1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/layers/picture_layer_impl.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <memory>
#include <set>
#include <utility>
#include "base/containers/contains.h"
#include "base/memory/raw_ptr.h"
#include "base/metrics/histogram_macros.h"
#include "base/no_destructor.h"
#include "base/system/sys_info.h"
#include "base/time/time.h"
#include "base/trace_event/traced_value.h"
#include "build/build_config.h"
#include "cc/base/features.h"
#include "cc/base/math_util.h"
#include "cc/benchmarks/micro_benchmark_impl.h"
#include "cc/debug/debug_colors.h"
#include "cc/layers/append_quads_context.h"
#include "cc/layers/append_quads_data.h"
#include "cc/paint/display_item_list.h"
#include "cc/tiles/tile_manager.h"
#include "cc/tiles/tiling_set_raster_queue_all.h"
#include "cc/trees/draw_property_utils.h"
#include "cc/trees/effect_node.h"
#include "cc/trees/layer_tree_impl.h"
#include "cc/trees/occlusion.h"
#include "cc/trees/transform_node.h"
#include "components/viz/common/frame_sinks/begin_frame_args.h"
#include "components/viz/common/quads/debug_border_draw_quad.h"
#include "components/viz/common/quads/picture_draw_quad.h"
#include "components/viz/common/quads/solid_color_draw_quad.h"
#include "components/viz/common/quads/tile_draw_quad.h"
#include "components/viz/common/traced_value.h"
#include "ui/gfx/geometry/point_conversions.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/size_conversions.h"
namespace cc {
namespace {
// This must be > 1 as we multiply or divide by this to find a new raster
// scale during pinch.
const float kMaxScaleRatioDuringPinch = 2.0f;
// When creating a new tiling during pinch, snap to an existing
// tiling's scale if the desired scale is within this ratio.
const float kSnapToExistingTilingRatio = 1.2f;
// Large contents scale can cause overflow issues. Cap the ideal contents scale
// by this constant, since scales larger than this are usually not correct or
// their scale doesn't matter as long as it's large. Content scales usually
// closely match the default device-scale factor (so it's usually <= 5). See
// Renderer4.IdealContentsScale UMA (deprecated) for distribution of content
// scales.
const float kMaxIdealContentsScale = 10000.f;
// We try to avoid raster scale adjustment for will-change:transform for
// performance, unless the scale is too small compared to the ideal scale and
// the native scale.
const float kMinScaleRatioForWillChangeTransform = 0.25f;
// Used to avoid raster scale adjustment during a transform animation by
// using the maximum animation scale, but sometimes the maximum animation scale
// can't be accurately calculated (e.g. with nested scale transforms). We'll
// adjust raster scale if it is not affected by invalid scale and is smaller
// than the ideal scale divided by this ratio. The situation is rare.
// See PropertyTrees::MaximumAnimationToScreenScale() and
// AnimationAffectedByInvalidScale().
const float kRatioToAdjustRasterScaleForTransformAnimation = 1.5f;
// Intersect rects which may have right() and bottom() that overflow integer
// boundaries. This code is similar to gfx::Rect::Intersect with the exception
// that the types are promoted to int64_t when there is a chance of overflow.
gfx::Rect SafeIntersectRects(const gfx::Rect& one, const gfx::Rect& two) {
if (one.IsEmpty() || two.IsEmpty())
return gfx::Rect();
int rx = std::max(one.x(), two.x());
int ry = std::max(one.y(), two.y());
int64_t rr = std::min(static_cast<int64_t>(one.x()) + one.width(),
static_cast<int64_t>(two.x()) + two.width());
int64_t rb = std::min(static_cast<int64_t>(one.y()) + one.height(),
static_cast<int64_t>(two.y()) + two.height());
if (rx > rr || ry > rb)
return gfx::Rect();
return gfx::Rect(rx, ry, static_cast<int>(rr - rx),
static_cast<int>(rb - ry));
}
} // namespace
PictureLayerImpl::PictureLayerImpl(LayerTreeImpl* tree_impl, int id)
: LayerImpl(tree_impl,
id,
tree_impl->always_push_properties_on_picture_layers()) {
layer_tree_impl()->RegisterPictureLayerImpl(this);
}
PictureLayerImpl::~PictureLayerImpl() {
if (twin_layer_)
twin_layer_->twin_layer_ = nullptr;
// We only track PaintWorklet-containing PictureLayerImpls on the pending
// tree. However this deletion may happen outside the commit flow when we are
// on the recycle tree instead, so just check !IsActiveTree().
if (!paint_worklet_records_.empty() && !layer_tree_impl()->IsActiveTree())
layer_tree_impl()->NotifyLayerHasPaintWorkletsChanged(this, false);
// Similarly, AnimatedPaintWorkletTracker is only valid on the pending tree.
if (!layer_tree_impl()->IsActiveTree()) {
layer_tree_impl()
->paint_worklet_tracker()
.UpdatePaintWorkletInputProperties({}, this);
}
layer_tree_impl()->UnregisterPictureLayerImpl(this);
// Unregister for all images on the current raster source.
UnregisterAnimatedImages();
}
mojom::LayerType PictureLayerImpl::GetLayerType() const {
return mojom::LayerType::kPicture;
}
std::unique_ptr<LayerImpl> PictureLayerImpl::CreateLayerImpl(
LayerTreeImpl* tree_impl) const {
return PictureLayerImpl::Create(tree_impl, id());
}
void PictureLayerImpl::PushPropertiesTo(LayerImpl* base_layer) {
PictureLayerImpl* layer_impl = static_cast<PictureLayerImpl*>(base_layer);
layer_impl->has_animated_image_update_rect_ = has_animated_image_update_rect_;
layer_impl->has_non_animated_image_update_rect_ =
has_non_animated_image_update_rect_;
// This hs to be cached before calling LayerImpl::PushPropertiesTo because it
// reset the flag.
bool changed_other_props = GetChangeFlag(kChangedGeneralProperty);
LayerImpl::PushPropertiesTo(base_layer);
// Twin relationships should never change once established.
DCHECK(!twin_layer_ || twin_layer_ == layer_impl);
DCHECK(!twin_layer_ || layer_impl->twin_layer_ == this);
// The twin relationship does not need to exist before the first
// PushPropertiesTo from pending to active layer since before that the active
// layer can not have a pile or tilings, it has only been created and inserted
// into the tree at that point.
twin_layer_ = layer_impl;
layer_impl->twin_layer_ = this;
if (changed_other_props) {
layer_impl->SetIsBackdropFilterMask(is_backdrop_filter_mask_);
// Solid color layers have no tilings.
DCHECK(!raster_source_->IsSolidColor() || tilings_->num_tilings() == 0);
// The pending tree should have at most a single tiling.
DCHECK_LE(tilings_->num_tilings(), 1u);
layer_impl->set_gpu_raster_max_texture_size(gpu_raster_max_texture_size_);
layer_impl->UpdateRasterSourceInternal(
raster_source_, &invalidation_, tilings_.get(), &paint_worklet_records_,
discardable_image_map_.get());
DCHECK(invalidation_.IsEmpty());
// After syncing a solid color layer, the active layer has no tilings.
DCHECK(!raster_source_->IsSolidColor() ||
layer_impl->tilings_->num_tilings() == 0);
layer_impl->raster_page_scale_ = raster_page_scale_;
layer_impl->raster_device_scale_ = raster_device_scale_;
layer_impl->raster_source_scale_ = raster_source_scale_;
layer_impl->raster_contents_scale_ = raster_contents_scale_;
// Simply push the value to the active tree without any extra invalidations,
// since the pending tree tiles would have this handled. This is here to
// ensure the state is consistent for future raster.
layer_impl->lcd_text_disallowed_reason_ = lcd_text_disallowed_reason_;
}
if (layer_tree_impl()->settings().TreesInVizInClientProcess()) {
// Move tile updates over to the active layer so they get pushed to the
// display tree. Note that active layers never accumulate their own tile
// updates, so replacement is safe.
layer_impl->updated_tiles_ = std::move(updated_tiles_);
updated_tiles_.clear();
}
layer_impl->SanityCheckTilingState();
}
void PictureLayerImpl::AppendQuads(const AppendQuadsContext& context,
viz::CompositorRenderPass* render_pass,
AppendQuadsData* append_quads_data) {
// RenderSurfaceImpl::AppendQuads sets mask properties in the DrawQuad for
// the masked surface, which will apply to both the backdrop filter and the
// contents of the masked surface, so we should not append quads of the mask
// layer in DstIn blend mode which would apply the mask in another codepath.
if (is_backdrop_filter_mask_)
return;
viz::SharedQuadState* shared_quad_state =
render_pass->CreateAndAppendSharedQuadState();
if (raster_source_->IsSolidColor()) {
AppendSolidQuad(render_pass, append_quads_data,
raster_source_->GetSolidColor());
return;
}
float device_scale_factor = layer_tree_impl()->device_scale_factor();
// If we don't have tilings, we're likely going to append a checkerboard quad
// the size of the layer. In that case, use scale 1 for more stable
// to-screen-space mapping.
float max_contents_scale =
tilings_->num_tilings() ? MaximumTilingContentsScale() : 1.f;
PopulateScaledSharedQuadState(shared_quad_state, max_contents_scale,
contents_opaque());
if (IsDirectlyCompositedImage()) {
// Directly composited images should be clipped to the layer's content rect.
// When a PictureLayerTiling is created for a directly composited image, the
// layer bounds are multiplied by the raster scale in order to compute the
// tile size. If the aspect ratio of the layer doesn't match that of the
// image, it's possible that one of the dimensions of the resulting size
// (layer bounds * raster scale) is a fractional number, as raster scale
// does not scale x and y independently.
