1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842
|
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/tiles/gpu_image_decode_cache.h"
#include <inttypes.h>
#include <algorithm>
#include <limits>
#include <string>
#include "base/auto_reset.h"
#include "base/command_line.h"
#include "base/containers/contains.h"
#include "base/containers/span.h"
#include "base/debug/alias.h"
#include "base/feature_list.h"
#include "base/functional/bind.h"
#include "base/hash/hash.h"
#include "base/logging.h"
#include "base/memory/discardable_memory_allocator.h"
#include "base/memory/raw_ptr.h"
#include "base/metrics/field_trial_params.h"
#include "base/metrics/histogram_macros.h"
#include "base/notreached.h"
#include "base/numerics/safe_math.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/lock.h"
#include "base/task/single_thread_task_runner.h"
#include "base/time/tick_clock.h"
#include "base/time/time.h"
#include "base/trace_event/memory_dump_manager.h"
#include "cc/base/devtools_instrumentation.h"
#include "cc/base/features.h"
#include "cc/base/histograms.h"
#include "cc/base/switches.h"
#include "cc/paint/paint_flags.h"
#include "cc/raster/scoped_grcontext_access.h"
#include "cc/raster/tile_task.h"
#include "cc/tiles/mipmap_util.h"
#include "cc/tiles/raster_dark_mode_filter.h"
#include "components/viz/common/gpu/raster_context_provider.h"
#include "gpu/command_buffer/client/context_support.h"
#include "gpu/command_buffer/client/raster_interface.h"
#include "gpu/command_buffer/common/sync_token.h"
#include "gpu/config/gpu_finch_features.h"
#include "gpu/config/gpu_info.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkCanvas.h"
#include "third_party/skia/include/core/SkColorFilter.h"
#include "third_party/skia/include/core/SkColorSpace.h"
#include "third_party/skia/include/core/SkData.h"
#include "third_party/skia/include/core/SkImage.h"
#include "third_party/skia/include/core/SkImageInfo.h"
#include "third_party/skia/include/core/SkPixmap.h"
#include "third_party/skia/include/core/SkRect.h"
#include "third_party/skia/include/core/SkSamplingOptions.h"
#include "third_party/skia/include/core/SkSize.h"
#include "third_party/skia/include/core/SkSurface.h"
#include "third_party/skia/include/core/SkYUVAPixmaps.h"
#include "third_party/skia/include/gpu/GpuTypes.h"
#include "third_party/skia/include/gpu/ganesh/GrBackendSurface.h"
#include "third_party/skia/include/gpu/ganesh/GrDirectContext.h"
#include "third_party/skia/include/gpu/ganesh/GrYUVABackendTextures.h"
#include "third_party/skia/include/gpu/ganesh/SkImageGanesh.h"
#include "third_party/skia/include/gpu/ganesh/gl/GrGLBackendSurface.h"
#include "third_party/skia/include/gpu/ganesh/gl/GrGLTypes.h"
#include "ui/gfx/color_space.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/geometry/skia_conversions.h"
#include "ui/gfx/skia_span_util.h"
#include "ui/gl/trace_util.h"
namespace cc {
namespace {
// The number or entries to keep in the cache, depending on the memory state of
// the system. This limit can be breached by in-use cache items, which cannot
// be deleted.
static const int kNormalMaxItemsInCacheForGpu = 2000;
static const int kSuspendedMaxItemsInCacheForGpu = 0;
// The maximum number of images that we can lock simultaneously in our working
// set. This is separate from the memory limit, as keeping very large numbers
// of small images simultaneously locked can lead to performance issues and
// memory spikes.
static const int kMaxItemsInWorkingSet = 256;
// lock_count │ used │ result state
// ═══════════╪═══════╪══════════════════
// 1 │ false │ WASTED_ONCE
// 1 │ true │ USED_ONCE
// >1 │ false │ WASTED_RELOCKED
// >1 │ true │ USED_RELOCKED
// Note that it's important not to reorder the following enum, since the
// numerical values are used in the histogram code.
enum ImageUsageState : int {
IMAGE_USAGE_STATE_WASTED_ONCE,
IMAGE_USAGE_STATE_USED_ONCE,
IMAGE_USAGE_STATE_WASTED_RELOCKED,
IMAGE_USAGE_STATE_USED_RELOCKED,
IMAGE_USAGE_STATE_COUNT
};
// Returns true if an image would not be drawn and should therefore be
// skipped rather than decoded.
bool SkipImage(const DrawImage& draw_image) {
if (!SkIRect::Intersects(
draw_image.src_rect(),
SkIRect::MakeSize(
draw_image.paint_image().GetSkISize(AuxImage::kDefault)))) {
return true;
}
if (std::abs(draw_image.scale().width()) <
std::numeric_limits<float>::epsilon() ||
std::abs(draw_image.scale().height()) <
std::numeric_limits<float>::epsilon()) {
return true;
}
return false;
}
// Returns the filter quality to use for scaling the image to upload scale as
// well as for using when passing the decoded image to skia. Due to parity with
// SW and power impliciation, limit the filter quality to medium.
PaintFlags::FilterQuality CalculateDesiredFilterQuality(
const DrawImage& draw_image) {
return std::min(PaintFlags::FilterQuality::kMedium,
draw_image.filter_quality());
}
// Calculates the scale factor which can be used to scale an image to a given
// mip level.
SkSize CalculateScaleFactorForMipLevel(const DrawImage& draw_image,
AuxImage aux_image,
int upload_scale_mip_level) {
gfx::Size base_size = draw_image.paint_image().GetSize(aux_image);
return MipMapUtil::GetScaleAdjustmentForLevel(base_size,
upload_scale_mip_level);
}
// Calculates the size of a given mip level.
gfx::Size CalculateSizeForMipLevel(const DrawImage& draw_image,
AuxImage aux_image,
int upload_scale_mip_level) {
gfx::Size base_size = draw_image.paint_image().GetSize(aux_image);
return MipMapUtil::GetSizeForLevel(base_size, upload_scale_mip_level);
}
// Determines whether a draw image requires mips.
bool ShouldGenerateMips(const DrawImage& draw_image,
AuxImage aux_image,
int upload_scale_mip_level) {
// If filter quality is less than medium, don't generate mips.
if (draw_image.filter_quality() < PaintFlags::FilterQuality::kMedium)
return false;
gfx::Size base_size = draw_image.paint_image().GetSize(aux_image);
// Take the abs of the scale, as mipmap functions don't handle (and aren't
// impacted by) negative image dimensions.
gfx::SizeF scaled_size = gfx::ScaleSize(
gfx::SizeF(base_size), std::abs(draw_image.scale().width()),
std::abs(draw_image.scale().height()));
// If our target size is smaller than our scaled size in both dimension, we
// need to generate mips.
gfx::SizeF target_size = gfx::SizeF(
CalculateSizeForMipLevel(draw_image, aux_image, upload_scale_mip_level));
if (scaled_size.width() < target_size.width() &&
scaled_size.height() < target_size.height()) {
return true;
}
return false;
}
// Estimates the byte size of the decoded data for an image that goes through
// hardware decode acceleration. The actual byte size is only known once the
// image is decoded in the service side because different drivers have different
// pixel format and alignment requirements.
size_t EstimateHardwareDecodedDataSize(
const ImageHeaderMetadata* image_metadata) {
gfx::Size dimensions = image_metadata->coded_size
? *(image_metadata->coded_size)
: image_metadata->image_size;
base::CheckedNumeric<size_t> y_data_size(dimensions.width());
y_data_size *= dimensions.height();
static_assert(
// TODO(andrescj): refactor to instead have a static_assert at the
// declaration site of gpu::ImageDecodeAcceleratorSubsampling to make sure
// it has the same number of entries as YUVSubsampling.
static_cast<int>(gpu::ImageDecodeAcceleratorSubsampling::kMaxValue) == 2,
"EstimateHardwareDecodedDataSize() must be adapted to support all "
"subsampling factors in ImageDecodeAcceleratorSubsampling");
base::CheckedNumeric<size_t> uv_width(dimensions.width());
base::CheckedNumeric<size_t> uv_height(dimensions.height());
switch (image_metadata->yuv_subsampling) {
case YUVSubsampling::k420:
uv_width += 1u;
uv_width /= 2u;
uv_height += 1u;
uv_height /= 2u;
break;
case YUVSubsampling::k422:
uv_width += 1u;
uv_width /= 2u;
break;
case YUVSubsampling::k444:
break;
default:
NOTREACHED();
}
base::CheckedNumeric<size_t> uv_data_size(uv_width * uv_height);
return (y_data_size + 2 * uv_data_size).ValueOrDie();
}
// Draws and scales the provided |draw_image| into the |target_pixmap|. If the
// draw/scale can be done directly, calls directly into PaintImage::Decode.
// if not, decodes to a compatible temporary pixmap and then converts that into
// the |target_pixmap|.
bool DrawAndScaleImageRGB(const DrawImage& draw_image,
AuxImage aux_image,
SkPixmap& target_pixmap,
PaintImage::GeneratorClientId client_id) {
const PaintImage& paint_image = draw_image.paint_image();
const bool is_original_size_decode =
paint_image.GetSkISize(aux_image) == target_pixmap.dimensions();
const bool is_nearest_neighbor =
draw_image.filter_quality() == PaintFlags::FilterQuality::kNone;
SkISize supported_size =
paint_image.GetSupportedDecodeSize(target_pixmap.dimensions(), aux_image);
// We can directly decode into target pixmap if we are doing an original
// decode or we are decoding to scale without nearest neighbor filtering.
const bool can_directly_decode =
is_original_size_decode || !is_nearest_neighbor;
if (supported_size == target_pixmap.dimensions() && can_directly_decode) {
if (!paint_image.Decode(target_pixmap, draw_image.frame_index(), aux_image,
client_id)) {
DLOG(ERROR) << "Failed to decode image.";
return false;
}
return true;
}
// If we can't decode/scale directly, we will handle this in 2 steps.
// Step 1: Decode at the nearest (larger) directly supported size or the
// original size if nearest neighbor quality is requested.
const SkISize decode_size =
is_nearest_neighbor ? paint_image.GetSkISize(aux_image) : supported_size;
SkImageInfo decode_info = target_pixmap.info().makeDimensions(decode_size);
SkBitmap decode_bitmap;
if (!decode_bitmap.tryAllocPixels(decode_info)) {
DLOG(ERROR) << "Failed to allocate bitmap.";
return false;
}
SkPixmap decode_pixmap = decode_bitmap.pixmap();
if (!paint_image.Decode(decode_pixmap, draw_image.frame_index(), aux_image,
client_id)) {
DLOG(ERROR) << "Failed to decode unscaled image.";
return false;
}
// Step 2: Scale to |pixmap| size.
const PaintFlags::FilterQuality filter_quality =
CalculateDesiredFilterQuality(draw_image);
const SkSamplingOptions sampling(
PaintFlags::FilterQualityToSkSamplingOptions(filter_quality));
if (!decode_pixmap.scalePixels(target_pixmap, sampling)) {
DLOG(ERROR) << "Failed to scale image.";
return false;
}
return true;
}
// Decode and scale for YUV pixmaps.
//
// The pixmaps in `yuva_pixmaps` share a contiguous block of allocated backing
// memory. If scaling needs to happen, it is done individually for each plane.
bool DrawAndScaleImageYUV(
const DrawImage& draw_image,
AuxImage aux_image,
PaintImage::GeneratorClientId client_id,
const SkYUVAPixmapInfo::SupportedDataTypes& yuva_supported_data_types,
SkYUVAPixmaps& yuva_pixmaps) {
const PaintImage& paint_image = draw_image.paint_image();
const int num_planes = yuva_pixmaps.numPlanes();
// Query the decoder's SkYUVAPixmapInfo.
SkYUVAPixmapInfo decodable_yuva_pixmap_info;
{
const bool yuva_info_initialized = paint_image.IsYuv(
yuva_supported_data_types, aux_image, &decodable_yuva_pixmap_info);
DCHECK(yuva_info_initialized);
DCHECK_EQ(decodable_yuva_pixmap_info.dataType(), yuva_pixmaps.dataType());
DCHECK_EQ(decodable_yuva_pixmap_info.numPlanes(), num_planes);
// The Y size reported by IsYuv must be a supported decode size.
SkISize y_target_size =
decodable_yuva_pixmap_info.planeInfo(0).dimensions();
SkISize supported_size =
paint_image.GetSupportedDecodeSize(y_target_size, aux_image);
DCHECK(y_target_size == supported_size);
}
// We can directly decode into target pixmap if we are doing an original size
// decode.
// TODO(crbug.com/40612018): Although the JPEG decoder supports decoding to
// scale, we have not yet implemented YUV + decoding to scale, so we skip it.
{
bool is_directly_decodable = true;
for (int i = 0; i < num_planes; ++i) {
is_directly_decodable &=
yuva_pixmaps.plane(i).info().dimensions() ==
decodable_yuva_pixmap_info.planeInfo(i).dimensions();
}
if (is_directly_decodable) {
if (!paint_image.DecodeYuv(yuva_pixmaps, draw_image.frame_index(),
aux_image, client_id)) {
DLOG(ERROR) << "Failed to decode image as YUV.";
return false;
}
return true;
}
}
// Allocate `decode_yuva_bytes` in an SkBitmap. This is so that we can use
// tryAlloc to avoid crashing if allocation fails (having a TryAlloc on
// SkYUVAPixmaps would be less convolued).
const size_t decode_yuva_bytes =
decodable_yuva_pixmap_info.computeTotalBytes();
if (SkImageInfo::ByteSizeOverflowed(decode_yuva_bytes)) {
DLOG(ERROR) << "YUVA image size overflowed.";
return false;
}
SkBitmap decode_buffer_bitmap;
if (!decode_buffer_bitmap.tryAllocPixels(SkImageInfo::Make(
decode_yuva_bytes, 1, kR8_unorm_SkColorType, kOpaque_SkAlphaType))) {
DLOG(ERROR) << "Failed to allocate decode YUV storage.";
return false;
}
// Decode at the original size.
