1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/raster/task_graph_work_queue.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <map>
#include <unordered_map>
#include <utility>
#include "base/containers/contains.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/trace_event/trace_event.h"
#include "base/trace_event/trace_id_helper.h"
#include "base/trace_event/typed_macros.h"
namespace cc {
namespace {
bool CompareTaskPriority(const TaskGraphWorkQueue::PrioritizedTask& a,
const TaskGraphWorkQueue::PrioritizedTask& b) {
// In this system, numerically lower priority is run first.
return a.priority > b.priority;
}
class CompareTaskNamespacePriority {
public:
explicit CompareTaskNamespacePriority(uint16_t category)
: category_(category) {}
bool operator()(const TaskGraphWorkQueue::TaskNamespace* a,
const TaskGraphWorkQueue::TaskNamespace* b) {
DCHECK(!a->ready_to_run_tasks.at(category_).empty());
DCHECK(!b->ready_to_run_tasks.at(category_).empty());
// Compare based on task priority of the ready_to_run_tasks heap .front()
// will hold the max element of the heap, except after pop_heap, when max
// element is moved to .back().
return CompareTaskPriority(a->ready_to_run_tasks.at(category_).front(),
b->ready_to_run_tasks.at(category_).front());
}
private:
uint16_t category_;
};
// Helper class for iterating over all dependents of a task.
class DependentIterator {
public:
DependentIterator(TaskGraph* graph, const Task* task)
: graph_(graph),
task_(task),
current_index_(static_cast<size_t>(-1)),
current_node_(nullptr) {
++(*this);
}
TaskGraph::Node& operator->() const {
DCHECK_LT(current_index_, graph_->edges.size());
DCHECK_EQ(graph_->edges[current_index_].task, task_);
DCHECK(current_node_);
return *current_node_;
}
TaskGraph::Node& operator*() const {
DCHECK_LT(current_index_, graph_->edges.size());
DCHECK_EQ(graph_->edges[current_index_].task, task_);
DCHECK(current_node_);
return *current_node_;
}
// Note: Performance can be improved by keeping edges sorted.
DependentIterator& operator++() {
// Find next dependency edge for |task_|.
do {
++current_index_;
if (current_index_ == graph_->edges.size())
return *this;
} while (graph_->edges[current_index_].task != task_);
// Now find the node for the dependent of this edge.
auto it = std::ranges::find(graph_->nodes,
graph_->edges[current_index_].dependent.get(),
&TaskGraph::Node::task);
CHECK(it != graph_->nodes.end());
current_node_ = &(*it);
return *this;
}
operator bool() const { return current_index_ < graph_->edges.size(); }
private:
// `graph_` and `task_` are not a raw_ptr<...> for performance reasons (based
// on analysis of sampling profiler data and tab_search:top100:2020).
RAW_PTR_EXCLUSION TaskGraph* graph_;
RAW_PTR_EXCLUSION const Task* task_;
size_t current_index_;
// `current_node_` is not a raw_ptr<...> for performance reasons (based on
// analysis of sampling profiler data and tab_search:top100:2020).
RAW_PTR_EXCLUSION TaskGraph::Node* current_node_;
};
void RebuildNamespaceHeaps(TaskGraphWorkQueue::ReadyNamespaces& namespaces) {
// Rearrange the task namespaces in |ready_to_run_namespaces| in such a
// way that they form a heap.