// When this happens, the ToEnclosingRect() operation in
// |PictureLayerTiling::EnclosingContentsRectFromLayer()| will
// create a tiling that, when scaled by |max_contents_scale| above, is
// larger than the layer bounds by a fraction of a pixel.
gfx::Rect bounds_in_target_space = MathUtil::MapEnclosingClippedRect(
draw_properties().target_space_transform, gfx::Rect(bounds()));
if (is_clipped())
bounds_in_target_space.Intersect(draw_properties().clip_rect);
if (shared_quad_state->clip_rect)
bounds_in_target_space.Intersect(*shared_quad_state->clip_rect);
shared_quad_state->clip_rect = bounds_in_target_space;
}
Occlusion scaled_occlusion =
draw_properties()
.occlusion_in_content_space.GetOcclusionWithGivenDrawTransform(
shared_quad_state->quad_to_target_transform);
if (context.draw_mode == DRAW_MODE_RESOURCELESS_SOFTWARE) {
DCHECK(shared_quad_state->quad_layer_rect.origin() == gfx::Point(0, 0));
AppendDebugBorderQuad(
render_pass, shared_quad_state->quad_layer_rect, shared_quad_state,
append_quads_data, DebugColors::DirectPictureBorderColor(),
DebugColors::DirectPictureBorderWidth(device_scale_factor));
gfx::Rect geometry_rect = shared_quad_state->visible_quad_layer_rect;
gfx::Rect visible_geometry_rect =
scaled_occlusion.GetUnoccludedContentRect(geometry_rect);
bool needs_blending = !contents_opaque();
// The raster source may not be valid over the entire visible rect,
// and rastering outside of that may cause incorrect pixels.
gfx::Rect scaled_recorded_bounds = gfx::ScaleToEnclosingRect(
raster_source_->recorded_bounds(), max_contents_scale);
geometry_rect.Intersect(scaled_recorded_bounds);
visible_geometry_rect.Intersect(scaled_recorded_bounds);
if (visible_geometry_rect.IsEmpty())
return;
DCHECK(raster_source_->HasRecordings());
gfx::Rect quad_content_rect = shared_quad_state->visible_quad_layer_rect;
gfx::Size texture_size = quad_content_rect.size();
gfx::RectF texture_rect = gfx::RectF(gfx::SizeF(texture_size));
viz::PictureDrawQuad::ImageAnimationMap image_animation_map;
const auto* controller = layer_tree_impl()->image_animation_controller();
WhichTree tree = layer_tree_impl()->IsPendingTree()
? WhichTree::PENDING_TREE
: WhichTree::ACTIVE_TREE;
for (const auto& image_data :
discardable_image_map_->animated_images_metadata()) {
image_animation_map[image_data.paint_image_id] =
controller->GetFrameIndexForImage(image_data.paint_image_id, tree);
}
auto* quad = render_pass->CreateAndAppendDrawQuad<viz::PictureDrawQuad>();
quad->SetNew(
shared_quad_state, geometry_rect, visible_geometry_rect, needs_blending,
texture_rect, nearest_neighbor_, quad_content_rect, max_contents_scale,
std::move(image_animation_map), raster_source_->GetDisplayItemList(),
GetRasterInducingScrollOffsets());
ValidateQuadResources(quad);
return;
}
// If we're doing a regular AppendQuads (ie, not solid color or resourceless
// software draw, and if the visible rect is scrolled far enough away, then we
// may run into a floating point precision in AA calculations in the renderer.
// See crbug.com/765297. In order to avoid this, we shift the quads up from
// where they logically reside and adjust the shared_quad_state's transform
// instead. We only do this in a scale/translate matrices to ensure the math
// is correct.
gfx::Vector2d quad_offset;
if (shared_quad_state->quad_to_target_transform.IsScaleOrTranslation()) {
const auto& visible_rect = shared_quad_state->visible_quad_layer_rect;
quad_offset = gfx::Vector2d(-visible_rect.x(), -visible_rect.y());
}
gfx::Rect debug_border_rect(shared_quad_state->quad_layer_rect);
debug_border_rect.Offset(quad_offset);
AppendDebugBorderQuad(render_pass, debug_border_rect, shared_quad_state,
append_quads_data);
if (ShowDebugBorders(DebugBorderType::LAYER)) {
for (auto iter =
tilings_->Cover(shared_quad_state->visible_quad_layer_rect,
max_contents_scale, ideal_contents_scale_key());
iter; ++iter) {
SkColor4f color;
float width;
if (*iter && iter->draw_info().IsReadyToDraw()) {
TileDrawInfo::Mode mode = iter->draw_info().mode();
if (mode == TileDrawInfo::SOLID_COLOR_MODE) {
color = DebugColors::SolidColorTileBorderColor();
width = DebugColors::SolidColorTileBorderWidth(device_scale_factor);
} else if (mode == TileDrawInfo::OOM_MODE) {
color = DebugColors::OOMTileBorderColor();
width = DebugColors::OOMTileBorderWidth(device_scale_factor);
} else if (iter.resolution() == HIGH_RESOLUTION) {
color = DebugColors::HighResTileBorderColor();
width = DebugColors::HighResTileBorderWidth(device_scale_factor);
} else if (iter->contents_scale_key() > max_contents_scale) {
color = DebugColors::ExtraHighResTileBorderColor();
width = DebugColors::ExtraHighResTileBorderWidth(device_scale_factor);
} else {
color = DebugColors::ExtraLowResTileBorderColor();
width = DebugColors::ExtraLowResTileBorderWidth(device_scale_factor);
}
} else {
color = DebugColors::MissingTileBorderColor();
width = DebugColors::MissingTileBorderWidth(device_scale_factor);
}
auto* debug_border_quad =
render_pass->CreateAndAppendDrawQuad<viz::DebugBorderDrawQuad>();
gfx::Rect geometry_rect = iter.geometry_rect();
geometry_rect.Offset(quad_offset);
gfx::Rect visible_geometry_rect = geometry_rect;
debug_border_quad->SetNew(shared_quad_state, geometry_rect,
visible_geometry_rect, color, width);
}
}
if (layer_tree_impl()->debug_state().highlight_non_lcd_text_layers) {
SkColor4f color =
DebugColors::NonLCDTextHighlightColor(lcd_text_disallowed_reason());
if (color != SkColors::kTransparent &&
GetRasterSource()->GetDisplayItemList()->AreaOfDrawText(
gfx::Rect(bounds()))) {
render_pass->CreateAndAppendDrawQuad<viz::SolidColorDrawQuad>()->SetNew(
shared_quad_state, debug_border_rect, debug_border_rect, color,
append_quads_data);
}
}
// Keep track of the tilings that were used so that tilings that are
// unused can be considered for removal.
last_append_quads_tilings_.clear();
// Ignore missing tiles outside of viewport for tile priority. This is
// normally the same as draw viewport but can be independently overridden by
// embedders like Android WebView with SetExternalTilePriorityConstraints.
gfx::Rect scaled_viewport_for_tile_priority = gfx::ScaleToEnclosingRect(
viewport_rect_for_tile_priority_in_content_space_, max_contents_scale);
std::optional<gfx::Rect> scaled_cull_rect;
const ScrollTree& scroll_tree =
layer_tree_impl()->property_trees()->scroll_tree();
if (const ScrollNode* scroll_node = scroll_tree.Node(scroll_tree_index())) {
if (transform_tree_index() == scroll_node->transform_id) {
if (const gfx::Rect* cull_rect =
scroll_tree.ScrollingContentsCullRect(scroll_node->element_id)) {
scaled_cull_rect = gfx::ToEnclosingRect(gfx::ScaleRect(
// Convert into layer space.
gfx::RectF(*cull_rect) - offset_to_transform_parent(),
max_contents_scale));
}
}
}
if (const auto& display_list = raster_source_->GetDisplayItemList()) {
for (auto& [element_id, info] : display_list->raster_inducing_scrolls()) {
if (!info.visual_rect.Intersects(visible_layer_rect())) {
continue;
}
if (const gfx::Rect* cull_rect =
scroll_tree.ScrollingContentsCullRect(element_id)) {
if (const auto* scroll_node =
scroll_tree.FindNodeFromElementId(element_id)) {
if (!scroll_tree.CanRealizeScrollsOnPendingTree(*scroll_node)) {
continue;
}
gfx::RectF visible_rect(
gfx::Rect(scroll_node->container_origin,
scroll_tree.container_bounds(scroll_node->id)));
visible_rect.Offset(
scroll_tree.current_scroll_offset(element_id).OffsetFromOrigin());
if (!cull_rect->Contains(gfx::ToEnclosedRect(visible_rect))) {
append_quads_data->checkerboarded_needs_record = true;
break;
}
}
}
}
}
int missing_tile_count = 0;
produced_tile_last_append_quads_ = false;
gfx::Rect scaled_recorded_bounds = gfx::ScaleToEnclosingRect(
raster_source_->recorded_bounds(), max_contents_scale);
for (auto iter =
tilings_->Cover(shared_quad_state->visible_quad_layer_rect,
max_contents_scale, ideal_contents_scale_key());
iter; ++iter) {
gfx::Rect geometry_rect = iter.geometry_rect();
if (!scaled_recorded_bounds.Intersects(geometry_rect)) {
// This happens when the tiling rect is snapped to be bigger than the
// recorded bounds, and CoverageIterator returns a "missing" tile
// to cover some of the empty area. The tile should be ignored, otherwise
// it would be mistakenly treated as checkerboarded and drawn with the
// safe background color.
// TODO(crbug.com/328677988): Ideally we should check intersection with
// visible_geometry_rect and remove the visible_geometry_rect.IsEmpty()
// condition below.
continue;
}
gfx::Rect visible_geometry_rect =
scaled_occlusion.GetUnoccludedContentRect(geometry_rect);
gfx::Rect offset_geometry_rect = geometry_rect;
offset_geometry_rect.Offset(quad_offset);
gfx::Rect offset_visible_geometry_rect = visible_geometry_rect;
offset_visible_geometry_rect.Offset(quad_offset);
bool needs_blending = !contents_opaque();
if (visible_geometry_rect.IsEmpty())
continue;
uint64_t visible_geometry_area = visible_geometry_rect.size().Area64();
append_quads_data->visible_layer_area += visible_geometry_area;
bool has_draw_quad = false;
if (*iter && iter->draw_info().IsReadyToDraw()) {
const TileDrawInfo& draw_info = iter->draw_info();
// Mark the tile used for raster. This is used to reclaim old prepaint
// tiles in TileManager.
iter->mark_used();
switch (draw_info.mode()) {
case TileDrawInfo::RESOURCE_MODE: {
gfx::RectF texture_rect = iter.texture_rect();
// The raster_contents_scale_ is the best scale that the layer is
// trying to produce, even though it may not be ideal. Since that's
// the best the layer can promise in the future, consider those as
// complete. Also consider a tile complete if it is ideal scale or
// better. Note that PLTS::CoverageIterator prefers the _smallest_
// scale that is >= ideal, which may be < raster_contents_scale_.
if (iter->contents_scale_key() != raster_contents_scale_key() &&
iter->contents_scale_key() < ideal_contents_scale_key() &&
geometry_rect.Intersects(scaled_viewport_for_tile_priority)) {
append_quads_data->checkerboarded_needs_raster = true;
}
auto* quad =
render_pass->CreateAndAppendDrawQuad<viz::TileDrawQuad>();
quad->SetNew(
shared_quad_state, offset_geometry_rect,
offset_visible_geometry_rect, needs_blending,
draw_info.resource_id_for_export(), texture_rect,
nearest_neighbor_,
!layer_tree_impl()->settings().enable_edge_anti_aliasing);
ValidateQuadResources(quad);
has_draw_quad = true;
break;
}
case TileDrawInfo::SOLID_COLOR_MODE: {
float alpha = draw_info.solid_color().fA * shared_quad_state->opacity;
if (alpha >= std::numeric_limits<float>::epsilon()) {
auto* quad =
render_pass->CreateAndAppendDrawQuad<viz::SolidColorDrawQuad>();
quad->SetNew(
shared_quad_state, offset_geometry_rect,
offset_visible_geometry_rect, draw_info.solid_color(),
!layer_tree_impl()->settings().enable_edge_anti_aliasing);
ValidateQuadResources(quad);
}
has_draw_quad = true;
break;
}
case TileDrawInfo::OOM_MODE:
break; // Checkerboard.