SkYUVAPixmaps decode_yuva_pixmaps = SkYUVAPixmaps::FromExternalMemory(
decodable_yuva_pixmap_info, decode_buffer_bitmap.getPixels());
if (!paint_image.DecodeYuv(decode_yuva_pixmaps, draw_image.frame_index(),
aux_image, client_id)) {
DLOG(ERROR) << "Failed to decode decode image as YUV.";
return false;
}
// Scale to the target size, plane-by-plane.
const PaintFlags::FilterQuality filter_quality =
CalculateDesiredFilterQuality(draw_image);
const SkSamplingOptions sampling(
PaintFlags::FilterQualityToSkSamplingOptions(filter_quality));
for (int i = 0; i < num_planes; ++i) {
const SkPixmap& decode = decode_yuva_pixmaps.plane(i);
const SkPixmap& scaled = yuva_pixmaps.plane(i);
if (!decode.scalePixels(scaled, sampling)) {
DLOG(ERROR) << "Failed to scale YUV planes.";
return false;
}
}
return true;
}
// Takes ownership of the backing texture of an SkImage. This allows us to
// delete this texture under Skia (via discardable).
sk_sp<SkImage> TakeOwnershipOfSkImageBacking(GrDirectContext* context,
sk_sp<SkImage> image) {
// If the image is not texture backed, it has no backing, just return it.
if (!image->isTextureBacked()) {
return image;
}
GrSurfaceOrigin origin;
SkImages::GetBackendTextureFromImage(
image, nullptr, false /* flushPendingGrContextIO */, &origin);
SkColorType color_type = image->colorType();
if (color_type == kUnknown_SkColorType) {
return nullptr;
}
sk_sp<SkColorSpace> color_space = image->refColorSpace();
GrBackendTexture backend_texture;
SkImages::BackendTextureReleaseProc release_proc;
SkImages::MakeBackendTextureFromImage(context, std::move(image),
&backend_texture, &release_proc);
return SkImages::BorrowTextureFrom(context, backend_texture, origin,
color_type, kPremul_SkAlphaType,
std::move(color_space));
}
// Immediately deletes an SkImage, preventing caching of that image. Must be
// called while holding the context lock.
void DeleteSkImageAndPreventCaching(viz::RasterContextProvider* context,
sk_sp<SkImage>&& image) {
// No need to do anything for a non-texture-backed images.
if (!image->isTextureBacked())
return;
sk_sp<SkImage> image_owned =
TakeOwnershipOfSkImageBacking(context->GrContext(), std::move(image));
// If context is lost, we may get a null image here.
if (image_owned) {
// Delete |original_image_owned| as Skia will not clean it up. We are
// holding the context lock here, so we can delete immediately.
uint32_t texture_id =
GpuImageDecodeCache::GlIdFromSkImage(image_owned.get());
context->RasterInterface()->DeleteGpuRasterTexture(texture_id);
}
}
// TODO(ericrk): Replace calls to this with calls to SkImages::TextureFromImage,
// once that function handles colorspaces. https://crbug.com/834837
sk_sp<SkImage> MakeTextureImage(viz::RasterContextProvider* context,
sk_sp<SkImage> source_image,
sk_sp<SkColorSpace> target_color_space,
skgpu::Mipmapped mip_mapped) {
// Step 1: Upload image and generate mips if necessary. If we will be applying
// a color-space conversion, don't generate mips yet, instead do it after
// conversion, in step 3.
bool add_mips_after_color_conversion =
(target_color_space && mip_mapped == skgpu::Mipmapped::kYes);
sk_sp<SkImage> uploaded_image = SkImages::TextureFromImage(
context->GrContext(), source_image,
add_mips_after_color_conversion ? skgpu::Mipmapped::kNo : mip_mapped);
// Step 2: Apply a color-space conversion if necessary.
if (uploaded_image && target_color_space) {
sk_sp<SkImage> pre_converted_image = uploaded_image;
uploaded_image = uploaded_image->makeColorSpace(context->GrContext(),
target_color_space);
if (uploaded_image != pre_converted_image)
DeleteSkImageAndPreventCaching(context, std::move(pre_converted_image));
}
// Step 3: If we had a colorspace conversion, we couldn't mipmap in step 1, so
// add mips here.
if (uploaded_image && add_mips_after_color_conversion) {
sk_sp<SkImage> pre_mipped_image = uploaded_image;
uploaded_image = SkImages::TextureFromImage(
context->GrContext(), uploaded_image, skgpu::Mipmapped::kYes);
DCHECK_NE(pre_mipped_image, uploaded_image);
DeleteSkImageAndPreventCaching(context, std::move(pre_mipped_image));
}
return uploaded_image;
}
// We use this below, instead of just a std::unique_ptr, so that we can run
// a Finch experiment to check the impact of not using discardable memory on the
// GPU decode path.
class HeapDiscardableMemory : public base::DiscardableMemory {
public:
explicit HeapDiscardableMemory(size_t size)
: memory_(new char[size]), size_(size) {}
~HeapDiscardableMemory() override = default;
[[nodiscard]] bool Lock() override {
// Locking only succeeds when we have not yet discarded the memory (i.e. if
// we have never called |Unlock()|.)
return memory_ != nullptr;
}
void Unlock() override { Discard(); }
void* data() const override {
DCHECK(memory_);
return static_cast<void*>(memory_.get());
}
void DiscardForTesting() override { Discard(); }
base::trace_event::MemoryAllocatorDump* CreateMemoryAllocatorDump(
const char* name,
base::trace_event::ProcessMemoryDump* pmd) const override {
auto* dump = pmd->CreateAllocatorDump(name);
dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
base::trace_event::MemoryAllocatorDump::kUnitsBytes, size_);
return dump;
}
private:
void Discard() {
memory_.reset();
size_ = 0;
}
std::unique_ptr<char[]> memory_;
size_t size_;
};
std::optional<SkYUVAPixmapInfo> GetYUVADecodeInfo(
const DrawImage& draw_image,
AuxImage aux_image,
const SkISize target_size,
const SkYUVAPixmapInfo::SupportedDataTypes& yuva_supported_data_types) {
SkYUVAPixmapInfo original_yuva_pixmap_info;
if (!draw_image.paint_image().IsYuv(yuva_supported_data_types, aux_image,
&original_yuva_pixmap_info)) {
return std::nullopt;
}
DCHECK(original_yuva_pixmap_info.isValid());
if (target_size != original_yuva_pixmap_info.yuvaInfo().dimensions()) {
// Always promote scaled images to 4:4:4 to avoid blurriness. By using the
// same dimensions for the UV planes, we can avoid scaling them completely
// or at least avoid scaling the width.
//
// E.g., consider an original (100, 100) image scaled to mips level 1 (50%),
// the Y plane size will be (50, 50), but unscaled UV planes are already
// (50, 50) for 4:2:0, and (50, 100) for 4:2:2, so leaving them completely
// unscaled or only scaling the height for 4:2:2 has superior quality.
SkYUVAInfo scaled_yuva_info =
original_yuva_pixmap_info.yuvaInfo()
.makeSubsampling(SkYUVAInfo::Subsampling::k444)
.makeDimensions(target_size);
return SkYUVAPixmapInfo(scaled_yuva_info,
original_yuva_pixmap_info.dataType(), nullptr);
}
// Original size decode.
return original_yuva_pixmap_info;
}
bool NeedsToneMapping(sk_sp<SkColorSpace> image_color_space, bool has_gainmap) {
if (has_gainmap) {
return true;
}
if (image_color_space &&
gfx::ColorSpace(*image_color_space).IsToneMappedByDefault()) {
return true;
}
return false;
}
} // namespace
// Extract the information to uniquely identify a DrawImage for the purposes of
// the |in_use_cache_|.
GpuImageDecodeCache::InUseCacheKey::InUseCacheKey(const DrawImage& draw_image,
int mip_level)
: frame_key(draw_image.frame_key()),
upload_scale_mip_level(mip_level),
filter_quality(CalculateDesiredFilterQuality(draw_image)),
target_color_space(draw_image.target_color_space()) {}
bool GpuImageDecodeCache::InUseCacheKey::operator==(
const InUseCacheKey& other) const {
return frame_key == other.frame_key &&
upload_scale_mip_level == other.upload_scale_mip_level &&
filter_quality == other.filter_quality &&
target_color_space == other.target_color_space;
}
size_t GpuImageDecodeCache::InUseCacheKeyHash::operator()(
const InUseCacheKey& cache_key) const {
return base::HashInts(
cache_key.target_color_space.GetHash(),
base::HashInts(
cache_key.frame_key.hash(),
base::HashInts(cache_key.mip_level(),
static_cast<int>(cache_key.filter_quality))));
}
GpuImageDecodeCache::InUseCacheEntry::InUseCacheEntry(
scoped_refptr<ImageData> image_data)
: image_data(std::move(image_data)) {}
GpuImageDecodeCache::InUseCacheEntry::InUseCacheEntry(const InUseCacheEntry&) =
default;
GpuImageDecodeCache::InUseCacheEntry::InUseCacheEntry(InUseCacheEntry&&) =
default;
GpuImageDecodeCache::InUseCacheEntry::~InUseCacheEntry() = default;
// Task which decodes an image and stores the result in discardable memory.
// This task does not use GPU resources and can be run on any thread.
class GpuImageDecodeTaskImpl : public TileTask {
public:
GpuImageDecodeTaskImpl(GpuImageDecodeCache* cache,
const DrawImage& draw_image,
const ImageDecodeCache::TracingInfo& tracing_info,
ImageDecodeCache::TaskType task_type,
ImageDecodeCache::ClientId client_id)
: TileTask(TileTask::SupportsConcurrentExecution::kYes,
TileTask::SupportsBackgroundThreadPriority::kNo),
cache_(cache),
image_(draw_image),
tracing_info_(tracing_info),
task_type_(task_type),
client_id_(client_id) {
DCHECK(!SkipImage(draw_image));
}
GpuImageDecodeTaskImpl(const GpuImageDecodeTaskImpl&) = delete;
GpuImageDecodeTaskImpl& operator=(const GpuImageDecodeTaskImpl&) = delete;
// Overridden from Task:
void RunOnWorkerThread() override {
TRACE_EVENT2("cc", "GpuImageDecodeTaskImpl::RunOnWorkerThread", "mode",
"gpu", "source_prepare_tiles_id",
tracing_info_.prepare_tiles_id);
const auto* image_metadata = image_.paint_image().GetImageHeaderMetadata();
const ImageType image_type =
image_metadata ? image_metadata->image_type : ImageType::kInvalid;
devtools_instrumentation::ScopedImageDecodeTask image_decode_task(
&image_.paint_image(),
devtools_instrumentation::ScopedImageDecodeTask::DecodeType::kGpu,
ImageDecodeCache::ToScopedTaskType(task_type_),
ImageDecodeCache::ToScopedImageType(image_type));
cache_->DecodeImageInTask(image_, task_type_);
}
// Overridden from TileTask:
bool IsRasterTask() const override {
return task_type_ == ImageDecodeCache::TaskType::kInRaster;
}
void OnTaskCompleted() override {
cache_->OnImageDecodeTaskCompleted(image_, task_type_, client_id_);
}
// Overridden from TileTask:
bool TaskContainsLCPCandidateImages() const override {
if (!HasCompleted() && image_.paint_image().may_be_lcp_candidate())
return true;
return TileTask::TaskContainsLCPCandidateImages();
}
protected:
~GpuImageDecodeTaskImpl() override = default;
private:
raw_ptr<GpuImageDecodeCache, DanglingUntriaged> cache_;
DrawImage image_;
const ImageDecodeCache::TracingInfo tracing_info_;
const ImageDecodeCache::TaskType task_type_;
const ImageDecodeCache::ClientId client_id_;
};
// Task which creates an image from decoded data. Typically this involves
// uploading data to the GPU, which requires this task be run on the non-
// concurrent thread.
class ImageUploadTaskImpl : public TileTask {
public:
ImageUploadTaskImpl(GpuImageDecodeCache* cache,
const DrawImage& draw_image,
scoped_refptr<TileTask> decode_dependency,
const ImageDecodeCache::TracingInfo& tracing_info,
ImageDecodeCache::ClientId client_id)
: TileTask(TileTask::SupportsConcurrentExecution::kNo,
TileTask::SupportsBackgroundThreadPriority::kYes),
cache_(cache),
image_(draw_image),
tracing_info_(tracing_info),
client_id_(client_id) {
DCHECK(!SkipImage(draw_image));
// If an image is already decoded and locked, we will not generate a
// decode task.
