gfx::RangeF(rect.y(), rect.bottom()));
} else {
switch (area.scroll_snap_align.alignment_block) {
case SnapAlignment::kStart:
result.set_snap_offset(area.rect.y() - rect.y());
break;
case SnapAlignment::kCenter:
result.set_snap_offset(area.rect.CenterPoint().y() -
rect.CenterPoint().y());
break;
case SnapAlignment::kEnd:
result.set_snap_offset(area.rect.bottom() - rect.bottom());
break;
default:
NOTREACHED();
}
result.Clip(max_position_.y());
result.set_snapport_max_visible(max_position_.x());
result.set_snapport_visible_range(gfx::RangeF(rect.x(), rect.right()));
}
result.set_axis(axis);
result.set_rect(area.rect);
result.set_has_focus_within(area.has_focus_within);
result.set_element_id(area.element_id);
return result;
}
std::optional<SnapSearchResult> SnapContainerData::FindCoveringCandidate(
const SnapAreaData& area,
SearchAxis axis,
const SnapSearchResult& aligned_candidate,
float intended_position) const {
bool horiz = axis == SearchAxis::kX;
gfx::RectF rect = snapport();
float scroll_padding = horiz ? rect.x() : rect.y();
float snapport_size = horiz ? rect.width() : rect.height();
SnapAlignment alignment = horiz ? area.scroll_snap_align.alignment_inline
: area.scroll_snap_align.alignment_block;
gfx::RangeF area_range = horiz
? gfx::RangeF(area.rect.x(), area.rect.right())
: gfx::RangeF(area.rect.y(), area.rect.bottom());
gfx::RangeF preferred_snapport(
intended_position + scroll_padding,
intended_position + scroll_padding + snapport_size);
gfx::RangeF backward_dodging_range = area_range;
gfx::RangeF middle_dodging_range = area_range;
gfx::RangeF forward_dodging_range = area_range;
for (const SnapAreaData& intruder : snap_area_list_) {
gfx::RangeF intruder_range =
horiz ? gfx::RangeF(intruder.rect.x(), intruder.rect.right())
: gfx::RangeF(intruder.rect.y(), intruder.rect.bottom());
if (intruder_range.start() > area_range.end() ||
intruder_range.end() < area_range.start()) {
// Does not intrude.
continue;
}
if (intruder_range.start() <= area_range.start() &&
intruder_range.end() >= area_range.end()) {
// Superset of `area` also not treated as an intruder.
continue;
}
// Try three ways of dodging the intruders.
// In full generality this requires an interval tree. But we can simplify
// somewhat because we only care about a dodging range that is potentially
// closer than an aligned snap position, which each intruder also
// produces. For example, given:
// |---A---| |---preferred snapport---|
// |---B---|
// We do not care about the dodging range before the start of A.
// backward_dodging_range finds a dodging range that is above any intruder
// that intersects the snapport.
if (intruder_range.end() < preferred_snapport.start()) {
backward_dodging_range.set_start(
std::max(backward_dodging_range.start(), intruder_range.end()));
} else {
backward_dodging_range.set_end(
std::min(backward_dodging_range.end(), intruder_range.start()));
}
// forward_dodging_range finds a dodging range that is below any intruder
// that intersects the snapport.
if (intruder_range.start() > preferred_snapport.end()) {
forward_dodging_range.set_end(
std::min(forward_dodging_range.end(), intruder_range.start()));
} else {
forward_dodging_range.set_start(
std::max(forward_dodging_range.start(), intruder_range.end()));
}
// middle_dodging_range finds a dodging range inside the snapport, if there
// are intruders from above and below.
if (intruder_range.Contains(preferred_snapport) ||
preferred_snapport.Contains(intruder_range)) {
middle_dodging_range = gfx::RangeF();
} else if (intruder_range.start() <= preferred_snapport.start()) {
middle_dodging_range.set_start(
std::max(middle_dodging_range.start(), intruder_range.end()));
} else {
DCHECK(intruder_range.end() >= preferred_snapport.end());
middle_dodging_range.set_end(
std::min(middle_dodging_range.end(), intruder_range.start()));
}
}
std::optional<SnapSearchResult> middle_candidate =
SearchResultForDodgingRange(area_range, middle_dodging_range,
aligned_candidate, intended_position,
scroll_padding, snapport_size, alignment);
if (middle_candidate) {
return middle_candidate;
}
std::optional<SnapSearchResult> backward_candidate =
SearchResultForDodgingRange(area_range, backward_dodging_range,
aligned_candidate, intended_position,
scroll_padding, snapport_size, alignment);
std::optional<SnapSearchResult> forward_candidate =
SearchResultForDodgingRange(area_range, forward_dodging_range,
aligned_candidate, intended_position,
scroll_padding, snapport_size, alignment);
if (!backward_candidate) {
return forward_candidate;
}
if (!forward_candidate) {
return backward_candidate;
}
float backward_distance =
std::abs(backward_candidate->snap_offset() - intended_position);
float forward_distance =
std::abs(forward_candidate->snap_offset() - intended_position);
return backward_distance < forward_distance ? backward_candidate
: forward_candidate;
}
constexpr float kSnapportCoveredTolerance = 0.5;
bool SnapContainerData::IsSnapportCoveredOnAxis(
SearchAxis axis,
float current_offset,
const gfx::RectF& area_rect) const {
// We expand the range that SnapContainerData considers covering the snapport
// by kSnapportCoveredTolerance to handle offsets at the boundaries of
// the snap container. At the boundaries, |current_offset| might be a rounded
// int coming from ScrollTree::ClampScrollOffsetToLimits which uses
// ScrollNode::bounds which is a gfx::Size which stores ints.