}
}
if (!append_quads_data->checkerboarded_needs_record && scaled_cull_rect &&
!scaled_cull_rect->Contains(visible_geometry_rect)) {
append_quads_data->checkerboarded_needs_record = true;
}
if (!has_draw_quad) {
// Checkerboard due to missing raster.
SkColor4f color = safe_opaque_background_color();
if (ShowDebugBorders(DebugBorderType::LAYER)) {
// Fill the whole tile with the missing tile color.
color = DebugColors::DefaultCheckerboardColor();
}
auto* quad =
render_pass->CreateAndAppendDrawQuad<viz::SolidColorDrawQuad>();
quad->SetNew(shared_quad_state, offset_geometry_rect,
offset_visible_geometry_rect, color, false);
ValidateQuadResources(quad);
if (geometry_rect.Intersects(scaled_viewport_for_tile_priority)) {
++missing_tile_count;
}
// Report data on any missing images that might be the largest
// contentful image.
if (*iter) {
UMA_HISTOGRAM_BOOLEAN(
"Compositing.DecodeLCPCandidateImage.MissedDeadline",
iter->HasMissingLCPCandidateImages());
}
continue;
}
if (iter.resolution() != HIGH_RESOLUTION) {
append_quads_data->approximated_visible_content_area +=
visible_geometry_area;
}
produced_tile_last_append_quads_ = true;
if (last_append_quads_tilings_.empty() ||
last_append_quads_tilings_.back() != iter.CurrentTiling()) {
last_append_quads_tilings_.push_back(iter.CurrentTiling());
}
}
// Adjust shared_quad_state with the quad_offset, since we've adjusted each
// quad we've appended by it.
shared_quad_state->quad_to_target_transform.Translate(-quad_offset);
shared_quad_state->quad_layer_rect.Offset(quad_offset);
shared_quad_state->visible_quad_layer_rect.Offset(quad_offset);
if (missing_tile_count) {
append_quads_data->num_missing_tiles += missing_tile_count;
append_quads_data->checkerboarded_needs_raster = true;
TRACE_EVENT_INSTANT1("cc", "PictureLayerImpl::AppendQuads checkerboard",
TRACE_EVENT_SCOPE_THREAD, "missing_tile_count",
missing_tile_count);
}
// Aggressively remove any tilings that are not seen to save memory. Note
// that this is at the expense of doing cause more frequent re-painting. A
// better scheme would be to maintain a tighter visible_layer_rect for the
// finer tilings.
CleanUpTilingsOnActiveLayer(last_append_quads_tilings_);
SanityCheckTilingState();
}
bool PictureLayerImpl::UpdateTiles() {
if (!CanHaveTilings()) {
ideal_page_scale_ = 0.f;
ideal_device_scale_ = 0.f;
ideal_contents_scale_ = gfx::Vector2dF(0.f, 0.f);
ideal_source_scale_ = gfx::Vector2dF(0.f, 0.f);
SanityCheckTilingState();
return false;
}
// Remove any non-ideal tilings that were not used last time we generated
// quads to save memory and processing time. Note that pending tree should
// only have one or two tilings (high and low res), so only clean up the
// active layer. This cleans it up here in case AppendQuads didn't run.
// If it did run, this would not remove any additional tilings.
if (layer_tree_impl()->IsActiveTree())
CleanUpTilingsOnActiveLayer(last_append_quads_tilings_);
UpdateIdealScales();
const bool should_adjust_raster_scale = ShouldAdjustRasterScale();
if (should_adjust_raster_scale)
RecalculateRasterScales();
UpdateTilingsForRasterScaleAndTranslation(should_adjust_raster_scale);
raster_source_size_changed_ = false;
DCHECK(raster_page_scale_);
DCHECK(raster_device_scale_);
DCHECK(raster_source_scale_.x());
DCHECK(raster_source_scale_.y());
DCHECK(raster_contents_scale_.x());
DCHECK(raster_contents_scale_.y());
was_screen_space_transform_animating_ =
draw_properties().screen_space_transform_is_animating;
double current_frame_time_in_seconds =
(layer_tree_impl()->CurrentBeginFrameArgs().frame_time -
base::TimeTicks()).InSecondsF();
UpdateViewportRectForTilePriorityInContentSpace();
// The tiling set can require tiles for activation any of the following
// conditions are true:
// - This layer produced a high-res or non-ideal-res tile last frame.
// - We're in requires high res to draw mode.
// - We're not in smoothness takes priority mode.
// To put different, the tiling set can't require tiles for activation if
// we're in smoothness mode and only used checkerboard to draw last
// frame and we don't need high res to draw.
//
// The reason for this is that we should be able to activate sooner and get a
// more up to date recording, so we don't run out of recording on the active
// tree.
// A layer must be a drawing layer for it to require tiles for activation.
bool can_require_tiles_for_activation = false;
if (contributes_to_drawn_render_surface()) {
can_require_tiles_for_activation =
produced_tile_last_append_quads_ || RequiresHighResToDraw() ||
!layer_tree_impl()->SmoothnessTakesPriority();
}
static const base::NoDestructor<Occlusion> kEmptyOcclusion;
const Occlusion& occlusion_in_content_space =
layer_tree_impl()->settings().use_occlusion_for_tile_prioritization
? draw_properties().occlusion_in_content_space
: *kEmptyOcclusion;
// Pass |occlusion_in_content_space| for |occlusion_in_layer_space| since
// they are the same space in picture layer, as contents scale is always 1.
bool updated = tilings_->UpdateTilePriorities(
viewport_rect_for_tile_priority_in_content_space_,
ideal_contents_scale_key(), current_frame_time_in_seconds,
occlusion_in_content_space, can_require_tiles_for_activation);
DCHECK_GT(tilings_->num_tilings(), 0u);
SanityCheckTilingState();
return updated;
}
void PictureLayerImpl::UpdateViewportRectForTilePriorityInContentSpace() {
// If visible_layer_rect() is empty or viewport_rect_for_tile_priority is
// set to be different from the device viewport, try to inverse project the
// viewport into layer space and use that. Otherwise just use
// visible_layer_rect().
gfx::Rect visible_rect_in_content_space = visible_layer_rect();
gfx::Rect viewport_rect_for_tile_priority =
layer_tree_impl()->ViewportRectForTilePriority();
if (visible_rect_in_content_space.IsEmpty() ||
layer_tree_impl()->GetDeviceViewport() !=
viewport_rect_for_tile_priority) {
gfx::Transform view_to_layer;
if (ScreenSpaceTransform().GetInverse(&view_to_layer)) {
// Transform from view space to content space.
visible_rect_in_content_space = MathUtil::ProjectEnclosingClippedRect(
view_to_layer, viewport_rect_for_tile_priority);
// We have to allow for a viewport that is outside of the layer bounds in
// order to compute tile priorities correctly for offscreen content that
// is going to make it on screen. However, we also have to limit the
// viewport since it can be very large due to screen_space_transforms. As
// a heuristic, we clip to bounds padded by skewport_extrapolation_limit *
// maximum tiling scale, since this should allow sufficient room for
// skewport calculations.
gfx::Rect padded_bounds(bounds());
int padding_amount = layer_tree_impl()
->settings()
.skewport_extrapolation_limit_in_screen_pixels *
MaximumTilingContentsScale();
padded_bounds.Inset(-padding_amount);
visible_rect_in_content_space =
SafeIntersectRects(visible_rect_in_content_space, padded_bounds);
}
}
viewport_rect_for_tile_priority_in_content_space_ =
visible_rect_in_content_space;
}
PictureLayerImpl* PictureLayerImpl::GetPendingOrActiveTwinLayer() const {
if (!twin_layer_ || !twin_layer_->IsOnActiveOrPendingTree())
return nullptr;
return twin_layer_;
}
void PictureLayerImpl::UpdateRasterSource(
scoped_refptr<RasterSource> raster_source,
Region* new_invalidation) {
CHECK(layer_tree_impl()->IsSyncTree());
UpdateRasterSourceInternal(
std::move(raster_source), new_invalidation,
// These pointers being null indicates we are committing.
nullptr, nullptr, nullptr);
}
void PictureLayerImpl::UpdateRasterSourceInternal(
scoped_refptr<RasterSource> raster_source,
Region* new_invalidation,
const PictureLayerTilingSet* pending_set,
const PaintWorkletRecordMap* pending_paint_worklet_records,
const DiscardableImageMap* pending_discardable_image_map) {
CHECK(raster_source);
// The layer bounds and the raster source size may differ if the raster source
// wasn't updated (ie. PictureLayer::Update didn't happen). In that case the
// raster source should be empty.
DCHECK(raster_source->size().IsEmpty() || bounds() == raster_source->size())
<< " layer bounds " << bounds().ToString() << " raster_source size "
<< raster_source->size().ToString();
// TODO(vmiura): Only call SetNeedsPushProperties there is an actual change.
SetNeedsPushProperties();
if (!raster_source_ || raster_source_->size() != raster_source->size()) {
raster_source_size_changed_ = true;
}
// We have an updated recording if the DisplayItemList in the new RasterSource
// is different.
const bool recording_updated =
!raster_source_ || raster_source_->GetDisplayItemList() !=
raster_source->GetDisplayItemList();
// If the MSAA sample count has changed, we need to re-raster the complete
// layer.
if (recording_updated && raster_source_) {
const auto& current_display_item_list =
raster_source_->GetDisplayItemList();
const auto& new_display_item_list = raster_source->GetDisplayItemList();
if (current_display_item_list && new_display_item_list) {
bool needs_full_invalidation =
layer_tree_impl()->GetMSAASampleCountForRaster(
*current_display_item_list) !=
layer_tree_impl()->GetMSAASampleCountForRaster(
*new_display_item_list);
needs_full_invalidation |=
layer_tree_impl()->GetTargetColorParams(
current_display_item_list->content_color_usage()) !=
layer_tree_impl()->GetTargetColorParams(
new_display_item_list->content_color_usage());
if (needs_full_invalidation) {
new_invalidation->Union(gfx::Rect(raster_source->size()));
}
}
}
// The |raster_source_| is initially null, so have to check for that for the
// first frame.
bool could_have_tilings = CanHaveTilings();
raster_source_ = std::move(raster_source);
raster_source_->set_debug_name(DebugName());
UpdateDirectlyCompositedImageFromRasterSource();
if (pending_set) {
// During activation, check if we need to pull the discardable image map
// from the pending tree.
if (pending_discardable_image_map != discardable_image_map_) {
CHECK(pending_paint_worklet_records);
paint_worklet_records_ = *pending_paint_worklet_records;
UnregisterAnimatedImages();
discardable_image_map_ = pending_discardable_image_map;
RegisterAnimatedImages();
}
} else if (recording_updated) {
layer_tree_impl()->AddLayerNeedingUpdateDiscardableImageMap(this);
}
// The |new_invalidation| must be cleared before updating tilings since they
// access the invalidation through the PictureLayerTilingClient interface.
invalidation_.Clear();
invalidation_.Swap(new_invalidation);
bool can_have_tilings = CanHaveTilings();
DCHECK(!pending_set ||
can_have_tilings == GetPendingOrActiveTwinLayer()->CanHaveTilings());
// Need to call UpdateTiles again if CanHaveTilings changed.
if (could_have_tilings != can_have_tilings)
layer_tree_impl()->set_needs_update_draw_properties();
if (!can_have_tilings) {
RemoveAllTilings();
return;
}
// We could do this after doing UpdateTiles, which would avoid doing this for
// tilings that are going to disappear on the pending tree (if scale changed).