if (decode_dependency)
dependencies_.push_back(std::move(decode_dependency));
}
ImageUploadTaskImpl(const ImageUploadTaskImpl&) = delete;
ImageUploadTaskImpl& operator=(const ImageUploadTaskImpl&) = delete;
// Override from Task:
void RunOnWorkerThread() override {
TRACE_EVENT2("cc", "ImageUploadTaskImpl::RunOnWorkerThread", "mode", "gpu",
"source_prepare_tiles_id", tracing_info_.prepare_tiles_id);
const auto* image_metadata = image_.paint_image().GetImageHeaderMetadata();
const ImageType image_type =
image_metadata ? image_metadata->image_type : ImageType::kInvalid;
devtools_instrumentation::ScopedImageUploadTask image_upload_task(
&image_.paint_image(), ImageDecodeCache::ToScopedImageType(image_type));
cache_->UploadImageInTask(image_);
}
// Overridden from TileTask:
void OnTaskCompleted() override {
cache_->OnImageUploadTaskCompleted(image_, client_id_);
}
protected:
~ImageUploadTaskImpl() override = default;
private:
raw_ptr<GpuImageDecodeCache, DanglingUntriaged> cache_;
DrawImage image_;
const ImageDecodeCache::TracingInfo tracing_info_;
const ImageDecodeCache::ClientId client_id_;
};
////////////////////////////////////////////////////////////////////////////////
// GpuImageDecodeCache::ImageDataBase
GpuImageDecodeCache::ImageDataBase::ImageDataBase() = default;
GpuImageDecodeCache::ImageDataBase::~ImageDataBase() = default;
void GpuImageDecodeCache::ImageDataBase::OnSetLockedData(bool out_of_raster) {
DCHECK_EQ(usage_stats_.lock_count, 1);
DCHECK(!is_locked_);
usage_stats_.first_lock_out_of_raster = out_of_raster;
is_locked_ = true;
}
void GpuImageDecodeCache::ImageDataBase::OnResetData() {
is_locked_ = false;
usage_stats_ = UsageStats();
}
void GpuImageDecodeCache::ImageDataBase::OnLock() {
DCHECK(!is_locked_);
is_locked_ = true;
++usage_stats_.lock_count;
}
void GpuImageDecodeCache::ImageDataBase::OnUnlock() {
DCHECK(is_locked_);
is_locked_ = false;
if (usage_stats_.lock_count == 1)
usage_stats_.first_lock_wasted = !usage_stats_.used;
}
int GpuImageDecodeCache::ImageDataBase::UsageState() const {
ImageUsageState state = IMAGE_USAGE_STATE_WASTED_ONCE;
if (usage_stats_.lock_count == 1) {
if (usage_stats_.used)
state = IMAGE_USAGE_STATE_USED_ONCE;
else
state = IMAGE_USAGE_STATE_WASTED_ONCE;
} else {
if (usage_stats_.used)
state = IMAGE_USAGE_STATE_USED_RELOCKED;
else
state = IMAGE_USAGE_STATE_WASTED_RELOCKED;
}
return state;
}
////////////////////////////////////////////////////////////////////////////////
// GpuImageDecodeCache::DecodedAuxImageData
GpuImageDecodeCache::DecodedAuxImageData::DecodedAuxImageData() = default;
GpuImageDecodeCache::DecodedAuxImageData::DecodedAuxImageData(
const SkPixmap& rgba_pixmap,
std::unique_ptr<base::DiscardableMemory> in_data) {
data = std::move(in_data);
auto release_proc = [](const void*, void*) {};
images[0] = SkImages::RasterFromPixmap(rgba_pixmap, release_proc, nullptr);
pixmaps[0] = rgba_pixmap;
ValidateImagesMatchPixmaps();
}
GpuImageDecodeCache::DecodedAuxImageData::DecodedAuxImageData(
const SkYUVAPixmaps& yuva_pixmaps,
std::unique_ptr<base::DiscardableMemory> in_data) {
data = std::move(in_data);
auto release_proc = [](const void*, void*) {};
for (int plane = 0; plane < yuva_pixmaps.numPlanes(); ++plane) {
images[plane] = SkImages::RasterFromPixmap(yuva_pixmaps.plane(plane),
release_proc, nullptr);
pixmaps[plane] = yuva_pixmaps.plane(plane);
}
ValidateImagesMatchPixmaps();
}
GpuImageDecodeCache::DecodedAuxImageData::DecodedAuxImageData(
DecodedAuxImageData&& other)
: data(std::move(other.data)) {
for (int plane = 0; plane < SkYUVAInfo::kMaxPlanes; ++plane) {
images[plane] = std::move(other.images[plane]);
pixmaps[plane] = other.pixmaps[plane];
}
ValidateImagesMatchPixmaps();
other.ResetData();
}
GpuImageDecodeCache::DecodedAuxImageData&
GpuImageDecodeCache::DecodedAuxImageData::operator=(
DecodedAuxImageData&& other) {
data = std::move(other.data);
other.data = nullptr;
for (int plane = 0; plane < SkYUVAInfo::kMaxPlanes; ++plane) {
images[plane] = std::move(other.images[plane]);
pixmaps[plane] = other.pixmaps[plane];
other.images[plane] = nullptr;
other.pixmaps[plane] = SkPixmap();
}
ValidateImagesMatchPixmaps();
return *this;
}
GpuImageDecodeCache::DecodedAuxImageData::~DecodedAuxImageData() = default;
bool GpuImageDecodeCache::DecodedAuxImageData::IsEmpty() const {
ValidateImagesMatchPixmaps();
// If `data` is present, then there must be at least one image and pixmap.
if (data) {
DCHECK(images[0]);
return false;
}
// A bitmap-backed DecodedAuxImageData will have an `images` and `pixmaps`,
// but no data.
if (images[0]) {
for (int i = 1; i < SkYUVAInfo::kMaxPlanes; ++i) {
DCHECK(!images[i]);
}
return false;
}
return true;
}
void GpuImageDecodeCache::DecodedAuxImageData::ResetData() {
ValidateImagesMatchPixmaps();
data = nullptr;
for (auto& image : images) {
image = nullptr;
}
for (auto& pixmap : pixmaps) {
pixmap = SkPixmap();
}
ValidateImagesMatchPixmaps();
DCHECK(IsEmpty());
}
////////////////////////////////////////////////////////////////////////////////
// GpuImageDecodeCache::DecodedImageData
GpuImageDecodeCache::DecodedImageData::DecodedImageData(
bool is_bitmap_backed,
bool can_do_hardware_accelerated_decode,
bool do_hardware_accelerated_decode)
: is_bitmap_backed_(is_bitmap_backed),
can_do_hardware_accelerated_decode_(can_do_hardware_accelerated_decode),
do_hardware_accelerated_decode_(do_hardware_accelerated_decode) {
for (const auto& aux_image_data : aux_image_data_) {
aux_image_data.ValidateImagesMatchPixmaps();
}
}
GpuImageDecodeCache::DecodedImageData::~DecodedImageData() {
for (const auto& aux_image_data : aux_image_data_) {
aux_image_data.ValidateImagesMatchPixmaps();
}
ResetData();
}
bool GpuImageDecodeCache::DecodedImageData::Lock() {
DCHECK(!is_bitmap_backed_);
for (const auto& aux_image_data : aux_image_data_) {
aux_image_data.ValidateImagesMatchPixmaps();
}
bool did_lock = true;
std::array<bool, kAuxImageCount> did_lock_image = {false, false};
for (size_t i = 0; i < kAuxImageCount; ++i) {
if (!aux_image_data_[i].data) {
continue;
}
did_lock_image[i] = aux_image_data_[i].data->Lock();
if (did_lock_image[i]) {
continue;
}
// If we fail to lock an image, unlock all images that we locked in this
// loop, and break out of the loop.
for (size_t j = 0; j < i; ++j) {
if (did_lock_image[j]) {
aux_image_data_[j].data->Unlock();
}
}
did_lock = false;
break;
}
if (did_lock) {
OnLock();
}
return is_locked_;
}
void GpuImageDecodeCache::DecodedImageData::Unlock() {
for (auto& aux_image_data : aux_image_data_) {
if (aux_image_data.data) {
aux_image_data.data->Unlock();
}
}
OnUnlock();
}
void GpuImageDecodeCache::DecodedImageData::SetLockedData(
base::span<DecodedAuxImageData, kAuxImageCount> aux_image_data,
bool out_of_raster) {
for (size_t i = 0; i < kAuxImageCount; ++i) {
DCHECK(aux_image_data_[i].IsEmpty());
aux_image_data[i].ValidateImagesMatchPixmaps();
aux_image_data_[i] = std::move(aux_image_data[i]);
}
// A default image must have been set.
DCHECK(!aux_image_data_[kAuxImageIndexDefault].IsEmpty());
for (size_t i = 0; i < kAuxImageCount; ++i) {
aux_image_data_[i].ValidateImagesMatchPixmaps();
}
OnSetLockedData(out_of_raster);
}
void GpuImageDecodeCache::DecodedImageData::SetBitmapImage(
sk_sp<SkImage> image) {
DCHECK(is_bitmap_backed_);
for (const auto& aux_image_data : aux_image_data_) {
DCHECK(aux_image_data.IsEmpty());
}
aux_image_data_[kAuxImageIndexDefault].images[0] = std::move(image);
aux_image_data_[kAuxImageIndexDefault].images[0]->peekPixels(
&aux_image_data_[kAuxImageIndexDefault].pixmaps[0]);
aux_image_data_[kAuxImageIndexDefault].ValidateImagesMatchPixmaps();
for (const auto& aux_image_data : aux_image_data_) {
aux_image_data.ValidateImagesMatchPixmaps();
}
OnLock();
}
void GpuImageDecodeCache::DecodedImageData::ResetBitmapImage() {
DCHECK(is_bitmap_backed_);
// Bitmaps only ever have a single SkImage.
aux_image_data_[0].ResetData();
for (auto& aux_image_data : aux_image_data_) {
DCHECK(aux_image_data.IsEmpty());
}
OnUnlock();
}
void GpuImageDecodeCache::ImageData::RecordSpeculativeDecodeMatch(
int mip_level) {
if (speculative_decode_usage_stats_.has_value()) {
speculative_decode_usage_stats_->min_raster_mip_level = std::min(
speculative_decode_usage_stats_->min_raster_mip_level, mip_level);
}
}
void GpuImageDecodeCache::ImageData::
RecordSpeculativeDecodeRasterTaskTakeover() {
if (speculative_decode_usage_stats_.has_value()) {
speculative_decode_usage_stats_->raster_task_takeover = true;
TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("loading"),
"SpeculativeImageDecodeRasterTaskTakeover",
TRACE_EVENT_SCOPE_THREAD, "image_id", paint_image_id);
}
}
void GpuImageDecodeCache::DecodedImageData::ResetData() {
if (aux_image_data_[kAuxImageIndexDefault].data) {
ReportUsageStats();
}
for (auto& aux_image_data : aux_image_data_) {
aux_image_data.ResetData();
}
OnResetData();
}
void GpuImageDecodeCache::DecodedImageData::ReportUsageStats() const {
if (do_hardware_accelerated_decode_) {
// When doing hardware decode acceleration, we don't want to record usage
// stats for the decode data. The reason is that the decode is done in the
// GPU process and the decoded result stays there. On the renderer side, we
// don't use or lock the decoded data, so reporting this status would
// incorrectly distort the software decoding statistics.
return;
}
UMA_HISTOGRAM_ENUMERATION("Renderer4.GpuImageDecodeState",
static_cast<ImageUsageState>(UsageState()),
IMAGE_USAGE_STATE_COUNT);
UMA_HISTOGRAM_BOOLEAN("Renderer4.GpuImageDecodeState.FirstLockWasted",
usage_stats_.first_lock_wasted);
if (usage_stats_.first_lock_out_of_raster)
UMA_HISTOGRAM_BOOLEAN(
"Renderer4.GpuImageDecodeState.FirstLockWasted.OutOfRaster",
usage_stats_.first_lock_wasted);
}
////////////////////////////////////////////////////////////////////////////////
// GpuImageDecodeCache::UploadedImageData
GpuImageDecodeCache::UploadedImageData::UploadedImageData() = default;
GpuImageDecodeCache::UploadedImageData::~UploadedImageData() {
DCHECK(!image());
DCHECK(!image_yuv_planes_);
DCHECK(!gl_plane_ids_);
}
void GpuImageDecodeCache::UploadedImageData::SetImage(
sk_sp<SkImage> image,
bool represents_yuv_image) {
DCHECK(mode_ == Mode::kNone);
DCHECK(!image_);
DCHECK(!transfer_cache_id_);
DCHECK(image);
mode_ = Mode::kSkImage;
image_ = std::move(image);
// Calling isTexturedBacked() on the YUV SkImage would flatten it to RGB.
if (!represents_yuv_image && image_->isTextureBacked()) {
gl_id_ = GlIdFromSkImage(image_.get());
} else {
gl_id_ = 0;
}
OnSetLockedData(false /* out_of_raster */);
}
void GpuImageDecodeCache::UploadedImageData::SetYuvImage(
sk_sp<SkImage> y_image_input,
sk_sp<SkImage> u_image_input,
sk_sp<SkImage> v_image_input) {
DCHECK(!image_yuv_planes_);
DCHECK(!gl_plane_ids_);
DCHECK(!transfer_cache_id_);
DCHECK(y_image_input);
DCHECK(u_image_input);
DCHECK(v_image_input);
mode_ = Mode::kSkImage;
image_yuv_planes_ = std::array<sk_sp<SkImage>, kNumYUVPlanes>();
image_yuv_planes_->at(static_cast<size_t>(YUVIndex::kY)) =
std::move(y_image_input);
image_yuv_planes_->at(static_cast<size_t>(YUVIndex::kU)) =
std::move(u_image_input);
image_yuv_planes_->at(static_cast<size_t>(YUVIndex::kV)) =
std::move(v_image_input);
if (y_image()->isTextureBacked() && u_image()->isTextureBacked() &&
v_image()->isTextureBacked()) {
gl_plane_ids_ = std::array<GrGLuint, kNumYUVPlanes>();
gl_plane_ids_->at(static_cast<size_t>(YUVIndex::kY)) =
GlIdFromSkImage(y_image().get());
gl_plane_ids_->at(static_cast<size_t>(YUVIndex::kU)) =
GlIdFromSkImage(u_image().get());
gl_plane_ids_->at(static_cast<size_t>(YUVIndex::kV)) =
GlIdFromSkImage(v_image().get());
}
}
void GpuImageDecodeCache::UploadedImageData::SetTransferCacheId(uint32_t id) {
DCHECK(mode_ == Mode::kNone);
DCHECK(!image_);
DCHECK(!transfer_cache_id_);
mode_ = Mode::kTransferCache;
transfer_cache_id_ = id;
OnSetLockedData(false /* out_of_raster */);
}
void GpuImageDecodeCache::UploadedImageData::Reset() {
if (mode_ != Mode::kNone)
ReportUsageStats();
mode_ = Mode::kNone;
image_ = nullptr;
image_yuv_planes_.reset();
gl_plane_ids_.reset();
gl_id_ = 0;
is_alpha_ = false;
transfer_cache_id_.reset();
OnResetData();
}
void GpuImageDecodeCache::UploadedImageData::ReportUsageStats() const {
UMA_HISTOGRAM_ENUMERATION("Renderer4.GpuImageUploadState",
static_cast<ImageUsageState>(UsageState()),
IMAGE_USAGE_STATE_COUNT);
UMA_HISTOGRAM_BOOLEAN("Renderer4.GpuImageUploadState.FirstLockWasted",
usage_stats_.first_lock_wasted);
}
////////////////////////////////////////////////////////////////////////////////
// GpuImageDecodeCache::ImageInfo
GpuImageDecodeCache::ImageInfo::ImageInfo() = default;
GpuImageDecodeCache::ImageInfo::ImageInfo(const SkImageInfo& rgba)
: rgba(rgba), size(rgba.computeMinByteSize()) {
DCHECK(!SkImageInfo::ByteSizeOverflowed(size));
}
GpuImageDecodeCache::ImageInfo::ImageInfo(const SkYUVAPixmapInfo& yuva)
: yuva(yuva), size(yuva.computeTotalBytes()) {
DCHECK(!SkImageInfo::ByteSizeOverflowed(size));
}
GpuImageDecodeCache::ImageInfo::ImageInfo(const ImageInfo&) = default;
GpuImageDecodeCache::ImageInfo& GpuImageDecodeCache::ImageInfo::operator=(
const ImageInfo&) = default;
GpuImageDecodeCache::ImageInfo::~ImageInfo() = default;
////////////////////////////////////////////////////////////////////////////////
// GpuImageDecodeCache::ImageData
GpuImageDecodeCache::ImageData::ImageData(
PaintImage::Id paint_image_id_param,
DecodedDataMode mode,
const gfx::ColorSpace& target_color_space,
PaintFlags::FilterQuality quality,
int upload_scale_mip_level_param,
bool needs_mips,
bool is_bitmap_backed,
bool can_do_hardware_accelerated_decode,
bool do_hardware_accelerated_decode,
bool speculative_decode,
base::span<ImageInfo, kAuxImageCount> image_info)
: paint_image_id(paint_image_id_param),
mode(mode),
target_color_space(target_color_space),
quality(quality),
upload_scale_mip_level(upload_scale_mip_level_param),
needs_mips(needs_mips),
is_bitmap_backed(is_bitmap_backed),
info(std::move(image_info[kAuxImageIndexDefault])),
gainmap_info(std::move(image_info[kAuxImageIndexGainmap])),
decode(is_bitmap_backed,
can_do_hardware_accelerated_decode,
do_hardware_accelerated_decode) {
if (info.yuva.has_value()) {
// This is the only plane config supported by non-OOP raster.