// See crbug.com/1468412.
gfx::RectF rect = snapport();
if (axis == SearchAxis::kX) {
if (area_rect.width() < rect.width()) {
return false;
}
float left = area_rect.x() - rect.x();
float right = area_rect.right() - rect.right();
return current_offset >= left - kSnapportCoveredTolerance &&
current_offset <= right + kSnapportCoveredTolerance;
} else {
if (area_rect.height() < rect.height()) {
return false;
}
float top = area_rect.y() - rect.y();
float bottom = area_rect.bottom() - rect.bottom();
return current_offset >= top - kSnapportCoveredTolerance &&
current_offset <= bottom + kSnapportCoveredTolerance;
}
}
// TODO(crbug.com/40941354): Use tolerance value less than 1.
// It is currently set to 1 because of differences in the way Blink and cc
// currently handle fractional offsets when snapping.
constexpr float kSnappedToTolerance = 1.0;
bool SnapContainerData::IsSnappedToArea(
const SnapAreaData& area,
const gfx::PointF& scroll_offset) const {
bool covered_on_y =
IsSnapportCoveredOnAxis(SearchAxis::kY, scroll_offset.y(), area.rect);
bool covered_on_x =
IsSnapportCoveredOnAxis(SearchAxis::kX, scroll_offset.x(), area.rect);
bool snaps_on_x = scroll_snap_type_.axis == SnapAxis::kX ||
scroll_snap_type_.axis == SnapAxis::kBoth;
bool snaps_on_y = scroll_snap_type_.axis == SnapAxis::kY ||
scroll_snap_type_.axis == SnapAxis::kBoth;
if ((snaps_on_x && covered_on_x) && (snaps_on_y && covered_on_y)) {
return true;
}
if (snaps_on_y &&
area.scroll_snap_align.alignment_block != SnapAlignment::kNone) {
SnapSearchResult snap_result_y = GetSnapSearchResult(SearchAxis::kY, area);
if (((std::abs(snap_result_y.snap_offset() - scroll_offset.y()) <=
kSnappedToTolerance) ||
covered_on_y) &&
gfx::RangeF(scroll_offset.x())
.IsBoundedBy(snap_result_y.visible_range())) {
return true;
}
}
if (snaps_on_x &&
area.scroll_snap_align.alignment_inline != SnapAlignment::kNone) {
SnapSearchResult snap_result_x = GetSnapSearchResult(SearchAxis::kX, area);
if (((std::abs(snap_result_x.snap_offset() - scroll_offset.x()) <=
kSnappedToTolerance) ||
covered_on_x) &&
gfx::RangeF(scroll_offset.y())
.IsBoundedBy(snap_result_x.visible_range())) {
return true;
}
}
return false;
}
gfx::RectF SnapContainerData::snapport() const {
if (!snapport_height_adjustment_) {
return rect_;
}
gfx::RectF adjusted = rect_;
// The top visible point is not changed by showing / hiding the top controls;
// they only expand the visible rect from that anchor point.