// But that would also be more complicated, so we just do it here for now.
//
// TODO(crbug.com/41389434): If the LayerTreeFrameSink is lost, and we
// activate, this ends up running with the old LayerTreeFrameSink, or possibly
// with a null LayerTreeFrameSink, which can give incorrect results or maybe
// crash.
if (pending_set) {
tilings_->UpdateTilingsToCurrentRasterSourceForActivation(
raster_source_, pending_set, invalidation_, MinimumContentsScale(),
MaximumContentsScale());
} else {
tilings_->UpdateTilingsToCurrentRasterSourceForCommit(
raster_source_, invalidation_, MinimumContentsScale(),
MaximumContentsScale());
}
}
void PictureLayerImpl::SetRasterSourceForTesting(
scoped_refptr<RasterSource> raster_source,
const Region& invalidation) {
LayerTreeImpl::DiscardableImageMapUpdater updater(layer_tree_impl());
Region invalidation_temp = invalidation;
UpdateRasterSource(std::move(raster_source), &invalidation_temp);
}
void PictureLayerImpl::RegenerateDiscardableImageMap() {
CHECK(layer_tree_impl()->IsSyncTree());
UnregisterAnimatedImages();
if (const auto* display_list = raster_source_->GetDisplayItemList().get()) {
DiscardableImageMap::DecodingModeMap decoding_mode_map;
DiscardableImageMap::PaintWorkletInputs paint_worklet_inputs;
discardable_image_map_ = display_list->GenerateDiscardableImageMap(
GetRasterInducingScrollOffsets(), &decoding_mode_map,
&paint_worklet_inputs);
SetPaintWorkletInputs(paint_worklet_inputs);
layer_tree_impl()->UpdateImageDecodingHints(decoding_mode_map);
} else {
SetPaintWorkletInputs({});
discardable_image_map_ = nullptr;
}
RegisterAnimatedImages();
}
void PictureLayerImpl::UpdateCanUseLCDText(
bool raster_translation_aligns_pixels) {
// If we have pending/active trees, the active tree doesn't update lcd text
// status but copies it from the pending tree.
if (!layer_tree_impl()->IsSyncTree())
return;
lcd_text_disallowed_reason_ =
ComputeLCDTextDisallowedReason(raster_translation_aligns_pixels);
}
bool PictureLayerImpl::AffectedByWillChangeTransformHint() const {
TransformNode* transform_node =
GetTransformTree().Node(transform_tree_index());
return transform_node &&
transform_node->node_or_ancestors_will_change_transform;
}
LCDTextDisallowedReason PictureLayerImpl::ComputeLCDTextDisallowedReason(
bool raster_translation_aligns_pixels) const {
// No need to use LCD text if there is no text.
if (!raster_source_ || !raster_source_->GetDisplayItemList() ||
!raster_source_->GetDisplayItemList()->has_draw_text_ops()) {
return LCDTextDisallowedReason::kNoText;
}
if (layer_tree_impl()->settings().layers_always_allowed_lcd_text) {
return LCDTextDisallowedReason::kNone;
}
if (!layer_tree_impl()->settings().can_use_lcd_text) {
return LCDTextDisallowedReason::kSetting;
}
TransformNode* transform_node =
GetTransformTree().Node(transform_tree_index());
if (transform_node->node_or_ancestors_will_change_transform) {
return LCDTextDisallowedReason::kWillChangeTransform;
}
if (screen_space_transform_is_animating()) {
return LCDTextDisallowedReason::kTransformAnimation;
}
EffectNode* effect_node = GetEffectTree().Node(effect_tree_index());
if (effect_node->lcd_text_disallowed_by_filter ||
effect_node->lcd_text_disallowed_by_backdrop_filter) {
return LCDTextDisallowedReason::kPixelOrColorEffect;
}
// If raster translation aligns pixels, we can ignore fractional layer offset
// and transform for LCD text.
if (!raster_translation_aligns_pixels) {
if (static_cast<int>(offset_to_transform_parent().x()) !=
offset_to_transform_parent().x()) {
return LCDTextDisallowedReason::kNonIntegralXOffset;
}
if (static_cast<int>(offset_to_transform_parent().y()) !=
offset_to_transform_parent().y()) {
return LCDTextDisallowedReason::kNonIntegralYOffset;
}
return LCDTextDisallowedReason::kNonIntegralTranslation;
}
if (!contents_opaque_for_text()) {
if (!background_color().isOpaque()) {
return LCDTextDisallowedReason::kBackgroundColorNotOpaque;
}
return LCDTextDisallowedReason::kContentsNotOpaque;
}
return LCDTextDisallowedReason::kNone;
}
LCDTextDisallowedReason
PictureLayerImpl::ComputeLCDTextDisallowedReasonForTesting() const {
gfx::Vector2dF raster_translation;
return ComputeLCDTextDisallowedReason(
CalculateRasterTranslation(raster_translation));
}
void PictureLayerImpl::NotifyTileStateChanged(const Tile* tile,
bool update_damage) {
if (update_damage) {
if (layer_tree_impl()->IsActiveTree()) {
damage_rect_.Union(tile->enclosing_layer_rect());
}
if (tile->draw_info().NeedsRaster()) {
PictureLayerTiling* tiling =
tilings_->FindTilingWithScaleKey(tile->contents_scale_key());
if (tiling) {
tiling->set_all_tiles_done(false);
tilings_->set_all_tiles_done(false);
}
}
}
if (layer_tree_impl()->settings().TreesInVizInClientProcess() &&
(!IsActive() || layer_tree_impl()->settings().commit_to_active_tree)) {
// Tiles for the tree currently being committed to (Pending or Active)
// are pushed to the display during UpdateDisplayTree. Accumulate those
// changes. These are pushed to the active tree in PushPropertiesTo().
updated_tiles_[tile->contents_scale_key()].emplace(tile->tiling_i_index(),
tile->tiling_j_index());
}
}
gfx::Rect PictureLayerImpl::GetDamageRect() const {
return damage_rect_;
}
void PictureLayerImpl::ResetChangeTracking() {
LayerImpl::ResetChangeTracking();
damage_rect_.SetRect(0, 0, 0, 0);
has_animated_image_update_rect_ = false;
has_non_animated_image_update_rect_ = false;
}
void PictureLayerImpl::DidBeginTracing() {
raster_source_->DidBeginTracing();
}
void PictureLayerImpl::ReleaseResources() {
tilings_->ReleaseAllResources();
ResetRasterScale();
}
void PictureLayerImpl::ReleaseTileResources() {
// All resources are tile resources.
ReleaseResources();
}
void PictureLayerImpl::RecreateTileResources() {
// Recreate tilings with new settings, since some of those might change when
// we release resources.
tilings_ = CreatePictureLayerTilingSet();
}
Region PictureLayerImpl::GetInvalidationRegionForDebugging() {
// |invalidation_| gives the invalidation contained in the source frame, but
// is not cleared after drawing from the layer. However, update_rect() is
// cleared once the invalidation is drawn, which is useful for debugging
// visualizations. This method intersects the two to give a more exact
// representation of what was invalidated that is cleared after drawing.
return IntersectRegions(invalidation_, update_rect());
}
std::unique_ptr<Tile> PictureLayerImpl::CreateTile(
const Tile::CreateInfo& info) {
SetNeedsPushProperties();
tilings_->set_all_tiles_done(false);
int flags = 0;
// We don't handle solid color single texture masks for backdrop filters,
// so we shouldn't bother analyzing those.
// Otherwise, always analyze to maximize memory savings.
if (!is_backdrop_filter_mask_)
flags = Tile::USE_PICTURE_ANALYSIS;
if (contents_opaque())
flags |= Tile::IS_OPAQUE;
return layer_tree_impl()->tile_manager()->CreateTile(
info, id(), layer_tree_impl()->source_frame_number(), flags);
}
const Region* PictureLayerImpl::GetPendingInvalidation() {
if (layer_tree_impl()->IsPendingTree())
return &invalidation_;
if (layer_tree_impl()->IsRecycleTree())
return nullptr;
DCHECK(layer_tree_impl()->IsActiveTree());
if (PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer())
return &twin_layer->invalidation_;
return nullptr;
}
const PictureLayerTiling* PictureLayerImpl::GetPendingOrActiveTwinTiling(
const PictureLayerTiling* tiling) const {
PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer();
if (!twin_layer)
return nullptr;
const PictureLayerTiling* twin_tiling =
twin_layer->tilings_->FindTilingWithScaleKey(
tiling->contents_scale_key());
if (twin_tiling &&
twin_tiling->raster_transform() == tiling->raster_transform())
return twin_tiling;
return nullptr;
}
bool PictureLayerImpl::RequiresHighResToDraw() const {
return layer_tree_impl()->RequiresHighResToDraw();
}
const PaintWorkletRecordMap& PictureLayerImpl::GetPaintWorkletRecords() const {
return paint_worklet_records_;
}
bool PictureLayerImpl::IsDirectlyCompositedImage() const {
return directly_composited_image_default_raster_scale_ > 0.f;
}
std::vector<const DrawImage*> PictureLayerImpl::GetDiscardableImagesInRect(
const gfx::Rect& rect) const {
return discardable_image_map_->GetDiscardableImagesInRect(rect);
}
ScrollOffsetMap PictureLayerImpl::GetRasterInducingScrollOffsets() const {
ScrollOffsetMap map;
if (raster_source_) {
const ScrollTree& scroll_tree =
layer_tree_impl()->property_trees()->scroll_tree();
const TransformTree& transform_tree =
layer_tree_impl()->property_trees()->transform_tree();
for (auto [element_id, _] :
raster_source_->GetDisplayItemList()->raster_inducing_scrolls()) {
// The transform node has the realized scroll offset and snap amount,
// and should be used for rendering.
const auto* scroll_node = scroll_tree.FindNodeFromElementId(element_id);
const auto* transform =
scroll_node ? transform_tree.Node(scroll_node->transform_id)
: nullptr;
if (transform) {
map[element_id] = gfx::PointAtOffsetFromOrigin(
-transform->to_parent.To2dTranslation());
} else {
// Use the current scroll offset if the scroll node doesn't exist or
// doesn't have a transform node. It doesn't matter because such a
// scroller is invisible. TODO(crbug.com/419921722): Investigate the
// case and add a test case.
map[element_id] = scroll_tree.current_scroll_offset(element_id);
}
}
}
return map;
}
const GlobalStateThatImpactsTilePriority& PictureLayerImpl::global_tile_state()
const {
return layer_tree_impl()->global_tile_state();
}
gfx::Rect PictureLayerImpl::GetEnclosingVisibleRectInTargetSpace() const {
return GetScaledEnclosingVisibleRectInTargetSpace(
MaximumTilingContentsScale());
}
bool PictureLayerImpl::ShouldAnimate(PaintImage::Id paint_image_id) const {
// If we are registered with the animation controller, which queries whether
// the image should be animated, then we must have recordings with this image.