DCHECK_EQ(info.yuva->yuvaInfo().planeConfig(),
SkYUVAInfo::PlaneConfig::kY_U_V);
}
if (base::FeatureList::IsEnabled(features::kInitImageDecodeLastUseTime)) {
last_use = base::TimeTicks::Now();
}
if (speculative_decode) {
speculative_decode_usage_stats_.emplace();
speculative_decode_usage_stats_->speculative_decode_mip_level =
upload_scale_mip_level;
TRACE_EVENT_INSTANT2(TRACE_DISABLED_BY_DEFAULT("loading"),
"SpeculativeImageDecodeTaskCreated",
TRACE_EVENT_SCOPE_THREAD, "image_id", paint_image_id,
"speculative_mip_level", upload_scale_mip_level);
}
}
GpuImageDecodeCache::ImageData::~ImageData() {
// We should never delete ImageData while it is in use or before it has been
// cleaned up.
DCHECK_EQ(0u, upload.ref_count);
DCHECK_EQ(0u, decode.ref_count);
DCHECK_EQ(false, decode.is_locked());
// This should always be cleaned up before deleting the image, as it needs to
// be freed with the GL context lock held.
DCHECK(!HasUploadedData());
if (IsSpeculativeDecode() &&
speculative_decode_usage_stats_->min_raster_mip_level == INT_MAX) {
TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("loading"),
"SpeculativeImageDecodeUnused",
TRACE_EVENT_SCOPE_THREAD, "image_id", paint_image_id);
}
speculative_decode_usage_stats_.reset();
}
bool GpuImageDecodeCache::ImageData::IsGpuOrTransferCache() const {
return mode == DecodedDataMode::kGpu ||
mode == DecodedDataMode::kTransferCache;
}
bool GpuImageDecodeCache::ImageData::HasUploadedData() const {
switch (mode) {
case DecodedDataMode::kGpu:
// upload.image() stores the result of MakeFromYUVATextures
if (upload.image()) {
// TODO(crbug.com/41432265): Be smarter about being able to re-upload
// planes selectively if only some get deleted from under us.
DCHECK(!info.yuva.has_value() || upload.has_yuv_planes());
return true;
}
return false;
case DecodedDataMode::kTransferCache:
return !!upload.transfer_cache_id();
case DecodedDataMode::kCpu:
return false;
}
return false;
}
void GpuImageDecodeCache::ImageData::ValidateBudgeted() const {
// If the image is budgeted, it must be refed.
DCHECK(is_budgeted);
DCHECK_GT(upload.ref_count, 0u);
}
size_t GpuImageDecodeCache::ImageData::GetTotalSize() const {
size_t size = 0;
for (const auto aux_image : kAllAuxImages) {
const auto& aux_image_info = GetImageInfo(aux_image);
size += aux_image_info.size;
}
return size;
}
////////////////////////////////////////////////////////////////////////////////
// GpuImageDecodeCache
// static
GrGLuint GpuImageDecodeCache::GlIdFromSkImage(const SkImage* image) {
DCHECK(image->isTextureBacked());
GrBackendTexture backend_texture;
if (!SkImages::GetBackendTextureFromImage(
image, &backend_texture, true /* flushPendingGrContextIO */)) {
return 0;
}
GrGLTextureInfo info;
if (!GrBackendTextures::GetGLTextureInfo(backend_texture, &info)) {
return 0;
}
return info.fID;
}
GpuImageDecodeCache::GpuImageDecodeCache(
viz::RasterContextProvider* context,
bool use_transfer_cache,
SkColorType color_type,
size_t max_working_set_bytes,
int max_texture_size,
RasterDarkModeFilter* const dark_mode_filter)
: color_type_(color_type),
use_transfer_cache_(use_transfer_cache),
context_(context),
max_texture_size_(max_texture_size),
generator_client_id_(PaintImage::GetNextGeneratorClientId()),
enable_clipped_image_scaling_(
base::CommandLine::ForCurrentProcess()->HasSwitch(
switches::kEnableClippedImageScaling)),
persistent_cache_(PersistentCache::NO_AUTO_EVICT),
max_working_set_bytes_(max_working_set_bytes),
max_working_set_items_(kMaxItemsInWorkingSet),
dark_mode_filter_(dark_mode_filter) {
if (base::SequencedTaskRunner::HasCurrentDefault()) {
task_runner_ = base::SequencedTaskRunner::GetCurrentDefault();
}
DCHECK_NE(generator_client_id_, PaintImage::kDefaultGeneratorClientId);
// Note that to compute |allow_accelerated_jpeg_decodes_| and
// |allow_accelerated_webp_decodes_|, the last thing we check is the feature
// flag. That's because we want to ensure that we're in OOP-R mode and the
// hardware decoder supports the image type so that finch experiments
// involving hardware decode acceleration only count users in that
// population (both in the 'control' and the 'enabled' groups).
allow_accelerated_jpeg_decodes_ =
use_transfer_cache &&
context_->ContextSupport()->IsJpegDecodeAccelerationSupported() &&
base::FeatureList::IsEnabled(features::kVaapiJpegImageDecodeAcceleration);
allow_accelerated_webp_decodes_ =
use_transfer_cache &&
context_->ContextSupport()->IsWebPDecodeAccelerationSupported() &&
base::FeatureList::IsEnabled(features::kVaapiWebPImageDecodeAcceleration);
{
// TODO(crbug.com/40141944): We shouldn't need to lock to get capabilities.
std::optional<viz::RasterContextProvider::ScopedRasterContextLock>
context_lock;
if (context_->GetLock())
context_lock.emplace(context_);
const auto& caps = context_->ContextCapabilities();
yuva_supported_data_types_.enableDataType(
SkYUVAPixmapInfo::DataType::kUnorm8, 1);
if (caps.texture_norm16) {
yuva_supported_data_types_.enableDataType(
SkYUVAPixmapInfo::DataType::kUnorm16, 1);
}
if (caps.texture_half_float_linear) {
yuva_supported_data_types_.enableDataType(
SkYUVAPixmapInfo::DataType::kFloat16, 1);
}
}
// In certain cases, SingleThreadTaskRunner::CurrentDefaultHandle isn't set
// (Android Webview). Don't register a dump provider in these cases.
if (base::SingleThreadTaskRunner::HasCurrentDefault()) {
base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
this, "cc::GpuImageDecodeCache",
base::SingleThreadTaskRunner::GetCurrentDefault());
}
memory_pressure_listener_ = std::make_unique<base::MemoryPressureListener>(
FROM_HERE, base::BindRepeating(&GpuImageDecodeCache::OnMemoryPressure,
base::Unretained(this)));
TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::DarkModeFilter", "dark_mode_filter",
static_cast<void*>(dark_mode_filter_));
}
GpuImageDecodeCache::~GpuImageDecodeCache() {
// Debugging crbug.com/650234.
CHECK_EQ(0u, in_use_cache_.size());
// SetShouldAggressivelyFreeResources will zero our limits and free all
// outstanding image memory.
SetShouldAggressivelyFreeResources(true);
// It is safe to unregister, even if we didn't register in the constructor.
base::trace_event::MemoryDumpManager::GetInstance()->UnregisterDumpProvider(
this);
}
ImageDecodeCache::TaskResult GpuImageDecodeCache::GetTaskForImageAndRef(
ClientId client_id,
const DrawImage& draw_image,
const TracingInfo& tracing_info) {
return GetTaskForImageAndRefInternal(client_id, draw_image, tracing_info,
TaskType::kInRaster,
/*speculative*/ false);
}
ImageDecodeCache::TaskResult
GpuImageDecodeCache::GetOutOfRasterDecodeTaskForImageAndRef(
ClientId client_id,
const DrawImage& draw_image,
bool speculative) {
return GetTaskForImageAndRefInternal(client_id, draw_image,
TracingInfo(0, TilePriority::NOW),
TaskType::kOutOfRaster, speculative);
}
ImageDecodeCache::TaskResult GpuImageDecodeCache::GetTaskForImageAndRefInternal(
ClientId client_id,
const DrawImage& draw_image,
const TracingInfo& tracing_info,
TaskType task_type,
bool speculative) {
DCHECK_GE(client_id, kDefaultClientId);
TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::GetTaskForImageAndRef", "client_id",
client_id);
if (SkipImage(draw_image)) {
return TaskResult(false /* need_unref */, false /* is_at_raster_decode */,
false /* can_do_hardware_accelerated_decode */);
}
base::AutoLock locker(lock_);
const InUseCacheKey cache_key = InUseCacheKeyFromDrawImage(draw_image);
ImageData* image_data = GetImageDataForDrawImage(
draw_image, cache_key, task_type == TaskType::kInRaster);
scoped_refptr<ImageData> new_data;
if (!image_data) {
// We need an ImageData, create one now. Note that hardware decode
// acceleration is allowed only in the TaskType::kInRaster case. This
// prevents the img.decode() and checkerboard images paths from going
// through hardware decode acceleration.
new_data = CreateImageData(
draw_image,
task_type == TaskType::kInRaster /* allow_hardware_decode */,
speculative);
image_data = new_data.get();
} else if (image_data->decode.decode_failure) {
// We have already tried and failed to decode this image, so just return.
return TaskResult(false /* need_unref */, false /* is_at_raster_decode */,
image_data->decode.can_do_hardware_accelerated_decode());
} else if (task_type == TaskType::kInRaster &&
!image_data->upload.task_map.empty() &&
!image_data->HasUploadedData()) {
// If there are pending upload tasks and we haven't had data uploaded yet,
// another task can be created.
// We had an existing upload task, ref the image and return the task.
image_data->ValidateBudgeted();
RefImage(draw_image, cache_key);
// If we had a task for the same image and the |client_id|, refptr will be
// returned. Otherwise, create a new task for a new client and the same
// image and return it.
scoped_refptr<TileTask> task =
GetTaskFromMapForClientId(client_id, image_data->upload.task_map);
if (!task) {
// Given it's a new task for this |client_id|, the image must be reffed
// before creating a task - this ref is owned by the caller, and it is
// their responsibility to release it by calling UnrefImage.
RefImage(draw_image, cache_key);
task = base::MakeRefCounted<ImageUploadTaskImpl>(
this, draw_image,
GetImageDecodeTaskAndRef(client_id, draw_image, tracing_info,
task_type),
tracing_info, client_id);
image_data->upload.task_map[client_id] = task;
}
DCHECK(task);
return TaskResult(task,
image_data->decode.can_do_hardware_accelerated_decode());
} else if (task_type == TaskType::kOutOfRaster &&
!image_data->decode.stand_alone_task_map.empty() &&
!image_data->HasUploadedData()) {
// If there are pending decode tasks and we haven't had decoded data yet,
// another task can be created.
// We had an existing out of raster task, ref the image and return the task.
image_data->ValidateBudgeted();
RefImage(draw_image, cache_key);
// If we had a task for the same image and the |client_id|, refptr will be
// returned. Otherwise, create a new task for a new client and the same
// image and return it.
scoped_refptr<TileTask> task = GetTaskFromMapForClientId(
client_id, image_data->decode.stand_alone_task_map);
if (!task) {
// Even though it's a new task for this client, we don't need to have
// additional reference here (which the caller is responsible for) as
// GetImageDecodeTaskAndRef does that for us.
task = GetImageDecodeTaskAndRef(client_id, draw_image, tracing_info,
task_type);
#if DCHECK_IS_ON()
scoped_refptr<TileTask> found_task = GetTaskFromMapForClientId(
client_id, image_data->decode.stand_alone_task_map);
CHECK_EQ(task, found_task);
#endif
}
DCHECK(!image_data->decode.can_do_hardware_accelerated_decode());
// This will be null if the image was already decoded.
if (task)
return TaskResult(task, /*can_do_hardware_accelerated_decode=*/false);
return TaskResult(/*need_unref=*/true, /*is_at_raster_decode=*/false,
/*can_do_hardware_accelerated_decode=*/false);
}
// Ensure that the image we're about to decode/upload will fit in memory, if
// not already budgeted.
if (!image_data->is_budgeted && !EnsureCapacity(image_data->GetTotalSize())) {
// Image will not fit, do an at-raster decode.
return TaskResult(false /* need_unref */, true /* is_at_raster_decode */,
image_data->decode.can_do_hardware_accelerated_decode());
}
// If we had to create new image data, add it to our map now that we know it
// will fit.
if (new_data)
AddToPersistentCache(draw_image, std::move(new_data));
// Ref the image before creating a task - this ref is owned by the caller, and
// it is their responsibility to release it by calling UnrefImage.
RefImage(draw_image, cache_key);
// If we already have an image and it is locked (or lock-able), just return
// that. The image must be budgeted before we attempt to lock it.
DCHECK(image_data->is_budgeted);
if (image_data->HasUploadedData() &&
TryLockImage(HaveContextLock::kNo, draw_image, image_data)) {
return TaskResult(true /* need_unref */, false /* is_at_raster_decode */,
image_data->decode.can_do_hardware_accelerated_decode());
}
scoped_refptr<TileTask> task;
if (task_type == TaskType::kInRaster) {
// Ref image and create a upload and decode tasks. We will release this ref
// in UploadTaskCompleted.