for (auto& it : namespaces) {
uint16_t category = it.first;
auto& task_namespace = it.second;
std::make_heap(task_namespace.begin(), task_namespace.end(),
CompareTaskNamespacePriority(category));
}
}
} // namespace
TaskGraphWorkQueue::TaskNamespace::TaskNamespace() = default;
TaskGraphWorkQueue::TaskNamespace::TaskNamespace(TaskNamespace&& other) =
default;
TaskGraphWorkQueue::TaskNamespace::~TaskNamespace() = default;
TaskGraphWorkQueue::TaskGraphWorkQueue() : next_namespace_id_(1) {}
TaskGraphWorkQueue::~TaskGraphWorkQueue() = default;
TaskGraphWorkQueue::PrioritizedTask::PrioritizedTask(
scoped_refptr<Task> task,
TaskNamespace* task_namespace,
uint16_t category,
uint16_t priority)
: task(std::move(task)),
task_namespace(task_namespace),
category(category),
priority(priority) {}
TaskGraphWorkQueue::PrioritizedTask::PrioritizedTask(PrioritizedTask&& other) =
default;
TaskGraphWorkQueue::PrioritizedTask::~PrioritizedTask() = default;
NamespaceToken TaskGraphWorkQueue::GenerateNamespaceToken() {
NamespaceToken token(next_namespace_id_++);
DCHECK(!base::Contains(namespaces_, token));
return token;
}
void TaskGraphWorkQueue::ScheduleTasks(NamespaceToken token, TaskGraph* graph) {
TaskNamespace& task_namespace = namespaces_[token];
// First adjust number of dependencies to reflect completed tasks.
for (const scoped_refptr<Task>& task : task_namespace.completed_tasks) {
for (DependentIterator node_it(graph, task.get()); node_it; ++node_it) {
TaskGraph::Node& node = *node_it;
DCHECK_LT(0u, node.dependencies);
node.dependencies--;
}
}
// Build new "ready to run" queue and remove nodes from old graph.
for (auto& ready_to_run_tasks_it : task_namespace.ready_to_run_tasks) {
ready_to_run_tasks_it.second.clear();
}
TRACE_EVENT(
"toplevel", "cc::TaskGraphWorkQueue::ScheduleTasks",
[&](perfetto::EventContext ctx) {
for (const TaskGraph::Node& node : graph->nodes) {
DCHECK(node.task->trace_task_id() != 0)
<< "Every raster task should be associated with a task id.\n";
ctx.event()->add_flow_ids(node.task->trace_task_id());
}
});
for (const TaskGraph::Node& node : graph->nodes) {
// Remove any old nodes that are associated with this task. The result is
// that the old graph is left with all nodes not present in this graph,
// which we use below to determine what tasks need to be canceled.
auto old_it = std::ranges::find(task_namespace.graph.nodes, node.task,
&TaskGraph::Node::task);
if (old_it != task_namespace.graph.nodes.end()) {
std::swap(*old_it, task_namespace.graph.nodes.back());
// If old task is scheduled to run again and not yet started running,
// reset its state to initial state as it has to be inserted in new
// |ready_to_run_tasks|, where it gets scheduled.
if (node.task->state().IsScheduled())
node.task->state().Reset();
task_namespace.graph.nodes.pop_back();
}
// Task is not ready to run if dependencies are not yet satisfied.
if (node.dependencies)
continue;
// Skip if already finished running task.
if (node.task->state().IsFinished())
continue;
// Skip if already running.
if (base::Contains(task_namespace.running_tasks, node.task.get(),
&CategorizedTask::second)) {
continue;
}
node.task->state().DidSchedule();
task_namespace.ready_to_run_tasks[node.category].emplace_back(
node.task, &task_namespace, node.category, node.priority);
}
// Rearrange the elements in each vector within |ready_to_run_tasks| in such a
// way that they form a heap.
for (auto& it : task_namespace.ready_to_run_tasks) {
auto& ready_to_run_tasks = it.second;
std::make_heap(ready_to_run_tasks.begin(), ready_to_run_tasks.end(),
CompareTaskPriority);
}
// Swap task graph.
task_namespace.graph.Swap(graph);
// Determine what tasks in old graph need to be canceled.
for (auto it = graph->nodes.begin(); it != graph->nodes.end(); ++it) {
TaskGraph::Node& node = *it;
// Skip if already finished running task.
if (node.task->state().IsFinished())
continue;
// Skip if already running.