CHECK(discardable_image_map_);
CHECK(!discardable_image_map_->empty());
// Only animate images for layers which HasValidTilePriorities. This check is
// important for 2 reasons:
// 1) It avoids doing additional work for layers we don't plan to rasterize
// and/or draw. The updated state will be pulled by the animation system
// if the draw properties change.
// 2) It eliminates considering layers on the recycle tree. Once the pending
// tree is activated, the layers on the recycle tree remain registered as
// animation drivers, but should not drive animations since they don't have
// updated draw properties.
//
// Additionally only animate images which are on-screen, animations are
// paused once they are not visible.
if (!HasValidTilePriorities())
return false;
const auto& rects = discardable_image_map_->GetRectsForImage(paint_image_id);
for (const auto& r : rects) {
if (r.Intersects(visible_layer_rect()))
return true;
}
return false;
}
gfx::Size PictureLayerImpl::CalculateTileSize(const gfx::Size& content_bounds) {
return tile_size_calculator_.CalculateTileSize(content_bounds);
}
void PictureLayerImpl::GetContentsResourceId(
viz::ResourceId* resource_id,
gfx::Size* resource_size,
gfx::SizeF* resource_uv_size) const {
// We need contents resource for backdrop filter masks only.
if (!is_backdrop_filter_mask()) {
*resource_id = viz::kInvalidResourceId;
return;
}
float dest_scale = MaximumTilingContentsScale();
gfx::Rect content_rect =
gfx::ScaleToEnclosingRect(gfx::Rect(bounds()), dest_scale);
auto iter =
tilings_->Cover(content_rect, dest_scale, ideal_contents_scale_key());
// Mask resource not ready yet.
if (!iter || !*iter) {
*resource_id = viz::kInvalidResourceId;
return;
}
// Masks only supported if they fit on exactly one tile.
DCHECK(iter.geometry_rect() == content_rect)
<< "iter rect " << iter.geometry_rect().ToString() << " content rect "
<< content_rect.ToString();
const TileDrawInfo& draw_info = iter->draw_info();
if (!draw_info.IsReadyToDraw() ||
draw_info.mode() != TileDrawInfo::RESOURCE_MODE) {
*resource_id = viz::kInvalidResourceId;
return;
}
*resource_id = draw_info.resource_id_for_export();
*resource_size = draw_info.resource_size();
// |resource_uv_size| represents the range of UV coordinates that map to the
// content being drawn. Typically, we draw to the entire texture, so these
// coordinates are (1.0f, 1.0f). However, if we are rasterizing to an
// over-large texture, this size will be smaller, mapping to the subset of the
// texture being used.
gfx::SizeF requested_tile_size =
gfx::SizeF(iter->tiling()->tiling_data()->tiling_rect().size());
DCHECK_LE(requested_tile_size.width(), draw_info.resource_size().width());
DCHECK_LE(requested_tile_size.height(), draw_info.resource_size().height());
*resource_uv_size = gfx::SizeF(
requested_tile_size.width() / draw_info.resource_size().width(),
requested_tile_size.height() / draw_info.resource_size().height());
}
void PictureLayerImpl::UpdateDirectlyCompositedImageFromRasterSource() {
float new_default_raster_scale = 0;
bool new_nearest_neighbor = false;
if (const auto& info = raster_source_->directly_composited_image_info()) {
// TODO(crbug.com/40176440): Support 2D scales in directly composited
// images.
new_default_raster_scale =
GetPreferredRasterScale(info->default_raster_scale);
new_nearest_neighbor = info->nearest_neighbor;
}
directly_composited_image_default_raster_scale_changed_ =
new_default_raster_scale !=
directly_composited_image_default_raster_scale_;
if (new_nearest_neighbor != nearest_neighbor_ ||
directly_composited_image_default_raster_scale_changed_) {
directly_composited_image_default_raster_scale_ = new_default_raster_scale;
nearest_neighbor_ = new_nearest_neighbor;
NoteLayerPropertyChanged();
}
}
bool PictureLayerImpl::ShouldDirectlyCompositeImage(float raster_scale) const {
// Even if there are minor rendering differences, we want to apply directly
// compositing images in cases where doing so is going to save memory.
if (raster_scale < 0.1f)
return true;
// If the results of scaling the bounds by the expected raster scale
// would end up with a content rect whose width/height are more than one
// pixel different from the layer bounds, don't directly composite the image
// to avoid incorrect rendering.
gfx::SizeF layer_bounds(bounds());
gfx::RectF scaled_bounds_rect(layer_bounds);
scaled_bounds_rect.Scale(raster_scale);
// Take the scaled bounds, get the enclosing rect then scale it back down -
// this is the same set of operations that will happen when using the tiling
// at that raster scale.
gfx::RectF content_rect(gfx::ToEnclosingRect(scaled_bounds_rect));
content_rect.InvScale(raster_scale);
return std::abs(layer_bounds.width() - content_rect.width()) < 1.f &&
std::abs(layer_bounds.height() - content_rect.height()) < 1.f;
}
float PictureLayerImpl::CalculateDirectlyCompositedImageRasterScale() const {
DCHECK(IsDirectlyCompositedImage());
// If the default raster scale didn't change, we will calculate based on the
// previous raster source scale. The calculation may change based on updated
// ideal source scale.
float adjusted_raster_scale =
directly_composited_image_default_raster_scale_changed_
? directly_composited_image_default_raster_scale_
: raster_source_scale_key();
// We never want a raster scale larger than the default, since that uses more
// memory but can't result it better quality (upscaling will happen in the
// display compositor instead).
float max_scale = std::max(directly_composited_image_default_raster_scale_,
MinimumContentsScale());
float min_scale = MinimumContentsScale();
float clamped_ideal_source_scale =
std::clamp(ideal_source_scale_key(), min_scale, max_scale);
// Use clamped_ideal_source_scale if adjusted_raster_scale is too far away.
constexpr float kFarAwayFactor = 32.f;
if (adjusted_raster_scale < clamped_ideal_source_scale / kFarAwayFactor) {
adjusted_raster_scale = clamped_ideal_source_scale;
} else if (adjusted_raster_scale >
clamped_ideal_source_scale * kFarAwayFactor) {
adjusted_raster_scale = clamped_ideal_source_scale;
} else {
while (adjusted_raster_scale < clamped_ideal_source_scale)
adjusted_raster_scale *= 2.f;
// Make sure the adjusted scale is not more than 2x away from the ideal
// scale in order to save memory. Note that ShouldAdjustRasterScale() uses
// factor 4 to determine when the scale needs to be updated. This means that
// the layer may need to be re-rasterized if scale is increased by factor
// of 2, but not again when it's scaled back to the original size.
while (adjusted_raster_scale >= 2 * clamped_ideal_source_scale)
adjusted_raster_scale /= 2.f;
}
adjusted_raster_scale =
std::clamp(adjusted_raster_scale, min_scale, max_scale);
return adjusted_raster_scale;
}
PictureLayerTiling* PictureLayerImpl::AddTiling(
const gfx::AxisTransform2d& raster_transform) {
DCHECK(CanHaveTilings());
DCHECK_GE(raster_transform.scale().x(), MinimumContentsScale());
DCHECK_GE(raster_transform.scale().y(), MinimumContentsScale());
DCHECK_LE(raster_transform.scale().x(), MaximumContentsScale());
DCHECK_LE(raster_transform.scale().y(), MaximumContentsScale());
DCHECK(raster_source_->HasRecordings());
bool tiling_can_use_lcd_text =
can_use_lcd_text() && raster_transform.scale() == raster_contents_scale_;
return tilings_->AddTiling(raster_transform, raster_source_,
tiling_can_use_lcd_text);
}
void PictureLayerImpl::RemoveAllTilings() {
tilings_->RemoveAllTilings();
// If there are no tilings, then raster scales are no longer meaningful.
ResetRasterScale();
}
bool PictureLayerImpl::CanRecreateHighResTilingForLCDTextAndRasterTransform(
const PictureLayerTiling& high_res) const {
// Prefer re-rasterization for a change in LCD status from the following
// reasons since visual artifacts of LCD text on non-opaque background are
// very noticeable. This state also only changes during a commit and is likely
// to be discrete as opposed to every frame of the animation.
if (high_res.can_use_lcd_text() &&
(lcd_text_disallowed_reason_ ==
LCDTextDisallowedReason::kBackgroundColorNotOpaque ||
lcd_text_disallowed_reason_ ==
LCDTextDisallowedReason::kContentsNotOpaque)) {
// LCD text state changes require a commit and the existing tiling is
// invalidated before scheduling rasterization work for the new pending
// tree. So it shouldn't be possible for the new pending tree to be ready to
// activate before we have invalidated the existing high rest tiling. This
// is important to avoid activating a tree with missing tiles which can
// cause flickering.
DCHECK(!layer_tree_impl()->IsSyncTree() ||
!layer_tree_impl()->IsReadyToActivate());
return true;
}
// Keep the non-ideal raster translation unchanged for transform animations
// to avoid re-rasterization during animation.
if (draw_properties().screen_space_transform_is_animating ||
AffectedByWillChangeTransformHint())
return false;
// Also avoid re-rasterization during pinch-zoom.
if (layer_tree_impl()->PinchGestureActive())
return false;
// Keep the current LCD text and raster translation if there is no text and
// the raster scale is ideal.
if (lcd_text_disallowed_reason_ == LCDTextDisallowedReason::kNoText &&
high_res.raster_transform().scale() == raster_contents_scale_)
return false;
// If ReadyToActivate() is already scheduled, recreating tiling should be
// delayed until the activation is executed. Otherwise the tiles in viewport
// will be deleted.
if (layer_tree_impl()->IsSyncTree() && layer_tree_impl()->IsReadyToActivate())
return false;
// To reduce memory usage, don't recreate highres tiling during scroll
if (layer_tree_impl()->GetActivelyScrollingType() !=
ActivelyScrollingType::kNone) {
return false;
}
return true;
}
void PictureLayerImpl::UpdateTilingsForRasterScaleAndTranslation(
bool has_adjusted_raster_scale) {
PictureLayerTiling* high_res =
tilings_->FindTilingWithScaleKey(raster_contents_scale_key());
gfx::Vector2dF raster_translation;
bool raster_translation_aligns_pixels =
CalculateRasterTranslation(raster_translation);
UpdateCanUseLCDText(raster_translation_aligns_pixels);
if (high_res) {
bool raster_transform_is_not_ideal =
high_res->raster_transform().scale() != raster_contents_scale_ ||
high_res->raster_transform().translation() != raster_translation;
bool can_use_lcd_text_changed =
high_res->can_use_lcd_text() != can_use_lcd_text();
bool can_recreate_highres_tiling =
CanRecreateHighResTilingForLCDTextAndRasterTransform(*high_res);
// Only for the sync tree to avoid flickering.
bool should_recreate_high_res =
(raster_transform_is_not_ideal || can_use_lcd_text_changed) &&
layer_tree_impl()->IsSyncTree() && can_recreate_highres_tiling;
// Only request an invalidation if we don't already have a pending tree.
bool can_request_invalidation_for_high_res =
(raster_transform_is_not_ideal || can_use_lcd_text_changed) &&
!layer_tree_impl()->settings().commit_to_active_tree &&
layer_tree_impl()->IsActiveTree() && can_recreate_highres_tiling &&
!layer_tree_impl()->HasPendingTree();
if (should_recreate_high_res) {
tilings_->Remove(high_res);
high_res = nullptr;
} else if (can_request_invalidation_for_high_res) {
// Anytime a condition which flips whether we can recreate the tiling
// changes, we'll get a call to UpdateDrawProperties. We check whether we
// could recreate the tiling when this runs on the active tree to trigger
// an impl-side invalidation (if needed).
layer_tree_impl()->RequestImplSideInvalidationForRerasterTiling();
} else if (!has_adjusted_raster_scale) {
// Nothing changed, no need to update tilings.