RefImage(draw_image, cache_key);
task = base::MakeRefCounted<ImageUploadTaskImpl>(
this, draw_image,
GetImageDecodeTaskAndRef(client_id, draw_image, tracing_info,
task_type),
tracing_info, client_id);
image_data->upload.task_map[client_id] = task;
} else {
task = GetImageDecodeTaskAndRef(client_id, draw_image, tracing_info,
task_type);
}
if (task) {
return TaskResult(task,
image_data->decode.can_do_hardware_accelerated_decode());
}
return TaskResult(true /* needs_unref */, false /* is_at_raster_decode */,
image_data->decode.can_do_hardware_accelerated_decode());
}
void GpuImageDecodeCache::UnrefImage(const DrawImage& draw_image) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::UnrefImage");
base::AutoLock lock(lock_);
UnrefImageInternal(draw_image, InUseCacheKeyFromDrawImage(draw_image));
}
bool GpuImageDecodeCache::UseCacheForDrawImage(
const DrawImage& draw_image) const {
if (draw_image.paint_image().IsTextureBacked())
return false;
return true;
}
DecodedDrawImage GpuImageDecodeCache::GetDecodedImageForDraw(
const DrawImage& draw_image) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::GetDecodedImageForDraw");
// We are being called during raster. The context lock must already be
// acquired by the caller.
CheckContextLockAcquiredIfNecessary();
// If we're skipping the image, then the filter quality doesn't matter.
if (SkipImage(draw_image))
return DecodedDrawImage();
base::AutoLock lock(lock_);
const InUseCacheKey cache_key = InUseCacheKeyFromDrawImage(draw_image);
ImageData* image_data = GetImageDataForDrawImage(draw_image, cache_key, true);
if (!image_data) {
// We didn't find the image, create a new entry.
auto data = CreateImageData(draw_image, true /* allow_hardware_decode */,
false /* speculative_decode */);
image_data = data.get();
AddToPersistentCache(draw_image, std::move(data));
}
// Ref the image and decode so that they stay alive while we are
// decoding/uploading.
// Note that refing the image will attempt to budget the image, if not already
// done.
RefImage(draw_image, cache_key);
RefImageDecode(draw_image, cache_key);
// We may or may not need to decode and upload the image we've found, the
// following functions early-out to if we already decoded.
DecodeImageAndGenerateDarkModeFilterIfNecessary(draw_image, image_data,
TaskType::kInRaster);
UploadImageIfNecessary(draw_image, image_data);
// Unref the image decode, but not the image. The image ref will be released
// in DrawWithImageFinished.
UnrefImageDecode(draw_image, cache_key);
sk_sp<ColorFilter> dark_mode_color_filter = nullptr;
if (draw_image.use_dark_mode()) {
auto it = image_data->decode.dark_mode_color_filter_cache.find(
draw_image.src_rect());
if (it != image_data->decode.dark_mode_color_filter_cache.end())
dark_mode_color_filter = it->second;
}
if (image_data->mode == DecodedDataMode::kTransferCache) {
DCHECK(use_transfer_cache_);
auto id = image_data->upload.transfer_cache_id();
if (id)
image_data->upload.mark_used();
DCHECK(id || image_data->decode.decode_failure);
SkSize scale_factor = CalculateScaleFactorForMipLevel(
draw_image, AuxImage::kDefault, image_data->upload_scale_mip_level);
DecodedDrawImage decoded_draw_image(
id, std::move(dark_mode_color_filter), SkSize(), scale_factor,
CalculateDesiredFilterQuality(draw_image), image_data->needs_mips,
image_data->is_budgeted);
return decoded_draw_image;
} else {
DCHECK(!use_transfer_cache_);
sk_sp<SkImage> image = image_data->upload.image();
if (image)
image_data->upload.mark_used();
DCHECK(image || image_data->decode.decode_failure);
SkSize scale_factor = CalculateScaleFactorForMipLevel(
draw_image, AuxImage::kDefault, image_data->upload_scale_mip_level);
DecodedDrawImage decoded_draw_image(
std::move(image), std::move(dark_mode_color_filter), SkSize(),
scale_factor, CalculateDesiredFilterQuality(draw_image),
image_data->is_budgeted);
return decoded_draw_image;
}
}
void GpuImageDecodeCache::DrawWithImageFinished(
const DrawImage& draw_image,
const DecodedDrawImage& decoded_draw_image) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::DrawWithImageFinished");
// Release decoded_draw_image to ensure the referenced SkImage can be
// cleaned up below.
{ auto delete_decoded_draw_image = std::move(decoded_draw_image); }
// We are being called during raster. The context lock must already be
// acquired by the caller.
CheckContextLockAcquiredIfNecessary();
if (SkipImage(draw_image))
return;
base::AutoLock lock(lock_);
UnrefImageInternal(draw_image, InUseCacheKeyFromDrawImage(draw_image));
// We are mid-draw and holding the context lock, ensure we clean up any
// textures (especially at-raster), which may have just been marked for
// deletion by UnrefImage.
RunPendingContextThreadOperations();
}
void GpuImageDecodeCache::ReduceCacheUsage() {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::ReduceCacheUsage");
base::AutoLock lock(lock_);
ReduceCacheUsageLocked();
}
void GpuImageDecodeCache::ReduceCacheUsageLocked() NO_THREAD_SAFETY_ANALYSIS {
EnsureCapacity(0);
TryFlushPendingWork();
}
void GpuImageDecodeCache::SetShouldAggressivelyFreeResources(
bool aggressively_free_resources) {
TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::SetShouldAggressivelyFreeResources",
"agressive_free_resources", aggressively_free_resources);
if (aggressively_free_resources) {
std::optional<viz::RasterContextProvider::ScopedRasterContextLock>
context_lock;
if (context_->GetLock()) {
context_lock.emplace(context_);
}
base::AutoLock lock(lock_);
aggressively_freeing_resources_ = aggressively_free_resources;
EnsureCapacity(0);
// We are holding the context lock, so finish cleaning up deleted images
// now.
RunPendingContextThreadOperations();
} else {
base::AutoLock lock(lock_);
aggressively_freeing_resources_ = aggressively_free_resources;
}
}
void GpuImageDecodeCache::ClearCache() {
base::AutoLock lock(lock_);
for (auto it = persistent_cache_.begin(); it != persistent_cache_.end();)
it = RemoveFromPersistentCache(it);
DCHECK(persistent_cache_.empty());
paint_image_entries_.clear();
TryFlushPendingWork();
}
void GpuImageDecodeCache::RecordStats() {
base::AutoLock lock(lock_);
double cache_usage;
if (working_set_bytes_ > 0 &&
base::CheckDiv(static_cast<double>(working_set_bytes_),
max_working_set_bytes_)
.AssignIfValid(&cache_usage)) {
UMA_HISTOGRAM_PERCENTAGE(
"Renderer4.GpuImageDecodeState.CachePeakUsagePercent",
cache_usage * 100);
}
}
void GpuImageDecodeCache::AddToPersistentCache(const DrawImage& draw_image,
scoped_refptr<ImageData> data) {
if (features::EnablePurgeGpuImageDecodeCache()) {
DCHECK(persistent_cache_.empty() || has_pending_purge_task());
PostPurgeOldCacheEntriesTask();
}
WillAddCacheEntry(draw_image);
persistent_cache_memory_size_ += data->GetTotalSize();
persistent_cache_.Put(draw_image.frame_key(), std::move(data));
}
template <typename Iterator>
Iterator GpuImageDecodeCache::RemoveFromPersistentCache(Iterator it) {
if (it->second->decode.ref_count != 0 || it->second->upload.ref_count != 0) {
// Orphan the image and erase it from the |persisent_cache_|. This ensures
// that the image will be deleted once all refs are removed.
it->second->is_orphaned = true;
} else {
// Current entry has no refs. Ensure it is not locked.
DCHECK(!it->second->decode.is_locked());
DCHECK(!it->second->upload.is_locked());
// Unlocked images must not be budgeted.
DCHECK(!it->second->is_budgeted);
// Free the uploaded image if it exists.
if (it->second->HasUploadedData())
DeleteImage(it->second.get());
}
auto entries_it = paint_image_entries_.find(it->second->paint_image_id);
CHECK(entries_it != paint_image_entries_.end());
CHECK_GT(entries_it->second.count, 0u);
// If this is the last entry for this image, remove its tracking.
--entries_it->second.count;
if (entries_it->second.count == 0u)
paint_image_entries_.erase(entries_it);
persistent_cache_memory_size_ -= it->second->GetTotalSize();
return persistent_cache_.Erase(it);
}
bool GpuImageDecodeCache::TryFlushPendingWork() {
// This is typically called when no tasks are running (between scheduling
// tasks). Try to lock and run pending operations if possible, but don't
// block on it.
//
// However, there are cases where the lock acquisition will fail. Indeed,
// when a task runs on a worker thread, it may acquire both the compositor
// lock then the GpuImageDecodeCache lock, whereas here we are trying to
// acquire the compositor lock after. So the early exit is required to avoid
// deadlocks.
//
// NO_THREAD_SAFETY_ANALYSIS: runtime-dependent locking.
if (context_->GetLock() && !context_->GetLock()->Try()) {
return false;
}
// The calls below will empty the cache on the GPU side. These calls will
// also happen on the next frame, but we want to call them ourselves here to
// avoid having to wait for the next frame (which might be a long wait/never
// happen).
RunPendingContextThreadOperations();
context_->ContextSupport()->FlushPendingWork();
// Transfer cache entries may have been deleted above (if
// `ids_pending_deletion_` is not empty). But calling `FlushPendingWork()`
// above is not enough, because it only deals with deferred messages, and
// transfer cache entry deletion is *not* a deferred message. Rather, it is a
// command buffer command, so we need to flush it. Otherwise if the page is
// fully static, then no flush will come, and no entries will actually be
// deleted. We only need a shallow flush because no glFlush() is required, we
// merely need the deletion commands to be processed service-side.
if (features::EnablePurgeGpuImageDecodeCache()) {
context_->RasterInterface()->ShallowFlushCHROMIUM();
}
if (context_->GetLock()) {
CheckContextLockAcquiredIfNecessary();
context_->GetLock()->Release();
}
return true;
}
bool GpuImageDecodeCache::DoPurgeOldCacheEntries(base::TimeDelta max_age) {
const base::TimeTicks min_last_use = base::TimeTicks::Now() - max_age;
for (auto it = persistent_cache_.rbegin();
it != persistent_cache_.rend() &&
it->second->last_use <= min_last_use;) {
if (it->second->decode.ref_count != 0 ||
it->second->upload.ref_count != 0) {
++it;
continue;
}
it = RemoveFromPersistentCache(it);
}
return TryFlushPendingWork();
}
void GpuImageDecodeCache::PurgeOldCacheEntriesCallback() {
base::AutoLock locker(lock_);
bool flushed_gpu_work = DoPurgeOldCacheEntries(get_max_purge_age());
has_pending_purge_task_ = false;
// If the cache is empty and we have flushed the pending work on the GPU side,
// we stop posting the task, to avoid endless wakeups.
if (persistent_cache_.empty() && flushed_gpu_work) {
return;
}
PostPurgeOldCacheEntriesTask();
}
void GpuImageDecodeCache::PostPurgeOldCacheEntriesTask() {
if (has_pending_purge_task()) {
return;
}
if (task_runner_) {
task_runner_->PostDelayedTask(
FROM_HERE,
base::BindOnce(&GpuImageDecodeCache::PurgeOldCacheEntriesCallback,
weak_ptr_factory_.GetWeakPtr()),
get_purge_interval());
has_pending_purge_task_ = true;
}
}
size_t GpuImageDecodeCache::GetMaximumMemoryLimitBytes() const {
base::AutoLock locker(lock_);
return max_working_set_bytes_;
}
void GpuImageDecodeCache::AddTextureDump(
base::trace_event::ProcessMemoryDump* pmd,
const std::string& texture_dump_name,
const size_t bytes,
const GrGLuint gl_id,
const size_t locked_size) const {
using base::trace_event::MemoryAllocatorDump;
using base::trace_event::MemoryAllocatorDumpGuid;
MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(texture_dump_name);
dump->AddScalar(MemoryAllocatorDump::kNameSize,
MemoryAllocatorDump::kUnitsBytes, bytes);
// Dump the "locked_size" as an additional column.
dump->AddScalar("locked_size", MemoryAllocatorDump::kUnitsBytes, locked_size);
MemoryAllocatorDumpGuid guid;
guid = gl::GetGLTextureClientGUIDForTracing(
context_->ContextSupport()->ShareGroupTracingGUID(), gl_id);
pmd->CreateSharedGlobalAllocatorDump(guid);
// Importance of 3 gives this dump priority over the dump made by Skia
// (importance 2), attributing memory here.
const int kImportance = 3;
pmd->AddOwnershipEdge(dump->guid(), guid, kImportance);
}
void GpuImageDecodeCache::MemoryDumpYUVImage(
base::trace_event::ProcessMemoryDump* pmd,
const ImageData* image_data,
const std::string& dump_base_name,
size_t locked_size) const {
using base::trace_event::MemoryAllocatorDump;
DCHECK(image_data->info.yuva.has_value());
DCHECK(image_data->upload.has_yuv_planes());
struct PlaneMemoryDumpInfo {
size_t byte_size;
GrGLuint gl_id;
};
std::vector<PlaneMemoryDumpInfo> plane_dump_infos;
// TODO(crbug.com/40604431): Also include alpha plane if applicable.
plane_dump_infos.push_back({image_data->upload.y_image()->textureSize(),
image_data->upload.gl_y_id()});
plane_dump_infos.push_back({image_data->upload.u_image()->textureSize(),
image_data->upload.gl_u_id()});
plane_dump_infos.push_back({image_data->upload.v_image()->textureSize(),
image_data->upload.gl_v_id()});
for (size_t i = 0u; i < plane_dump_infos.size(); ++i) {
auto plane_dump_info = plane_dump_infos.at(i);
// If the image is currently locked, we dump the locked size per plane.