if (base::Contains(task_namespace.running_tasks, node.task.get(),
&CategorizedTask::second)) {
continue;
}
DCHECK(!base::Contains(task_namespace.completed_tasks, node.task.get()));
node.task->state().DidCancel();
task_namespace.completed_tasks.push_back(node.task);
}
// Build new "ready to run" task namespaces queue.
for (auto& ready_to_run_namespaces_it : ready_to_run_namespaces_) {
ready_to_run_namespaces_it.second.clear();
}
for (auto& namespace_it : namespaces_) {
auto& task_namespace_to_check = namespace_it.second;
for (auto& ready_to_run_tasks_it :
task_namespace_to_check.ready_to_run_tasks) {
auto& ready_to_run_tasks = ready_to_run_tasks_it.second;
uint16_t category = ready_to_run_tasks_it.first;
if (!ready_to_run_tasks.empty()) {
ready_to_run_namespaces_[category].push_back(&task_namespace_to_check);
}
}
}
RebuildNamespaceHeaps(ready_to_run_namespaces_);
}
TaskGraphWorkQueue::PrioritizedTask TaskGraphWorkQueue::GetNextTaskToRun(
uint16_t category) {
TaskNamespace::Vector& ready_to_run_namespaces =
ready_to_run_namespaces_[category];
DCHECK(!ready_to_run_namespaces.empty());
// Take top priority TaskNamespace from |ready_to_run_namespaces|.
std::pop_heap(ready_to_run_namespaces.begin(), ready_to_run_namespaces.end(),
CompareTaskNamespacePriority(category));
TaskNamespace* task_namespace = ready_to_run_namespaces.back();
ready_to_run_namespaces.pop_back();
PrioritizedTask::Vector& ready_to_run_tasks =
task_namespace->ready_to_run_tasks[category];
DCHECK(!ready_to_run_tasks.empty());
// Take top priority task from |ready_to_run_tasks|.
std::pop_heap(ready_to_run_tasks.begin(), ready_to_run_tasks.end(),
CompareTaskPriority);
PrioritizedTask task = std::move(ready_to_run_tasks.back());
ready_to_run_tasks.pop_back();
// Add task namespace back to |ready_to_run_namespaces| if not empty after
// taking top priority task.
if (!ready_to_run_tasks.empty()) {
ready_to_run_namespaces.push_back(task_namespace);
std::push_heap(ready_to_run_namespaces.begin(),
ready_to_run_namespaces.end(),
CompareTaskNamespacePriority(category));
}
// Add task to |running_tasks|.
task.task->state().DidStart();
task_namespace->running_tasks.push_back(
std::make_pair(task.category, task.task));
return task;
}
bool TaskGraphWorkQueue::ExternalDependencyCompletedForTask(
NamespaceToken token,
scoped_refptr<Task> task) {
TaskNamespace* task_namespace = GetNamespaceForToken(token);
CHECK(task_namespace || task->state().IsCanceled());
if (task_namespace) {
auto iter = std::ranges::find(task_namespace->graph.nodes, task.get(),
&TaskGraph::Node::task);
if (iter == task_namespace->graph.nodes.end()) {
return false;
}
iter->has_external_dependency = false;
return DecrementNodeDependencies(*iter, task_namespace,
/*rebuild_heap*/ true);
}
return false;
}
bool TaskGraphWorkQueue::DecrementNodeDependencies(
TaskGraph::Node& node,
TaskNamespace* task_namespace,
bool rebuild_heap) {
DCHECK_LT(0u, node.dependencies);
node.dependencies--;
// Task is ready if it has no dependencies and is in the new state, Add it
// to |ready_to_run_tasks_|.
if (!node.dependencies && node.task->state().IsNew()) {
PrioritizedTask::Vector& ready_to_run_tasks =
task_namespace->ready_to_run_tasks[node.category];
bool was_empty = ready_to_run_tasks.empty();
node.task->state().DidSchedule();
ready_to_run_tasks.emplace_back(node.task, task_namespace, node.category,
node.priority);
std::push_heap(ready_to_run_tasks.begin(), ready_to_run_tasks.end(),
CompareTaskPriority);
// Task namespace is ready if it has at least one ready to run task. Add
// it to |ready_to_run_namespaces_| if it just become ready.