adjusted.set_height(adjusted.height() + snapport_height_adjustment_);
return adjusted;
}
void SnapContainerData::UpdateSearchAlternative(
SnapSearchResult& current_result,
const SnapSearchResult& candidate_result,
const SnapAreaData& candidate_area,
const SnapSelectionStrategy& strategy) const {
bool horiz = current_result.axis() == SearchAxis::kX;
const auto candidate_cross_axis_aligned_result = GetSnapSearchResult(
horiz ? SearchAxis::kY : SearchAxis::kX, candidate_area);
const auto candidate_rect = candidate_result.rect();
const auto current_result_rect = current_result.rect();
DCHECK(candidate_rect && current_result_rect);
if (!candidate_rect || !current_result_rect ||
candidate_rect->Contains(*current_result_rect)) {
return;
}
if (auto alt = current_result.alternative()) {
float cross_axis_base_position =
horiz ? strategy.base_position().y() : strategy.base_position().x();
float candidate_cross_axis_distance =
std::abs(cross_axis_base_position -
candidate_cross_axis_aligned_result.snap_offset());
float alt_cross_axis_distance =
std::abs(cross_axis_base_position - alt->cross_axis_snap_offset);
if (candidate_cross_axis_distance > alt_cross_axis_distance) {
return;
}
const auto alt_rect = alt->area_rect;
// This candidate beats our current alternative if it is closer to the
// base position in the cross axis than our current alternative,
// or if it is tied with the current alternative and is nested within
// the current alternative (inner targets are preferred to outer targets).
if (candidate_cross_axis_distance < alt_cross_axis_distance ||
(alt_rect != *candidate_rect && alt_rect.Contains(*candidate_rect))) {
current_result.set_alternative(
candidate_area.element_id, *candidate_rect,
candidate_cross_axis_aligned_result.snap_offset());
}
} else {
// We did not have an alternative before now, make the current
// candidate our alternative.
current_result.set_alternative(
candidate_area.element_id, *candidate_rect,
candidate_cross_axis_aligned_result.snap_offset());
}
}
void SnapContainerData::SelectAlternativeIdForSearchResult(
SnapSearchResult& selection,
const std::optional<SnapSearchResult>& cross_selection,
float cross_current_position,
float cross_max_position) const {
const auto within_snapped_tolerance = [](float v1, float v2) {
return std::abs(v1 - v2) <= kSnappedToTolerance;
};
if (cross_selection) {
if (within_snapped_tolerance(
cross_selection->snap_offset(),
selection.alternative()->cross_axis_snap_offset)) {
selection.set_element_id(selection.alternative()->element_id);
}
} else {
if (within_snapped_tolerance(
std::clamp(cross_current_position, 0.0f, cross_max_position),
selection.alternative()->cross_axis_snap_offset)) {
selection.set_element_id(selection.alternative()->element_id);
}
}
}
SnapAxis SnapContainerData::SelectAxisToFollowForMutualVisibility(
const SnapSelectionStrategy& strategy,
const SnapSearchResult& selected_x,
const SnapSearchResult& selected_y) const {
// If snapping in one axis pushes off-screen the other snap area, this snap
// position is invalid. https://drafts.csswg.org/css-scroll-snap-1/#snap-scope
// In this case, first check if we need to prioritize snapping to the most
// recent snap targets in each axis and prioritize one axis over the other
// according to the following order:
// 1. an axis with the focused area.
// 2. an axis with the targeted [1] area.
// 3. the block axis.
// (See step 8 at
// https://github.com/w3c/csswg-drafts/issues/9622#issue-2006578282)
// [1]https://drafts.csswg.org/selectors/#the-target-pseudo
// If we don't prioritize snapping to the most recent snap targets, we choose
// the axis whose snap area is closer. Then find a new snap area on the other
// axis that is mutually visible with the selected axis' snap area.
if (strategy.ShouldPrioritizeSnapTargets()) {
// If we we're previously snapped in one axis but not the other, follow the
// axis we we're previously snapped in.
if (target_snap_area_element_ids_.x == ElementId()) {
return SnapAxis::kY;
} else if (target_snap_area_element_ids_.y == ElementId()) {
return SnapAxis::kX;
}
// Focused, then targeted snap areas should be followed.
if (selected_x.has_focus_within()) {
return SnapAxis::kX;
} else if (selected_y.has_focus_within()) {
return SnapAxis::kY;
} else if (selected_x.element_id() == targeted_area_id_) {
return SnapAxis::kX;
} else if (selected_y.element_id() == targeted_area_id_) {
return SnapAxis::kY;
}
// Follow the block axis target.
return has_horizontal_writing_mode_ ? SnapAxis::kY : SnapAxis::kX;
}
return (
std::abs(selected_x.snap_offset() - strategy.base_position().x()) <=
std::abs(selected_y.snap_offset() - strategy.base_position().y())
? SnapAxis::kX
: SnapAxis::kY);
}
std::ostream& operator<<(std::ostream& ostream, const SnapAreaData& area_data) {
return ostream << area_data.rect.ToString();
}
std::ostream& operator<<(std::ostream& ostream,
const SnapContainerData& container_data) {
ostream << "container_rect: " << container_data.rect().ToString();
ostream << "area_rects: ";
for (size_t i = 0; i < container_data.size(); ++i) {
ostream << container_data.at(i) << "\n";
}
return ostream;
}
} // namespace cc
|