AddTextureDump(
pmd,
dump_base_name +
base::StringPrintf("/plane_%0u", base::checked_cast<uint32_t>(i)),
plane_dump_info.byte_size, plane_dump_info.gl_id,
locked_size ? plane_dump_info.byte_size : 0u);
}
}
bool GpuImageDecodeCache::OnMemoryDump(
const base::trace_event::MemoryDumpArgs& args,
base::trace_event::ProcessMemoryDump* pmd) {
using base::trace_event::MemoryAllocatorDump;
using base::trace_event::MemoryAllocatorDumpGuid;
using base::trace_event::MemoryDumpLevelOfDetail;
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::OnMemoryDump");
base::AutoLock locker(lock_);
std::string dump_name = base::StringPrintf(
"cc/image_memory/cache_0x%" PRIXPTR, reinterpret_cast<uintptr_t>(this));
if (args.level_of_detail == MemoryDumpLevelOfDetail::kBackground) {
MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(dump_name);
dump->AddScalar(MemoryAllocatorDump::kNameSize,
MemoryAllocatorDump::kUnitsBytes, working_set_bytes_);
// Early out, no need for more detail in a BACKGROUND dump.
return true;
}
for (const auto& image_pair : persistent_cache_) {
const ImageData* image_data = image_pair.second.get();
int image_id = static_cast<int>(image_pair.first.hash());
// If we have discardable decoded data, dump this here.
for (const auto aux_image : kAllAuxImages) {
const auto& info = image_data->GetImageInfo(aux_image);
const auto* data = image_data->decode.data(aux_image);
if (!data) {
continue;
}
std::string discardable_dump_name = base::StringPrintf(
"%s/discardable/image_%d%s", dump_name.c_str(), image_id,
aux_image == AuxImage::kDefault ? "" : AuxImageName(aux_image));
MemoryAllocatorDump* dump =
data->CreateMemoryAllocatorDump(discardable_dump_name.c_str(), pmd);
// Dump the "locked_size" as an additional column.
// This lets us see the amount of discardable which is contributing to
// memory pressure.
size_t locked_size = image_data->decode.is_locked() ? info.size : 0u;
dump->AddScalar("locked_size", MemoryAllocatorDump::kUnitsBytes,
locked_size);
}
// If we have an uploaded image (that is actually on the GPU, not just a
// CPU wrapper), upload it here.
if (image_data->HasUploadedData()) {
switch (image_data->mode) {
case DecodedDataMode::kGpu: {
// The GPU path does not support auxiliary images, so we can assume
// that this is the default image.
const auto& info = image_data->info;
size_t discardable_size = info.size;
auto* context_support = context_->ContextSupport();
// If the discardable system has deleted this out from under us, log a
// size of 0 to match software discardable.
if (info.yuva.has_value() &&
context_support->ThreadsafeDiscardableTextureIsDeletedForTracing(
image_data->upload.gl_y_id()) &&
context_support->ThreadsafeDiscardableTextureIsDeletedForTracing(
image_data->upload.gl_u_id()) &&
context_support->ThreadsafeDiscardableTextureIsDeletedForTracing(
image_data->upload.gl_v_id())) {
discardable_size = 0;
} else if (context_support
->ThreadsafeDiscardableTextureIsDeletedForTracing(
image_data->upload.gl_id())) {
discardable_size = 0;
}
std::string gpu_dump_base_name = base::StringPrintf(
"%s/gpu/image_%d", dump_name.c_str(), image_id);
size_t locked_size =
image_data->upload.is_locked() ? discardable_size : 0u;
if (info.yuva.has_value()) {
MemoryDumpYUVImage(pmd, image_data, gpu_dump_base_name,
locked_size);
} else {
AddTextureDump(pmd, gpu_dump_base_name, discardable_size,
image_data->upload.gl_id(), locked_size);
}
} break;
case DecodedDataMode::kTransferCache: {
// TODO(lizeb): Include the right ID to link it with the GPU-side
// resource.
std::string uploaded_dump_name = base::StringPrintf(
"%s/gpu/image_%d", dump_name.c_str(),
image_data->upload.transfer_cache_id().value());
MemoryAllocatorDump* dump =
pmd->CreateAllocatorDump(uploaded_dump_name);
dump->AddScalar(MemoryAllocatorDump::kNameSize,
MemoryAllocatorDump::kUnitsBytes,
image_data->GetTotalSize());
} break;
case DecodedDataMode::kCpu:
// Not uploaded in this case.
NOTREACHED();
}
}
}
return true;
}
void GpuImageDecodeCache::DecodeImageInTask(const DrawImage& draw_image,
TaskType task_type) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::DecodeImage");
base::AutoLock lock(lock_);
ImageData* image_data = GetImageDataForDrawImage(
draw_image, InUseCacheKeyFromDrawImage(draw_image));
DCHECK(image_data);
DCHECK(image_data->is_budgeted) << "Must budget an image for pre-decoding";
DecodeImageAndGenerateDarkModeFilterIfNecessary(draw_image, image_data,
task_type);
}
void GpuImageDecodeCache::UploadImageInTask(const DrawImage& draw_image) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::UploadImage");
std::optional<viz::RasterContextProvider::ScopedRasterContextLock>
context_lock;
if (context_->GetLock())
context_lock.emplace(context_);
std::optional<ScopedGrContextAccess> gr_context_access;
if (!use_transfer_cache_)
gr_context_access.emplace(context_);
base::AutoLock lock(lock_);
auto cache_key = InUseCacheKeyFromDrawImage(draw_image);
ImageData* image_data = GetImageDataForDrawImage(draw_image, cache_key);
DCHECK(image_data);
DCHECK(image_data->is_budgeted) << "Must budget an image for pre-decoding";
if (image_data->is_bitmap_backed)
DecodeImageAndGenerateDarkModeFilterIfNecessary(draw_image, image_data,
TaskType::kInRaster);
UploadImageIfNecessary(draw_image, image_data);
}
void GpuImageDecodeCache::OnImageDecodeTaskCompleted(
const DrawImage& draw_image,
TaskType task_type,
ClientId client_id) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::OnImageDecodeTaskCompleted");
base::AutoLock lock(lock_);
auto cache_key = InUseCacheKeyFromDrawImage(draw_image);
// Decode task is complete, remove our reference to it.
ImageData* image_data = GetImageDataForDrawImage(draw_image, cache_key);
DCHECK(image_data);
UMA_HISTOGRAM_BOOLEAN("Compositing.DecodeLCPCandidateImage.Hardware",
draw_image.paint_image().may_be_lcp_candidate());
if (task_type == TaskType::kInRaster) {
image_data->decode.task_map.erase(client_id);
} else {
image_data->decode.stand_alone_task_map.erase(client_id);
}
// While the decode task is active, we keep a ref on the decoded data.
// Release that ref now.
UnrefImageDecode(draw_image, cache_key);
}
void GpuImageDecodeCache::OnImageUploadTaskCompleted(
const DrawImage& draw_image,
ClientId client_id) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::OnImageUploadTaskCompleted");
base::AutoLock lock(lock_);
// Upload task is complete, remove our reference to it.
InUseCacheKey cache_key = InUseCacheKeyFromDrawImage(draw_image);
ImageData* image_data = GetImageDataForDrawImage(draw_image, cache_key);
DCHECK(image_data);
image_data->upload.task_map.erase(client_id);
// While the upload task is active, we keep a ref on both the image it will be
// populating, as well as the decode it needs to populate it. Release these
// refs now.
UnrefImageDecode(draw_image, cache_key);
UnrefImageInternal(draw_image, cache_key);
}
int GpuImageDecodeCache::CalculateUploadScaleMipLevel(
const DrawImage& draw_image,
AuxImage aux_image) const {
// Images which are being clipped will have color-bleeding if scaled.
// TODO(ericrk): Investigate uploading clipped images to handle this case and
// provide further optimization. crbug.com/620899
if (!enable_clipped_image_scaling_) {
const bool is_clipped =
draw_image.src_rect() !=
SkIRect::MakeSize(draw_image.paint_image().GetSkISize(aux_image));
if (is_clipped)
return 0;
}
gfx::Size base_size = draw_image.paint_image().GetSize(aux_image);
// Ceil our scaled size so that the mip map generated is guaranteed to be
// larger. Take the abs of the scale, as mipmap functions don't handle
// (and aren't impacted by) negative image dimensions.
gfx::Size scaled_size =
gfx::ScaleToCeiledSize(base_size, std::abs(draw_image.scale().width()),
std::abs(draw_image.scale().height()));
return MipMapUtil::GetLevelForSize(base_size, scaled_size);
}
GpuImageDecodeCache::InUseCacheKey
GpuImageDecodeCache::InUseCacheKeyFromDrawImage(
const DrawImage& draw_image) const {
return InUseCacheKey(
draw_image, CalculateUploadScaleMipLevel(draw_image, AuxImage::kDefault));
}
// Checks if an image decode needs a decode task and returns it.
scoped_refptr<TileTask> GpuImageDecodeCache::GetImageDecodeTaskAndRef(
ClientId client_id,
const DrawImage& draw_image,
const TracingInfo& tracing_info,
TaskType task_type) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::GetImageDecodeTaskAndRef");
auto cache_key = InUseCacheKeyFromDrawImage(draw_image);
bool for_raster = (task_type == TaskType::kInRaster);
// This ref is kept alive while an upload task may need this decode. We
// release this ref in UploadTaskCompleted.
if (for_raster) {
RefImageDecode(draw_image, cache_key);
}
ImageData* image_data = GetImageDataForDrawImage(draw_image, cache_key);
DCHECK(image_data);
if (image_data->decode.do_hardware_accelerated_decode())
return nullptr;
// No decode is necessary for bitmap backed images.
if (image_data->decode.is_locked() || image_data->is_bitmap_backed) {
// We should never be creating a decode task for a not budgeted image.
DCHECK(image_data->is_budgeted);
// We should never be creating a decode for an already-uploaded image.
DCHECK(!image_data->HasUploadedData());
return nullptr;
}
// We didn't have an existing locked image, create a task to lock or decode.
scoped_refptr<TileTask> result;
ImageTaskMap& raster_task_map = image_data->decode.task_map;
scoped_refptr<TileTask> raster_task =
GetTaskFromMapForClientId(client_id, raster_task_map);
ImageTaskMap& stand_alone_task_map = image_data->decode.stand_alone_task_map;
scoped_refptr<TileTask> stand_alone_task =
GetTaskFromMapForClientId(client_id, stand_alone_task_map);
if (for_raster && raster_task) {
result = std::move(raster_task);
} else if (!for_raster && stand_alone_task) {
result = std::move(stand_alone_task);
} else {
// Ref image decode and create a decode task. This ref will be released in
// DecodeTaskCompleted.
RefImageDecode(draw_image, cache_key);
result = base::MakeRefCounted<GpuImageDecodeTaskImpl>(
this, draw_image, tracing_info, task_type, client_id);
if (for_raster) {
raster_task_map[client_id] = result;
if (stand_alone_task) {
// If the existing stand-alone task hasn't started yet, make the new
// raster task primary.
if (stand_alone_task->state().IsNew()) {
result->SetExternalDependent(stand_alone_task);
image_data->RecordSpeculativeDecodeRasterTaskTakeover();
} else {
stand_alone_task->SetExternalDependent(result);
}
}
} else {
stand_alone_task_map[client_id] = result;
if (raster_task && !raster_task->HasCompleted()) {
raster_task->SetExternalDependent(result);
}
}
}
CHECK(result);
return result;
}
void GpuImageDecodeCache::RefImageDecode(const DrawImage& draw_image,
const InUseCacheKey& cache_key) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::RefImageDecode");
auto found = in_use_cache_.find(cache_key);
CHECK(found != in_use_cache_.end());
++found->second.ref_count;
++found->second.image_data->decode.ref_count;
OwnershipChanged(draw_image, found->second.image_data.get());
}
void GpuImageDecodeCache::UnrefImageDecode(const DrawImage& draw_image,
const InUseCacheKey& cache_key) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::UnrefImageDecode");
auto found = in_use_cache_.find(cache_key);
CHECK(found != in_use_cache_.end());
DCHECK_GT(found->second.image_data->decode.ref_count, 0u);
DCHECK_GT(found->second.ref_count, 0u);
--found->second.ref_count;
--found->second.image_data->decode.ref_count;
OwnershipChanged(draw_image, found->second.image_data.get());
if (found->second.ref_count == 0u) {
in_use_cache_.erase(found);
}
}
void GpuImageDecodeCache::RefImage(const DrawImage& draw_image,
const InUseCacheKey& cache_key) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::RefImage");
auto found = in_use_cache_.find(cache_key);
// If no secondary cache entry was found for the given |draw_image|, then
// the draw_image only exists in the |persistent_cache_|. Create an in-use
// cache entry now.
if (found == in_use_cache_.end()) {
auto found_image = persistent_cache_.Peek(draw_image.frame_key());
CHECK(found_image != persistent_cache_.end());
DCHECK(IsCompatible(found_image->second.get(), draw_image));
found = in_use_cache_
.insert(InUseCache::value_type(
cache_key, InUseCacheEntry(found_image->second)))
.first;
}
CHECK(found != in_use_cache_.end());
++found->second.ref_count;
++found->second.image_data->upload.ref_count;
OwnershipChanged(draw_image, found->second.image_data.get());
}
void GpuImageDecodeCache::UnrefImageInternal(const DrawImage& draw_image,
const InUseCacheKey& cache_key) {
auto found = in_use_cache_.find(cache_key);
CHECK(found != in_use_cache_.end());
DCHECK_GT(found->second.image_data->upload.ref_count, 0u);
DCHECK_GT(found->second.ref_count, 0u);
--found->second.ref_count;
--found->second.image_data->upload.ref_count;
OwnershipChanged(draw_image, found->second.image_data.get());
if (found->second.ref_count == 0u) {
in_use_cache_.erase(found);
}
}
// Called any time an image or decode ref count changes. Takes care of any
// necessary memory budget book-keeping and cleanup.
void GpuImageDecodeCache::OwnershipChanged(const DrawImage& draw_image,
ImageData* image_data) {
bool has_any_refs =
image_data->upload.ref_count > 0 || image_data->decode.ref_count > 0;
// If we have no image refs on an image, we should unbudget it.
if (!has_any_refs && image_data->is_budgeted) {
DCHECK_GE(working_set_bytes_, image_data->GetTotalSize());
DCHECK_GE(working_set_items_, 1u);
working_set_bytes_ -= image_data->GetTotalSize();
working_set_items_ -= 1;
image_data->is_budgeted = false;
}
// Don't keep around completely empty images. This can happen if an image's
// decode/upload tasks were both cancelled before completing.
const bool has_cpu_data = image_data->decode.HasData() ||
(image_data->is_bitmap_backed &&
image_data->decode.image(0, AuxImage::kDefault));
bool is_empty = !has_any_refs && !image_data->HasUploadedData() &&
!has_cpu_data && !image_data->is_orphaned;
if (is_empty || draw_image.paint_image().no_cache()) {
auto found_persistent = persistent_cache_.Peek(draw_image.frame_key());
if (found_persistent != persistent_cache_.end())
RemoveFromPersistentCache(found_persistent);
}
// Don't keep discardable cpu memory for GPU backed images. The cache hit rate
// of the cpu fallback (in case we don't find this image in gpu memory) is
// too low to cache this data.
if (image_data->decode.ref_count == 0 &&
image_data->mode != DecodedDataMode::kCpu &&
image_data->HasUploadedData()) {
image_data->decode.ResetData();
image_data->speculative_decode_usage_stats_.reset();
}
// If we have no refs on an uploaded image, it should be unlocked. Do this
// before any attempts to delete the image.
if (image_data->IsGpuOrTransferCache() && image_data->upload.ref_count == 0 &&
image_data->upload.is_locked()) {
UnlockImage(image_data);
}
// Don't keep around orphaned images.
if (image_data->is_orphaned && !has_any_refs) {
DeleteImage(image_data);
}
// Don't keep CPU images if they are unused, these images can be recreated by
// re-locking discardable (rather than requiring a full upload like GPU
// images).
if (image_data->mode == DecodedDataMode::kCpu && !has_any_refs) {
DeleteImage(image_data);
}
// If we have image that could be budgeted, but isn't, budget it now.
if (has_any_refs && !image_data->is_budgeted &&
CanFitInWorkingSet(image_data->GetTotalSize())) {
working_set_bytes_ += image_data->GetTotalSize();
working_set_items_ += 1;
image_data->is_budgeted = true;
}
// We should unlock the decoded image memory for the image in two cases:
// 1) The image is no longer being used (no decode or upload refs).