if (was_empty) {
TaskNamespace::Vector& ready_to_run_namespaces =
ready_to_run_namespaces_[node.category];
DCHECK(!base::Contains(ready_to_run_namespaces, task_namespace));
// TODO(paint-dev): The following line could be:
// if (rebuild_heap) {
// ready_to_run_namspaces.push_heap();
// rebuild_heap = false;
// } else {
// ready_to_run_namespaces.push_back();
// }
ready_to_run_namespaces.push_back(task_namespace);
}
if (rebuild_heap) {
// TODO(paint-dev): it's only necessary to rebuild the namespace heap if
// the sorting value for `task_namespace` changed (i.e., if the
// newly-ready-to-run task has a higher priority than any other
// ready-to-run task in the namespace. We should check for that.
auto& category_namespaces = ready_to_run_namespaces_[node.category];
std::make_heap(category_namespaces.begin(), category_namespaces.end(),
CompareTaskNamespacePriority(node.category));
}
return true;
}
return false;
}
void TaskGraphWorkQueue::CompleteTask(PrioritizedTask completed_task) {
TaskNamespace* task_namespace = completed_task.task_namespace;
scoped_refptr<Task> task(std::move(completed_task.task));
// Remove task from |running_tasks|.
auto it = std::ranges::find(task_namespace->running_tasks, task,
&CategorizedTask::second);
CHECK(it != task_namespace->running_tasks.end());
std::swap(*it, task_namespace->running_tasks.back());
task_namespace->running_tasks.pop_back();
// Now iterate over all dependents to decrement dependencies and check if they
// are ready to run.
bool ready_to_run_namespaces_has_heap_properties = true;
for (DependentIterator dependent_it(&task_namespace->graph, task.get());
dependent_it; ++dependent_it) {
// rebuild_heap=false to avoid rebuilding the heap on every iteration; just
// do it once at the end if necessary.
ready_to_run_namespaces_has_heap_properties &= !DecrementNodeDependencies(
*dependent_it, task_namespace, false /*rebuild_heap*/);
}
// Rearrange the task namespaces in |ready_to_run_namespaces_| in such a way
// that they yet again form a heap.
if (!ready_to_run_namespaces_has_heap_properties) {
RebuildNamespaceHeaps(ready_to_run_namespaces_);
}
// Finally add task to |completed_tasks|.
task->state().DidFinish();
task_namespace->completed_tasks.push_back(std::move(task));
}
void TaskGraphWorkQueue::CollectCompletedTasks(NamespaceToken token,
Task::Vector* completed_tasks) {
auto it = namespaces_.find(token);
if (it == namespaces_.end())
return;
TaskNamespace& task_namespace = it->second;
DCHECK_EQ(0u, completed_tasks->size());
completed_tasks->swap(task_namespace.completed_tasks);
if (!HasFinishedRunningTasksInNamespace(&task_namespace))
return;
// Remove namespace if finished running tasks.
DCHECK_EQ(0u, task_namespace.completed_tasks.size());
DCHECK(!HasReadyToRunTasksInNamespace(&task_namespace));
DCHECK_EQ(0u, task_namespace.running_tasks.size());
namespaces_.erase(it);
}
bool TaskGraphWorkQueue::DependencyMismatch(const TaskGraph* graph) {
// Value storage will be 0-initialized.
std::unordered_map<const Task*, size_t> dependencies;
for (const TaskGraph::Edge& edge : graph->edges)
dependencies[edge.dependent]++;
for (const TaskGraph::Node& node : graph->nodes) {
size_t graph_dependency_count = dependencies[node.task.get()];
if (node.has_external_dependency) {
graph_dependency_count++;
}
if (graph_dependency_count != node.dependencies) {
return true;
}
}
return false;
}
} // namespace cc
|