DCHECK_EQ(HIGH_RESOLUTION, high_res->resolution());
SanityCheckTilingState();
return;
}
}
// Reset all resolution enums on tilings, we'll be setting new values in this
// function.
tilings_->MarkAllTilingsNonIdeal();
if (!high_res) {
// We always need a high res tiling, so create one if it doesn't exist.
high_res = AddTiling(gfx::AxisTransform2d::FromScaleAndTranslation(
raster_contents_scale_, raster_translation));
}
high_res->set_resolution(HIGH_RESOLUTION);
if (layer_tree_impl()->IsPendingTree() ||
(layer_tree_impl()->settings().commit_to_active_tree &&
IsDirectlyCompositedImage())) {
// On the pending tree, drop any tilings that are non-ideal since we don't
// need them to activate anyway.
// For DirectlyCompositedImages, if we recomputed a new raster scale, we
// should drop the non-ideal ones if we're committing to the active tree.
// Otherwise a non-ideal scale that is _larger_ than the HIGH_RESOLUTION
// tile will be used as the coverage scale, and we'll produce a slightly
// different rendering. We don't drop the tilings on the active tree if
// we're not committing to the active tree to prevent checkerboarding.
tilings_->RemoveNonIdealTilings();
}
SanityCheckTilingState();
}
bool PictureLayerImpl::ShouldAdjustRasterScale() const {
if (!raster_contents_scale_.x() || !raster_contents_scale_.y())
return true;
// Adjust raster scale if the raster source size changed. This is mainly to
// reset the preserved scale for will-change:transform but may also help in
// other cases, which won't affect performance much because the change has
// involved the main thread and/or we'll (at least partly) re-raster anyway.
if (raster_source_size_changed_)
return true;
if (IsDirectlyCompositedImage()) {
// If the default raster scale changed, that means the bounds or image size
// changed. We should recalculate in order to raster at the intrinsic image
// size. Note that this is not a comparison of the used raster_source_scale_
// and desired because of the adjustments in RecalculateRasterScales.
if (directly_composited_image_default_raster_scale_changed_)
return true;
// First check to see if we need to adjust based on ideal_source_scale_
// changing (i.e. scale transform has been modified). These limits exist
// so that we don't raster at the intrinsic image size if the layer will
// be scaled down more than 4x ideal. This saves memory without sacrificing
// noticeable quality. We'll also bump the scale back up in the case where
// the ideal scale is increased.
float max_scale = std::max(directly_composited_image_default_raster_scale_,
MinimumContentsScale());
if (raster_source_scale_key() <
std::min(ideal_source_scale_key(), max_scale))
return true;
if (raster_source_scale_key() > 4 * ideal_source_scale_key())
return true;
return false;
}
if (was_screen_space_transform_animating_ !=
draw_properties().screen_space_transform_is_animating) {
if (draw_properties().screen_space_transform_is_animating) {
// Entering animation.
// Skip adjusting raster scale if max animation scale already matches
// raster scale.
float maximum_animation_scale =
layer_tree_impl()->property_trees()->MaximumAnimationToScreenScale(
transform_tree_index());
if ((maximum_animation_scale != raster_contents_scale_.x() ||
maximum_animation_scale != raster_contents_scale_.y())) {
return true;
}
} else {
// Exiting animation.
// Skip adjusting raster scale when animations finish if we have a
// will-change: transform hint to preserve maximum resolution tiles
// needed.
if (!AffectedByWillChangeTransformHint())
return true;
}
}
bool is_pinching = layer_tree_impl()->PinchGestureActive();
if (is_pinching && raster_page_scale_) {
// We change our raster scale when it is:
// - Higher than ideal (need a lower-res tiling available)
// - Too far from ideal (need a higher-res tiling available)
float ratio = ideal_page_scale_ / raster_page_scale_;
if (raster_page_scale_ > ideal_page_scale_ ||
ratio > kMaxScaleRatioDuringPinch)
return true;
}
if (!is_pinching) {
// When not pinching, match the ideal page scale factor.
if (raster_page_scale_ != ideal_page_scale_)
return true;
}
// Always match the ideal device scale factor.
if (raster_device_scale_ != ideal_device_scale_)
return true;
float max_scale = MaximumContentsScale();
if (raster_contents_scale_.x() > max_scale ||
raster_contents_scale_.y() > max_scale)
return true;
float min_scale = MinimumContentsScale();
if (raster_contents_scale_.x() < min_scale ||
raster_contents_scale_.y() < min_scale)
return true;
// Avoid frequent raster scale changes if we have an animating transform.
if (draw_properties().screen_space_transform_is_animating) {
// Except when the device viewport rect has changed because the raster scale
// may depend on the rect.
if (layer_tree_impl()->device_viewport_rect_changed()) {
return true;
}
// Or when the raster scale is not affected by invalid scale and is too
// small compared to the ideal scale.
if (ideal_contents_scale_.x() >
raster_contents_scale_.x() *
kRatioToAdjustRasterScaleForTransformAnimation ||
ideal_contents_scale_.y() >
raster_contents_scale_.y() *
kRatioToAdjustRasterScaleForTransformAnimation) {
auto* property_trees = layer_tree_impl()->property_trees();
int transform_id = transform_tree_index();
if (property_trees->AnimationScaleCacheIsInvalid(transform_id) ||
!property_trees->AnimationAffectedByInvalidScale(transform_id)) {
return true;
}
}
return false;
}
// Don't change the raster scale if the raster scale is already ideal.
if (raster_source_scale_ == ideal_source_scale_)
return false;
// Don't update will-change: transform layers if the raster contents scale is
// bigger than the minimum scale.
if (AffectedByWillChangeTransformHint()) {
float min_raster_scale = MinimumRasterContentsScaleForWillChangeTransform();
if (raster_contents_scale_.x() >= min_raster_scale &&
raster_contents_scale_.y() >= min_raster_scale)
return false;
}
// Match the raster scale in all other cases.
return true;
}
void PictureLayerImpl::RecalculateRasterScales() {
if (IsDirectlyCompositedImage()) {
// TODO(crbug.com/40176440): Support 2D scales in directly composited
// images.
float used_raster_scale = CalculateDirectlyCompositedImageRasterScale();
directly_composited_image_default_raster_scale_changed_ = false;
if (ShouldDirectlyCompositeImage(used_raster_scale)) {
raster_source_scale_ =
gfx::Vector2dF(used_raster_scale, used_raster_scale);
raster_page_scale_ = 1.f;
raster_device_scale_ = 1.f;
raster_contents_scale_ = raster_source_scale_;
return;
}
// If we should not directly composite this image, reset values and fall
// back to normal raster scale calculations below.
directly_composited_image_default_raster_scale_ = 0.f;
}
gfx::Vector2dF old_raster_contents_scale = raster_contents_scale_;
float old_raster_page_scale = raster_page_scale_;
// The raster scale if previous tilings should be preserved.
gfx::Vector2dF preserved_raster_contents_scale = old_raster_contents_scale;
raster_device_scale_ = ideal_device_scale_;
raster_page_scale_ = ideal_page_scale_;
raster_source_scale_ = ideal_source_scale_;
raster_contents_scale_ = ideal_contents_scale_;
// During pinch we completely ignore the current ideal scale, and just use
// a multiple of the previous scale.
bool is_pinching = layer_tree_impl()->PinchGestureActive();
if (is_pinching && !old_raster_contents_scale.IsZero()) {
// See ShouldAdjustRasterScale:
// - When zooming out, preemptively create new tiling at lower resolution.
// - When zooming in, approximate ideal using multiple of kMaxScaleRatio.
bool zooming_out = old_raster_page_scale > ideal_page_scale_;
float desired_contents_scale =
std::max(old_raster_contents_scale.x(), old_raster_contents_scale.y());
float ideal_scale = ideal_contents_scale_key();
if (zooming_out) {
while (desired_contents_scale > ideal_scale)
desired_contents_scale /= kMaxScaleRatioDuringPinch;
} else {
while (desired_contents_scale < ideal_scale)
desired_contents_scale *= kMaxScaleRatioDuringPinch;
}
if (const auto* snapped_to_tiling = tilings_->FindTilingWithNearestScaleKey(
desired_contents_scale, kSnapToExistingTilingRatio)) {
raster_contents_scale_ = snapped_to_tiling->raster_transform().scale();
} else {
raster_contents_scale_ = old_raster_contents_scale;
raster_contents_scale_.Scale(desired_contents_scale /
raster_contents_scale_key());
}
preserved_raster_contents_scale = raster_contents_scale_;
raster_page_scale_ =
std::max(raster_contents_scale_.x() / raster_source_scale_.x(),
raster_contents_scale_.y() / raster_source_scale_.y()) /
raster_device_scale_;
}
if (draw_properties().screen_space_transform_is_animating)
AdjustRasterScaleForTransformAnimation(preserved_raster_contents_scale);
if (AffectedByWillChangeTransformHint()) {
float min_scale = MinimumRasterContentsScaleForWillChangeTransform();
raster_contents_scale_.SetToMax(gfx::Vector2dF(min_scale, min_scale));
}
float min_scale = MinimumContentsScale();
float max_scale = MaximumContentsScale();
raster_contents_scale_.SetToMax(gfx::Vector2dF(min_scale, min_scale));
raster_contents_scale_.SetToMin(gfx::Vector2dF(max_scale, max_scale));
DCHECK_GE(raster_contents_scale_.x(), min_scale);
DCHECK_GE(raster_contents_scale_.y(), min_scale);
DCHECK_LE(raster_contents_scale_.x(), max_scale);
DCHECK_LE(raster_contents_scale_.y(), max_scale);
}
void PictureLayerImpl::AdjustRasterScaleForTransformAnimation(
const gfx::Vector2dF& preserved_raster_contents_scale) {
DCHECK(draw_properties().screen_space_transform_is_animating);
float maximum_animation_scale =
layer_tree_impl()->property_trees()->MaximumAnimationToScreenScale(
transform_tree_index());
raster_contents_scale_.SetToMax(
gfx::Vector2dF(maximum_animation_scale, maximum_animation_scale));
if (AffectedByWillChangeTransformHint()) {
// If we have a will-change: transform hint, do not shrink the content
// raster scale, otherwise we will end up throwing away larger tiles we may
// need again.