// 2) This is a non-CPU image that has already been uploaded and we have
// no remaining decode refs.
bool should_unlock_decode = !has_any_refs || (image_data->HasUploadedData() &&
!image_data->decode.ref_count);
if (should_unlock_decode && image_data->decode.is_locked()) {
if (image_data->is_bitmap_backed) {
DCHECK(!image_data->decode.HasData());
image_data->decode.ResetBitmapImage();
} else {
DCHECK(image_data->decode.HasData());
image_data->decode.Unlock();
}
}
// EnsureCapacity to make sure we are under our cache limits.
EnsureCapacity(0);
#if DCHECK_IS_ON()
// Sanity check the above logic.
if (image_data->HasUploadedData()) {
if (image_data->mode == DecodedDataMode::kCpu)
DCHECK(image_data->decode.is_locked());
} else {
DCHECK(!image_data->is_budgeted || has_any_refs);
}
#endif
}
// Checks whether we can fit a new image of size |required_size| in our
// working set. Also frees unreferenced entries to keep us below our preferred
// items limit.
bool GpuImageDecodeCache::EnsureCapacity(size_t required_size) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::EnsureCapacity");
// While we are over preferred item capacity, we iterate through our set of
// cached image data in LRU order, removing unreferenced images.
for (auto it = persistent_cache_.rbegin();
it != persistent_cache_.rend() && ExceedsCacheLimits();) {
if (it->second->decode.ref_count != 0 ||
it->second->upload.ref_count != 0) {
++it;
continue;
}
it = RemoveFromPersistentCache(it);
}
return CanFitInWorkingSet(required_size);
}
bool GpuImageDecodeCache::CanFitInWorkingSet(size_t size) const {
lock_.AssertAcquired();
if (working_set_items_ >= max_working_set_items_)
return false;
base::CheckedNumeric<uint32_t> new_size(working_set_bytes_);
new_size += size;
if (!new_size.IsValid() || new_size.ValueOrDie() > max_working_set_bytes_)
return false;
return true;
}
bool GpuImageDecodeCache::ExceedsCacheLimits() const {
size_t items_limit;
if (aggressively_freeing_resources_) {
items_limit = kSuspendedMaxItemsInCacheForGpu;
} else {
items_limit = kNormalMaxItemsInCacheForGpu;
}
return persistent_cache_.size() > items_limit;
}
void GpuImageDecodeCache::InsertTransferCacheEntry(
const ClientImageTransferCacheEntry& image_entry,
ImageData* image_data) {
DCHECK(image_data);
uint32_t size = image_entry.SerializedSize();
void* data = context_->ContextSupport()->MapTransferCacheEntry(size);
if (data) {
// TODO(crbug.com/40285824): Have MapTransferCacheEntry() return a span.
bool succeeded = image_entry.Serialize(
UNSAFE_TODO(base::span(static_cast<uint8_t*>(data), size)));
DCHECK(succeeded);
context_->ContextSupport()->UnmapAndCreateTransferCacheEntry(
image_entry.UnsafeType(), image_entry.Id());
image_data->upload.SetTransferCacheId(image_entry.Id());
} else {
// Transfer cache entry can fail due to a lost gpu context or failure
// to allocate shared memory. Handle this gracefully. Mark this
// image as "decode failed" so that we do not try to handle it again.
// If this was a lost context, we'll recreate this image decode cache.
image_data->decode.decode_failure = true;
}
}
bool GpuImageDecodeCache::NeedsDarkModeFilter(const DrawImage& draw_image,
ImageData* image_data) {
DCHECK(image_data);
// |draw_image| does not need dark mode to be applied.
if (!draw_image.use_dark_mode())
return false;
// |dark_mode_filter_| must be valid, if |draw_image| has use_dark_mode set.
DCHECK(dark_mode_filter_);
// TODO(prashant.n): RSDM - Add support for YUV decoded data.
if (image_data->info.yuva.has_value()) {
return false;
}
// Dark mode filter is already generated and cached.
if (base::Contains(image_data->decode.dark_mode_color_filter_cache,
draw_image.src_rect())) {
return false;
}
return true;
}
void GpuImageDecodeCache::DecodeImageAndGenerateDarkModeFilterIfNecessary(
const DrawImage& draw_image,
ImageData* image_data,
TaskType task_type) {
// Check if image needs dark mode to be applied, based on this image may be
// decoded again if decoded data is not available.
bool needs_dark_mode_filter = NeedsDarkModeFilter(draw_image, image_data);
DecodeImageIfNecessary(draw_image, image_data, task_type,
needs_dark_mode_filter);
if (needs_dark_mode_filter)
GenerateDarkModeFilter(draw_image, image_data);
}
void GpuImageDecodeCache::DecodeImageIfNecessary(
const DrawImage& draw_image,
ImageData* image_data,
TaskType task_type,
bool needs_decode_for_dark_mode) {
DCHECK_GT(image_data->decode.ref_count, 0u);
if (image_data->decode.do_hardware_accelerated_decode()) {
// We get here in the case of an at-raster decode.
return;
}
if (image_data->decode.decode_failure) {
// We have already tried and failed to decode this image. Don't try again.
return;
}
if (image_data->HasUploadedData() &&
TryLockImage(HaveContextLock::kNo, draw_image, image_data) &&
!needs_decode_for_dark_mode) {
// We already have an uploaded image and we don't need a decode for dark
// mode too, so no reason to decode.
return;
}
if (image_data->is_bitmap_backed) {
DCHECK(!draw_image.paint_image().IsLazyGenerated());
if (image_data->info.yuva.has_value()) {
NOTREACHED() << "YUV + Bitmap is unknown and unimplemented!";
} else {
image_data->decode.SetBitmapImage(
draw_image.paint_image().GetSwSkImage());
}
return;
}
if (image_data->decode.HasData() &&
(image_data->decode.is_locked() || image_data->decode.Lock())) {
// We already decoded this, or we just needed to lock, early out.
return;
}
TRACE_EVENT2("cc,benchmark", "GpuImageDecodeCache::DecodeImage",
"speculative", image_data->IsSpeculativeDecode(),
"paint_image_id", image_data->paint_image_id);
image_data->decode.ResetData();
// Prevent image_data from being deleted while lock is not held.
scoped_refptr<ImageData> image_data_holder(image_data);
// Decode the image into `aux_image_data` while the lock is not held.
std::array<DecodedAuxImageData, kAuxImageCount> aux_image_data;
{
base::AutoUnlock unlock(lock_);
for (auto aux_image : kAllAuxImages) {
if (aux_image == AuxImage::kGainmap) {
if (!draw_image.paint_image().HasGainmap()) {
continue;
}
}
const auto aux_image_index = AuxImageIndex(aux_image);
const auto info = image_data->GetImageInfo(aux_image);
// Allocate the backing memory for the decode.
std::unique_ptr<base::DiscardableMemory> backing_memory;
if (base::FeatureList::IsEnabled(
features::kNoDiscardableMemoryForGpuDecodePath)) {
backing_memory = std::make_unique<HeapDiscardableMemory>(info.size);
} else {
auto* allocator = base::DiscardableMemoryAllocator::GetInstance();
backing_memory =
allocator->AllocateLockedDiscardableMemoryWithRetryOrDie(
info.size, base::BindOnce(&GpuImageDecodeCache::ClearCache,
base::Unretained(this)));
}
// Do the decode.
if (info.yuva.has_value()) {
// Decode as YUV.
DCHECK(!info.rgba.has_value());
DVLOG(3) << "GpuImageDecodeCache (" << AuxImageName(aux_image)
<< "wants to do YUV decoding/rendering";
SkYUVAPixmaps yuva_pixmaps = SkYUVAPixmaps::FromExternalMemory(
info.yuva.value(), backing_memory->data());
if (DrawAndScaleImageYUV(draw_image, aux_image, generator_client_id_,
yuva_supported_data_types_, yuva_pixmaps)) {
aux_image_data[aux_image_index] =
DecodedAuxImageData(yuva_pixmaps, std::move(backing_memory));
} else {
DLOG(ERROR) << "DrawAndScaleImageYUV failed.";
backing_memory->Unlock();
backing_memory.reset();
break;
}
} else {
// Decode as RGB.
DCHECK(info.rgba.has_value());
SkImageInfo image_info = info.rgba->makeColorSpace(
ColorSpaceForImageDecode(draw_image, image_data->mode));
SkPixmap pixmap(image_info, backing_memory->data(),
image_info.minRowBytes());
if (DrawAndScaleImageRGB(draw_image, aux_image, pixmap,
generator_client_id_)) {
aux_image_data[aux_image_index] =
DecodedAuxImageData(pixmap, std::move(backing_memory));
} else {
DLOG(ERROR) << "DrawAndScaleImageRGB failed.";
backing_memory->Unlock();
backing_memory.reset();
break;
}
}
}
}
if (image_data->decode.HasData()) {
// An at-raster task decoded this before us. Ignore our decode, but ensure
// that the expected number of images are populated.
for (auto aux_image : kAllAuxImages) {
const auto info = image_data->GetImageInfo(aux_image);
int num_planes = 0;
if (info.yuva) {
num_planes = image_data->info.yuva->numPlanes();
}
if (info.rgba) {
num_planes = 1;
}
for (int i = 0; i < SkYUVAInfo::kMaxPlanes; ++i) {
if (i < num_planes) {
DCHECK(image_data->decode.image(i, aux_image));
} else {
DCHECK(!image_data->decode.image(i, aux_image));
}
}
}
return;
}
// If the default image's `data` was not populated, we had a non-decodable
// image. Do not fail if the gainmap failed to decode.
if (!aux_image_data[kAuxImageIndexDefault].data) {
image_data->decode.decode_failure = true;
return;
}
image_data->decode.SetLockedData(aux_image_data,
task_type == TaskType::kOutOfRaster);
}
void GpuImageDecodeCache::GenerateDarkModeFilter(const DrawImage& draw_image,
ImageData* image_data) {
DCHECK(dark_mode_filter_);
// Caller must ensure draw image needs dark mode to be applied.
DCHECK(NeedsDarkModeFilter(draw_image, image_data));
// Caller must ensure image is valid and has decoded data.
DCHECK(image_data->decode.image(0, AuxImage::kDefault));
// TODO(prashant.n): Calling ApplyToImage() from |dark_mode_filter_| can be
// expensive. Check the possibilitiy of holding |lock_| only for accessing and
// storing dark mode result on |image_data|.
lock_.AssertAcquired();
if (image_data->decode.decode_failure)
return;
const SkPixmap& pixmap = image_data->decode.pixmaps(AuxImage::kDefault)[0];
image_data->decode.dark_mode_color_filter_cache[draw_image.src_rect()] =
dark_mode_filter_->ApplyToImage(pixmap, draw_image.src_rect());
}
void GpuImageDecodeCache::UploadImageIfNecessary(const DrawImage& draw_image,
ImageData* image_data) {
CheckContextLockAcquiredIfNecessary();
// We are about to upload a new image and are holding the context lock.
// Ensure that any images which have been marked for deletion are actually
// cleaned up so we don't exceed our memory limit during this upload.
RunPendingContextThreadOperations();
if (image_data->decode.decode_failure) {
// We were unable to decode this image. Don't try to upload.
return;
}
// If an upload already exists, try to lock it. If this fails, it will clear
// any uploaded data.
if (image_data->HasUploadedData())
TryLockImage(HaveContextLock::kYes, draw_image, image_data);
// Ensure the mip status is correct before returning the locked upload or
// preparing to upload a new image.
UpdateMipsIfNeeded(draw_image, image_data);
// If we have uploaded data at this point, it is locked with correct mips,
// just return.
if (image_data->HasUploadedData())
return;
TRACE_EVENT0("cc", "GpuImageDecodeCache::UploadImage");
if (!image_data->decode.do_hardware_accelerated_decode()) {
// These are not needed for accelerated decodes because there was no decode
// task.
DCHECK(image_data->decode.is_locked());
image_data->decode.mark_used();
}
DCHECK_GT(image_data->decode.ref_count, 0u);
DCHECK_GT(image_data->upload.ref_count, 0u);
// Let `target_color_space` be the color space that the image is converted to
// for storage in the cache. If it is nullptr then no conversion is performed,
// and the decoded color space is used.
sk_sp<SkColorSpace> target_color_space =
SupportsColorSpaceConversion() &&
draw_image.target_color_space().IsValid()
? draw_image.target_color_space().ToSkColorSpace()
: nullptr;
// Let `decoded_color_space` be the color space that the decoded image is in.