raster_contents_scale_.SetToMax(preserved_raster_contents_scale);
}
// However we want to avoid excessive memory use. Choose a scale at which this
// layer's rastered content is not larger than the viewport.
gfx::Size viewport = layer_tree_impl()->GetDeviceViewport().size();
// To avoid too small scale in a small viewport.
constexpr int kMinViewportDimension = 500;
float max_viewport_dimension =
std::max({viewport.width(), viewport.height(), kMinViewportDimension});
DCHECK(max_viewport_dimension);
// Use square to compensate for viewports with different aspect ratios.
float squared_viewport_area = max_viewport_dimension * max_viewport_dimension;
gfx::SizeF max_visible_bounds(raster_source_->recorded_bounds().size());
// Clamp max_visible_bounds by max_viewport_dimension to avoid too small
// scale for huge layers for which the far from viewport area won't be
// rasterized and out of viewport area is rasterized in low priority.
max_visible_bounds.SetToMin(
gfx::SizeF(max_viewport_dimension, max_viewport_dimension));
gfx::SizeF max_visible_bounds_at_max_scale =
gfx::ScaleSize(max_visible_bounds, raster_contents_scale_.x(),
raster_contents_scale_.y());
float maximum_area = max_visible_bounds_at_max_scale.width() *
max_visible_bounds_at_max_scale.height();
// Clamp the scale to make the rastered content not larger than the viewport.
if (maximum_area > squared_viewport_area) [[unlikely]] {
raster_contents_scale_.Scale(
1.f / std::sqrt(maximum_area / squared_viewport_area));
}
}
void PictureLayerImpl::CleanUpTilingsOnActiveLayer(
const std::vector<raw_ptr<PictureLayerTiling, VectorExperimental>>&
used_tilings) {
DCHECK(layer_tree_impl()->IsActiveTree());
if (tilings_->num_tilings() == 0)
return;
float min_acceptable_high_res_scale =
std::min(raster_contents_scale_key(), ideal_contents_scale_key());
float max_acceptable_high_res_scale =
std::max(raster_contents_scale_key(), ideal_contents_scale_key());
PictureLayerImpl* twin = GetPendingOrActiveTwinLayer();
if (twin && twin->CanHaveTilings()) {
min_acceptable_high_res_scale = std::min(
{min_acceptable_high_res_scale, twin->raster_contents_scale_key(),
twin->ideal_contents_scale_key()});
max_acceptable_high_res_scale = std::max(
{max_acceptable_high_res_scale, twin->raster_contents_scale_key(),
twin->ideal_contents_scale_key()});
}
PictureLayerTilingSet* twin_set = twin ? twin->tilings_.get() : nullptr;
tilings_->CleanUpTilings(min_acceptable_high_res_scale,
max_acceptable_high_res_scale, used_tilings,
twin_set);
}
float PictureLayerImpl::MinimumRasterContentsScaleForWillChangeTransform()
const {
DCHECK(AffectedByWillChangeTransformHint());
float native_scale = ideal_device_scale_ * ideal_page_scale_;
float ideal_scale = ideal_contents_scale_key();
// We want to use the same raster scale as much as possible during the
// lifetime of a will-change:transform layer to avoid rerasterization.
// Normally, we clamp the raster scale to be at least the native scale, to
// make most HTML contents not too blurry (e.g. at least the texts are
// legible) if the ideal scale increases above the native scale in the future.
if (ideal_scale < native_scale * kMinScaleRatioForWillChangeTransform) {
// However, if the native scale is too big compared to the ideal scale,
// we want to use a smaller scale to avoid too many tiles using too much
// memory. This is mainly to avoid problems in SVG apps that use large
// integer geometries in elements under a very small overall scale to avoid
// floating-point errors in geometries. The return value is smaller than
// ideal_scale to reduce rerasterizations when the ideal scale changes to
// be even smaller in the future.
return ideal_scale * kMinScaleRatioForWillChangeTransform;
}
return native_scale;
}
bool PictureLayerImpl::CalculateRasterTranslation(
gfx::Vector2dF& raster_translation) const {
// If this setting is set, the client (e.g. the Chromium UI) is sure that it
// can almost always align raster pixels to physical pixels, and doesn't care
// about temporary misalignment, so don't bother raster translation.
if (layer_tree_impl()->settings().layers_always_allowed_lcd_text)
return true;
// No need to use raster translation if there is no text.
if (!raster_source_ || !raster_source_->GetDisplayItemList() ||
!raster_source_->GetDisplayItemList()->has_draw_text_ops()) {
return false;
}
// Besides the RasterScalesApproximatelyEqual() condition for
// ScreenSpaceTransform() and DrawTransform() in PixelAlignmentOffset(),
// here we also check if the scale of DrawTransform() approximately equals
// raster_contents_scale_.
if (!draw_property_utils::RasterScalesApproximatelyEqual(
DrawTransform().To2dScale(), raster_contents_scale_)) {
return false;
}
if (auto offset = draw_property_utils::PixelAlignmentOffset(
ScreenSpaceTransform(), DrawTransform())) {
raster_translation = *offset;
return true;
}
return false;
}
float PictureLayerImpl::MinimumContentsScale() const {
// If the contents scale is less than 1 / width (also for height),
// then it will end up having less than one pixel of content in that
// dimension. Bump the minimum contents scale up in this case to prevent
// this from happening.
gfx::Size recorded_size = raster_source_->recorded_bounds().size();
int min_dimension = std::min(recorded_size.width(), recorded_size.height());
return min_dimension ? 1.f / min_dimension : 1.f;
}
float PictureLayerImpl::MaximumContentsScale() const {
if (bounds().IsEmpty())
return 0;
// When mask tiling is disabled or the mask is single textured, masks can not
// have tilings that would become larger than the max_texture_size since they
// use a single tile for the entire tiling. Other layers can have tilings such
// that dimension * scale does not overflow.
float max_dimension = static_cast<float>(
is_backdrop_filter_mask_ ? layer_tree_impl()->max_texture_size()
: std::numeric_limits<int>::max());
int higher_dimension = std::max(bounds().width(), bounds().height());
float max_scale = max_dimension / higher_dimension;
// We require that multiplying the layer size by the contents scale and
// ceiling produces a value <= |max_dimension|. Because for large layer
// sizes floating point ambiguity may crop up, making the result larger or
// smaller than expected, we use a slightly smaller floating point value for
// the scale, to help ensure that the resulting content bounds will never end
// up larger than |max_dimension|.
return nextafterf(max_scale, 0.f);
}
void PictureLayerImpl::ResetRasterScale() {
raster_page_scale_ = 0.f;
raster_device_scale_ = 0.f;
raster_source_scale_ = gfx::Vector2dF(0.f, 0.f);
raster_contents_scale_ = gfx::Vector2dF(0.f, 0.f);
directly_composited_image_default_raster_scale_ = 0.f;
}
bool PictureLayerImpl::CanHaveTilings() const {
if (!raster_source_)
return false;
if (raster_source_->IsSolidColor())
return false;
if (!draws_content())
return false;
if (!raster_source_->HasRecordings())
return false;
// If the |raster_source_| has a recording it should have non-empty bounds.
DCHECK(!raster_source_->size().IsEmpty());
if (MaximumContentsScale() < MinimumContentsScale())
return false;
return true;
}
void PictureLayerImpl::SanityCheckTilingState() const {
#if DCHECK_IS_ON()
if (!CanHaveTilings()) {
DCHECK_EQ(0u, tilings_->num_tilings());
return;
}
if (tilings_->num_tilings() == 0)
return;
// We should only have one high res tiling.
DCHECK_EQ(1, tilings_->NumHighResTilings());
#endif
}
float PictureLayerImpl::MaximumTilingContentsScale() const {
float max_contents_scale = tilings_->GetMaximumContentsScale();
return std::max(max_contents_scale, MinimumContentsScale());
}
std::unique_ptr<PictureLayerTilingSet>
PictureLayerImpl::CreatePictureLayerTilingSet() {
const LayerTreeSettings& settings = layer_tree_impl()->settings();
return PictureLayerTilingSet::Create(
IsActive() ? ACTIVE_TREE : PENDING_TREE, this,
settings.tiling_interest_area_padding,
layer_tree_impl()->use_gpu_rasterization()
? settings.gpu_rasterization_skewport_target_time_in_seconds
: settings.skewport_target_time_in_seconds,
settings.skewport_extrapolation_limit_in_screen_pixels,
settings.max_preraster_distance_in_screen_pixels);
}
void PictureLayerImpl::UpdateIdealScales() {
DCHECK(CanHaveTilings());
float min_contents_scale = MinimumContentsScale();
DCHECK_GT(min_contents_scale, 0.f);
ideal_device_scale_ = layer_tree_impl()->device_scale_factor();
ideal_page_scale_ = 1.f;
ideal_contents_scale_ = GetIdealContentsScale();
if (layer_tree_impl()->PageScaleTransformNode()) {
DCHECK(layer_tree_impl()->settings().is_for_scalable_page);
ideal_page_scale_ = IsAffectedByPageScale()
? layer_tree_impl()->current_page_scale_factor()
: 1.f;
}
// This layer may be in a layer tree embedded in a hierarchy that has its own
// page scale factor. We represent that here as 'external_page_scale_factor',
// a value that affects raster scale in the same way that page_scale_factor
// does, but doesn't affect any geometry calculations. In a normal main frame,
// fenced frame, or OOPIF, only one of current or external page scale factor
// is ever used but not both. The only exception to this is a main frame in a
// a guest view. In these cases we may have a current_page_scale_factor (e.g.
// due to a viewport <meta> tag) as well as an external_page_scale_factor
// coming from the page scale of its embedder page.
float external_page_scale_factor =
layer_tree_impl() ? layer_tree_impl()->external_page_scale_factor() : 1.f;
DCHECK(!layer_tree_impl() ||
layer_tree_impl()->settings().is_for_scalable_page ||
external_page_scale_factor == 1.f ||
layer_tree_impl()->current_page_scale_factor() == 1.f);
ideal_page_scale_ *= external_page_scale_factor;
ideal_contents_scale_.Scale(external_page_scale_factor);
ideal_contents_scale_.SetToMax(
gfx::Vector2dF(min_contents_scale, min_contents_scale));
ideal_contents_scale_.SetToMin(
gfx::Vector2dF(kMaxIdealContentsScale, kMaxIdealContentsScale));
ideal_source_scale_ = {ideal_contents_scale_.x() / ideal_page_scale_,
ideal_contents_scale_.y() / ideal_page_scale_};
}
void PictureLayerImpl::GetDebugBorderProperties(SkColor4f* color,
float* width) const {
float device_scale_factor =
layer_tree_impl() ? layer_tree_impl()->device_scale_factor() : 1;
if (IsDirectlyCompositedImage()) {
*color = DebugColors::ImageLayerBorderColor();
*width = DebugColors::ImageLayerBorderWidth(device_scale_factor);
} else {
*color = DebugColors::TiledContentLayerBorderColor();
*width = DebugColors::TiledContentLayerBorderWidth(device_scale_factor);
}
}
void PictureLayerImpl::GetAllPrioritizedTilesForTracing(
std::vector<PrioritizedTile>* prioritized_tiles) const {
if (!tilings_)
return;
tilings_->GetAllPrioritizedTilesForTracing(prioritized_tiles);
}
void PictureLayerImpl::AsValueInto(
base::trace_event::TracedValue* state) const {
LayerImpl::AsValueInto(state);
state->SetDouble("ideal_contents_scale", ideal_contents_scale_key());
state->SetDouble("geometry_contents_scale", MaximumTilingContentsScale());
state->BeginArray("tilings");
tilings_->AsValueInto(state);
state->EndArray();
MathUtil::AddToTracedValue("tile_priority_rect",
viewport_rect_for_tile_priority_in_content_space_,
state);
MathUtil::AddToTracedValue("visible_rect", visible_layer_rect(), state);
state->SetString(
"lcd_text_disallowed_reason",
LCDTextDisallowedReasonToString(lcd_text_disallowed_reason_));
state->BeginArray("pictures");
raster_source_->AsValueInto(state);
state->EndArray();
state->BeginArray("invalidation");
invalidation_.AsValueInto(state);
state->EndArray();
state->BeginArray("coverage_tiles");
for (auto iter =
tilings_->Cover(gfx::Rect(bounds()), MaximumTilingContentsScale(),
ideal_contents_scale_key());
iter; ++iter) {
state->BeginDictionary();
MathUtil::AddToTracedValue("geometry_rect", iter.geometry_rect(), state);
if (*iter)
viz::TracedValue::SetIDRef(*iter, state, "tile");
state->EndDictionary();
}
state->EndArray();
state->BeginDictionary("can_have_tilings_state");
state->SetBoolean("can_have_tilings", CanHaveTilings());
state->SetBoolean("raster_source_solid_color",
raster_source_->IsSolidColor());
state->SetBoolean("draws_content", draws_content());
state->SetBoolean("raster_source_has_recordings",
raster_source_->HasRecordings());
state->SetDouble("max_contents_scale", MaximumTilingContentsScale());
state->SetDouble("min_contents_scale", MinimumContentsScale());
state->EndDictionary();
state->BeginDictionary("raster_scales");
state->SetDouble("page_scale", raster_page_scale_);
state->SetDouble("device_scale", raster_device_scale_);
state->BeginArray("source_scale");
state->AppendDouble(raster_source_scale_.x());
state->AppendDouble(raster_source_scale_.y());
state->EndArray();
state->BeginArray("contents_scale");
state->AppendDouble(raster_contents_scale_.x());
state->AppendDouble(raster_contents_scale_.y());
state->EndArray();
state->EndDictionary();
state->BeginDictionary("ideal_scales");
state->SetDouble("page_scale", ideal_page_scale_);
state->SetDouble("device_scale", ideal_device_scale_);
state->BeginArray("source_scale");
state->AppendDouble(ideal_source_scale_.x());
state->AppendDouble(ideal_source_scale_.y());
state->EndArray();
state->BeginArray("contents_scale");
state->AppendDouble(ideal_contents_scale_.x());
state->AppendDouble(ideal_contents_scale_.y());
state->EndArray();
state->EndDictionary();
}
size_t PictureLayerImpl::GPUMemoryUsageInBytes() const {
return tilings_->GPUMemoryUsageInBytes();
}
void PictureLayerImpl::RunMicroBenchmark(MicroBenchmarkImpl* benchmark) {
benchmark->RunOnLayer(this);
}
bool PictureLayerImpl::IsOnActiveOrPendingTree() const {
return !layer_tree_impl()->IsRecycleTree();
}
bool PictureLayerImpl::HasValidTilePriorities() const {
return IsOnActiveOrPendingTree() &&
(contributes_to_drawn_render_surface() || raster_even_if_not_drawn());
}
PictureLayerImpl::ImageInvalidationResult
PictureLayerImpl::InvalidateRegionForImages(
const PaintImageIdFlatSet& images_to_invalidate) {
if (!discardable_image_map_ || discardable_image_map_->empty()) {
return ImageInvalidationResult::kNoImages;
}
bool all_animated_image = true;
auto* controller = layer_tree_impl()->image_animation_controller();
InvalidationRegion image_invalidation;
for (auto image_id : images_to_invalidate) {
all_animated_image &= controller->IsRegistered(image_id);
const auto& rects = discardable_image_map_->GetRectsForImage(image_id);
for (const auto& r : rects) {
image_invalidation.Union(r);
}
}
Region invalidation;
image_invalidation.Swap(&invalidation);
if (invalidation.IsEmpty())
return ImageInvalidationResult::kNoInvalidation;
// Note: We can use a rect here since this is only used to track damage for a
// frame and not raster invalidation.
UnionUpdateRect(invalidation.bounds());
if (all_animated_image) {
has_animated_image_update_rect_ = true;
} else {
has_non_animated_image_update_rect_ = true;
}
invalidation_.Union(invalidation);
tilings_->Invalidate(invalidation);
// TODO(crbug.com/40335690): SetNeedsPushProperties() would be needed here if
// PictureLayerImpl didn't always push properties every activation.
return ImageInvalidationResult::kInvalidated;
}
void PictureLayerImpl::InvalidateRasterInducingScrolls(
const base::flat_set<ElementId>& scrolls_to_invalidate) {
if (!raster_source_ || !raster_source_->GetDisplayItemList()) {
return;
}
const DisplayItemList::RasterInducingScrollMap& raster_inducing_scrolls =
raster_source_->GetDisplayItemList()->raster_inducing_scrolls();
Region invalidation;
bool needs_update_discardable_image_map = false;
for (ElementId element_id : scrolls_to_invalidate) {
auto it = raster_inducing_scrolls.find(element_id);
if (it != raster_inducing_scrolls.end()) {
UnionUpdateRect(it->second.visual_rect);
has_non_animated_image_update_rect_ = true;
invalidation.Union(it->second.visual_rect);
needs_update_discardable_image_map |= it->second.has_discardable_images;
}
}
if (!invalidation.IsEmpty()) {
if (needs_update_discardable_image_map) {
// The new map should only have changed image rects, so we don't need to
// re-register animated images and update paint worklets.
discardable_image_map_ =
raster_source_->GetDisplayItemList()->GenerateDiscardableImageMap(
GetRasterInducingScrollOffsets());
}
invalidation_.Union(invalidation);
tilings_->Invalidate(invalidation);
}
}
void PictureLayerImpl::SetPaintWorkletRecord(
scoped_refptr<const PaintWorkletInput> input,
PaintRecord record) {
DCHECK(base::Contains(paint_worklet_records_, input));
paint_worklet_records_[input].second = std::move(record);
}
void PictureLayerImpl::RegisterAnimatedImages() {
if (!discardable_image_map_) {
return;
}
auto* controller = layer_tree_impl()->image_animation_controller();
for (const auto& data : discardable_image_map_->animated_images_metadata()) {
// Only update the metadata from updated recordings received from a commit.
if (layer_tree_impl()->IsSyncTree())
controller->UpdateAnimatedImage(data);
controller->RegisterAnimationDriver(data.paint_image_id, this);
}
}
void PictureLayerImpl::UnregisterAnimatedImages() {
if (!discardable_image_map_) {
return;
}
auto* controller = layer_tree_impl()->image_animation_controller();
for (const auto& data : discardable_image_map_->animated_images_metadata()) {
controller->UnregisterAnimationDriver(data.paint_image_id, this);
}
}
void PictureLayerImpl::SetPaintWorkletInputs(
const DiscardableImageMap::PaintWorkletInputs& inputs) {
// PaintWorklets are not supported when committing directly to the active
// tree, so in that case the |inputs| should always be empty.
DCHECK(layer_tree_impl()->IsPendingTree() || inputs.empty());
bool had_paint_worklets = !paint_worklet_records_.empty();
PaintWorkletRecordMap new_records;
for (const auto& input_with_id : inputs) {
const auto& input = input_with_id.first;
const auto& paint_image_id = input_with_id.second;
auto it = new_records.find(input);
// We should never have multiple PaintImages sharing the same paint worklet.
DCHECK(it == new_records.end() || it->second.first == paint_image_id);
// Attempt to re-use an existing PaintRecord if possible.
new_records[input] = std::make_pair(
paint_image_id, std::move(paint_worklet_records_[input].second));
// The move constructor of std::optional does not clear the source to
// nullopt.
paint_worklet_records_[input].second = std::nullopt;
}
paint_worklet_records_.swap(new_records);
// The pending tree tracks which PictureLayerImpls have PaintWorkletInputs as
// an optimization to avoid walking all picture layers.
bool has_paint_worklets = !paint_worklet_records_.empty();
if ((has_paint_worklets != had_paint_worklets) &&
layer_tree_impl()->IsPendingTree()) {
// TODO(xidachen): We don't need additional tracking on LayerTreeImpl. The
// tracking in AnimatedPaintWorkletTracker should be enough.
layer_tree_impl()->NotifyLayerHasPaintWorkletsChanged(this,
has_paint_worklets);
}
if (layer_tree_impl()->IsPendingTree()) {
layer_tree_impl()
->paint_worklet_tracker()
.UpdatePaintWorkletInputProperties(inputs, this);
}
}
void PictureLayerImpl::InvalidatePaintWorklets(
const PaintWorkletInput::PropertyKey& key,
const PaintWorkletInput::PropertyValue& prev,
const PaintWorkletInput::PropertyValue& next) {
for (auto& entry : paint_worklet_records_) {
const std::vector<PaintWorkletInput::PropertyKey>& prop_ids =
entry.first->GetPropertyKeys();
// If the PaintWorklet depends on the property whose value was changed by
// the animation system, then invalidate its associated PaintRecord so that
// we can repaint the PaintWorklet during impl side invalidation.
if (base::Contains(prop_ids, key) &&
entry.first->ValueChangeShouldCauseRepaint(prev, next)) {
entry.second.second = std::nullopt;
}
}
}
PictureLayerImpl::TileUpdateSet PictureLayerImpl::TakeUpdatedTiles() {
TileUpdateSet updates;
updates.swap(updated_tiles_);
return updates;
}
gfx::ContentColorUsage PictureLayerImpl::GetContentColorUsage() const {
auto display_item_list = raster_source_->GetDisplayItemList();
if (!display_item_list)
return gfx::ContentColorUsage::kSRGB;
return display_item_list->content_color_usage();
}
DamageReasonSet PictureLayerImpl::GetDamageReasons() const {
DamageReasonSet reasons = GetDamageReasonsFromLayerPropertyChange();
if (has_animated_image_update_rect_) {
reasons.Put(DamageReason::kAnimatedImage);
}
if (has_non_animated_image_update_rect_ || !damage_rect_.IsEmpty()) {
reasons.Put(DamageReason::kUntracked);
}
return reasons;
}
} // namespace cc
|