// This takes into account the fact that we might need to ignore an embedded
// image color space if `color_type_` does not support color space
// conversions or that some color conversion might have happened at decode
// time.
sk_sp<SkColorSpace> decoded_color_space =
ColorSpaceForImageDecode(draw_image, image_data->mode);
if (target_color_space && decoded_color_space &&
SkColorSpace::Equals(target_color_space.get(),
decoded_color_space.get())) {
target_color_space = nullptr;
}
if (image_data->mode == DecodedDataMode::kTransferCache) {
DCHECK(use_transfer_cache_);
if (image_data->decode.do_hardware_accelerated_decode()) {
UploadImageIfNecessary_TransferCache_HardwareDecode(
draw_image, image_data, target_color_space);
} else {
// Do not color convert images that are YUV or need tone mapping.
if (image_data->info.yuva.has_value() ||
NeedsToneMapping(decoded_color_space,
draw_image.paint_image().HasGainmap())) {
target_color_space = nullptr;
}
const std::optional<gfx::HDRMetadata> hdr_metadata =
draw_image.paint_image().GetHDRMetadata();
UploadImageIfNecessary_TransferCache_SoftwareDecode(
draw_image, image_data, decoded_color_space, hdr_metadata,
target_color_space);
}
} else {
// Grab a reference to our decoded image. For the kCpu path, we will use
// this directly as our "uploaded" data.
sk_sp<SkImage> uploaded_image =
image_data->decode.image(0, AuxImage::kDefault);
skgpu::Mipmapped image_needs_mips =
image_data->needs_mips ? skgpu::Mipmapped::kYes : skgpu::Mipmapped::kNo;
if (image_data->info.yuva.has_value()) {
UploadImageIfNecessary_GpuCpu_YUVA(draw_image, image_data, uploaded_image,
image_needs_mips, decoded_color_space,
target_color_space);
} else {
UploadImageIfNecessary_GpuCpu_RGBA(draw_image, image_data, uploaded_image,
image_needs_mips, target_color_space);
}
}
}
void GpuImageDecodeCache::UploadImageIfNecessary_TransferCache_HardwareDecode(
const DrawImage& draw_image,
ImageData* image_data,
sk_sp<SkColorSpace> color_space) {
DCHECK_EQ(image_data->mode, DecodedDataMode::kTransferCache);
DCHECK(use_transfer_cache_);
DCHECK(image_data->decode.do_hardware_accelerated_decode());
// The assumption is that scaling is not currently supported for
// hardware-accelerated decodes.
DCHECK_EQ(0, image_data->upload_scale_mip_level);
const gfx::Size output_size =
draw_image.paint_image().GetSize(AuxImage::kDefault);
// Get the encoded data in a contiguous form.
sk_sp<SkData> encoded_data =
draw_image.paint_image().GetSwSkImage()->refEncodedData();
DCHECK(encoded_data);
const uint32_t transfer_cache_id = ClientImageTransferCacheEntry::GetNextId();
const gpu::SyncToken decode_sync_token =
context_->RasterInterface()->ScheduleImageDecode(
gfx::SkDataToSpan(encoded_data), output_size, transfer_cache_id,
color_space ? gfx::ColorSpace(*color_space) : gfx::ColorSpace(),
image_data->needs_mips);
if (!decode_sync_token.HasData()) {
image_data->decode.decode_failure = true;
return;
}
image_data->upload.SetTransferCacheId(transfer_cache_id);
// Note that we wait for the decode sync token here for two reasons:
//
// 1) To make sure that raster work that depends on the image decode
// happens after the decode completes.
//
// 2) To protect the transfer cache entry from being unlocked on the
// service side before the decode is completed.
context_->RasterInterface()->WaitSyncTokenCHROMIUM(
decode_sync_token.GetConstData());
}
void GpuImageDecodeCache::UploadImageIfNecessary_TransferCache_SoftwareDecode(
const DrawImage& draw_image,
ImageData* image_data,
sk_sp<SkColorSpace> decoded_color_space,
const std::optional<gfx::HDRMetadata>& hdr_metadata,
sk_sp<SkColorSpace> target_color_space) {
DCHECK_EQ(image_data->mode, DecodedDataMode::kTransferCache);
DCHECK(use_transfer_cache_);
DCHECK(!image_data->decode.do_hardware_accelerated_decode());
std::array<ClientImageTransferCacheEntry::Image, kAuxImageCount> image;
bool has_gainmap = false;
for (auto aux_image : kAllAuxImages) {
auto aux_image_index = AuxImageIndex(aux_image);
const auto& info = image_data->GetImageInfo(aux_image);
if (aux_image == AuxImage::kGainmap) {
// The gainmap image is allowed to silently fail to decode. If that
// happens, there will be no data. Just pretend it didn't exist.
if (!image_data->decode.data(aux_image)) {
continue;
}
has_gainmap = info.rgba.has_value() || info.yuva.has_value();
}
if (info.yuva.has_value()) {
DCHECK(!info.rgba.has_value());
image[aux_image_index] = ClientImageTransferCacheEntry::Image(
image_data->decode.pixmaps(aux_image), info.yuva->yuvaInfo(),
decoded_color_space.get());
}
if (info.rgba.has_value()) {
DCHECK(!info.yuva.has_value());
image[aux_image_index] = ClientImageTransferCacheEntry::Image(
&image_data->decode.pixmaps(aux_image)[0]);
}
}
ClientImageTransferCacheEntry image_entry =
has_gainmap
? ClientImageTransferCacheEntry(
image[kAuxImageIndexDefault], image[kAuxImageIndexGainmap],
draw_image.paint_image().GetGainmapInfo(),
image_data->needs_mips)
: ClientImageTransferCacheEntry(image[kAuxImageIndexDefault],
image_data->needs_mips, hdr_metadata,
target_color_space);
if (!image_entry.IsValid())
return;
InsertTransferCacheEntry(image_entry, image_data);
}
void GpuImageDecodeCache::UploadImageIfNecessary_GpuCpu_YUVA(
const DrawImage& draw_image,
ImageData* image_data,
sk_sp<SkImage> uploaded_image,
skgpu::Mipmapped image_needs_mips,
sk_sp<SkColorSpace> decoded_color_space,
sk_sp<SkColorSpace> color_space) {
DCHECK(!use_transfer_cache_);
DCHECK(image_data->info.yuva.has_value());
// Grab a reference to our decoded image. For the kCpu path, we will use
// this directly as our "uploaded" data. This path only supports tri-planar
// YUV with no alpha.
DCHECK_EQ(image_data->info.yuva->yuvaInfo().planeConfig(),
SkYUVAInfo::PlaneConfig::kY_U_V);
sk_sp<SkImage> uploaded_y_image =
image_data->decode.image(0, AuxImage::kDefault);
sk_sp<SkImage> uploaded_u_image =
image_data->decode.image(1, AuxImage::kDefault);
sk_sp<SkImage> uploaded_v_image =
image_data->decode.image(2, AuxImage::kDefault);
// Prevent image_data from being deleted while lock is not held.
scoped_refptr<ImageData> image_data_holder(image_data);
// For kGpu, we upload and color convert (if necessary).
if (image_data->mode == DecodedDataMode::kGpu) {
DCHECK(!use_transfer_cache_);
base::AutoUnlock unlock(lock_);
uploaded_y_image = SkImages::TextureFromImage(
context_->GrContext(), uploaded_y_image, image_needs_mips);
uploaded_u_image = SkImages::TextureFromImage(
context_->GrContext(), uploaded_u_image, image_needs_mips);
uploaded_v_image = SkImages::TextureFromImage(
context_->GrContext(), uploaded_v_image, image_needs_mips);
if (!uploaded_y_image || !uploaded_u_image || !uploaded_v_image) {
DLOG(WARNING) << "TODO(crbug.com/41329554): Context was lost. Early out.";
return;
}
int image_width = uploaded_y_image->width();
int image_height = uploaded_y_image->height();
uploaded_image = CreateImageFromYUVATexturesInternal(
uploaded_y_image.get(), uploaded_u_image.get(), uploaded_v_image.get(),
image_width, image_height,
image_data->info.yuva->yuvaInfo().planeConfig(),
image_data->info.yuva->yuvaInfo().subsampling(),
image_data->info.yuva->yuvaInfo().yuvColorSpace(), color_space,
decoded_color_space);
}
// At-raster may have decoded this while we were unlocked. If so, ignore our
// result.
if (image_data->HasUploadedData()) {
if (uploaded_image) {
DCHECK(uploaded_y_image);
DCHECK(uploaded_u_image);
DCHECK(uploaded_v_image);
// We do not call DeleteSkImageAndPreventCaching for |uploaded_image|
// because calls to GetBackendTextureFromImage will flatten the YUV planes
// to an RGB texture only to immediately delete it.
DeleteSkImageAndPreventCaching(context_, std::move(uploaded_y_image));
DeleteSkImageAndPreventCaching(context_, std::move(uploaded_u_image));
DeleteSkImageAndPreventCaching(context_, std::move(uploaded_v_image));
}
return;
}
// TODO(crbug.com/41329554): |uploaded_image| is sometimes null in certain
// context-lost situations, so it is handled with an early out.
if (!uploaded_image || !uploaded_y_image || !uploaded_u_image ||
!uploaded_v_image) {
DLOG(WARNING) << "TODO(crbug.com/41329554): Context was lost. Early out.";
return;
}
uploaded_y_image = TakeOwnershipOfSkImageBacking(context_->GrContext(),
std::move(uploaded_y_image));
uploaded_u_image = TakeOwnershipOfSkImageBacking(context_->GrContext(),
std::move(uploaded_u_image));
uploaded_v_image = TakeOwnershipOfSkImageBacking(context_->GrContext(),
std::move(uploaded_v_image));
image_data->upload.SetImage(std::move(uploaded_image),
image_data->info.yuva.has_value());
image_data->upload.SetYuvImage(std::move(uploaded_y_image),
std::move(uploaded_u_image),
std::move(uploaded_v_image));
// If we have a new GPU-backed image, initialize it for use in the GPU
// discardable system.
if (image_data->mode == DecodedDataMode::kGpu) {
// Notify the discardable system of the planes so they will count against
// budgets.
context_->RasterInterface()->InitializeDiscardableTextureCHROMIUM(
image_data->upload.gl_y_id());
context_->RasterInterface()->InitializeDiscardableTextureCHROMIUM(
image_data->upload.gl_u_id());
context_->RasterInterface()->InitializeDiscardableTextureCHROMIUM(
image_data->upload.gl_v_id());
}
}
void GpuImageDecodeCache::UploadImageIfNecessary_GpuCpu_RGBA(
const DrawImage& draw_image,
ImageData* image_data,
sk_sp<SkImage> uploaded_image,
skgpu::Mipmapped image_needs_mips,
sk_sp<SkColorSpace> color_space) {
DCHECK(!use_transfer_cache_);
DCHECK(!image_data->info.yuva.has_value());
// Prevent image_data from being deleted while lock is not held.
scoped_refptr<ImageData> image_data_holder(image_data);
// RGBX decoding is below.
// For kGpu, we upload and color convert (if necessary).
if (image_data->mode == DecodedDataMode::kGpu) {
DCHECK(!use_transfer_cache_);
base::AutoUnlock unlock(lock_);
uploaded_image = MakeTextureImage(context_, std::move(uploaded_image),
color_space, image_needs_mips);
}
// At-raster may have decoded this while we were unlocked. If so, ignore our
// result.
if (image_data->upload.image()) {
if (uploaded_image)
DeleteSkImageAndPreventCaching(context_, std::move(uploaded_image));
return;
}
// Take ownership of any GL texture backing for the SkImage. This allows
// us to use the image with the discardable system.
if (uploaded_image) {
uploaded_image = TakeOwnershipOfSkImageBacking(context_->GrContext(),
std::move(uploaded_image));
}
// TODO(crbug.com/41329554): uploaded_image is sometimes null in certain
// context-lost situations.
if (!uploaded_image) {
DLOG(WARNING) << "TODO(crbug.com/41329554): Context was lost. Early out.";
return;
}
image_data->upload.SetImage(std::move(uploaded_image));
// If we have a new GPU-backed image, initialize it for use in the GPU
// discardable system.
if (image_data->mode == DecodedDataMode::kGpu) {
// Notify the discardable system of this image so it will count against
// budgets.
context_->RasterInterface()->InitializeDiscardableTextureCHROMIUM(
image_data->upload.gl_id());
}
}
scoped_refptr<GpuImageDecodeCache::ImageData>
GpuImageDecodeCache::CreateImageData(const DrawImage& draw_image,
bool allow_hardware_decode,
bool speculative_decode) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::CreateImageData");
std::array<ImageInfo, kAuxImageCount> image_info;
// Extract ImageInfo and SkImageInfo for the default image, assuming software
// decoding to RGBA.
const auto [sk_image_info, upload_scale_mip_level] =
CreateImageInfoForDrawImage(draw_image, AuxImage::kDefault);
image_info[kAuxImageIndexDefault] = ImageInfo(sk_image_info);
bool needs_mips = ShouldGenerateMips(draw_image, AuxImage::kDefault,
upload_scale_mip_level);
// Extract ImageInfo and SkImageInfo for the gainmap image, if it exists,
// assuming software decoindg to RGBA.
const bool has_gainmap = draw_image.paint_image().HasGainmap();
SkImageInfo gainmap_sk_image_info;
ImageInfo gainmap_info;
if (has_gainmap) {
gainmap_sk_image_info = std::get<0>(
CreateImageInfoForDrawImage(draw_image, AuxImage::kGainmap));
image_info[kAuxImageIndexGainmap] = ImageInfo(gainmap_sk_image_info);
}
// Determine if the image can fit in a texture (to determine mode and RGBA vs
// YUVA decode).
const bool image_larger_than_max_texture =
sk_image_info.width() > max_texture_size_ ||
sk_image_info.height() > max_texture_size_ ||
(has_gainmap && (gainmap_sk_image_info.width() > max_texture_size_ ||
gainmap_sk_image_info.height() > max_texture_size_));
DecodedDataMode mode;
if (use_transfer_cache_) {
mode = DecodedDataMode::kTransferCache;
} else if (image_larger_than_max_texture) {
// Image too large to upload. Try to use SW fallback.
mode = DecodedDataMode::kCpu;
} else {
mode = DecodedDataMode::kGpu;
}
// We need to cache the result of color conversion on the cpu if the image
// will be color converted during the decode.
auto decode_color_space = ColorSpaceForImageDecode(draw_image, mode);
const bool cache_color_conversion_on_cpu =
decode_color_space &&
!SkColorSpace::Equals(decode_color_space.get(),
draw_image.paint_image().color_space());
// |is_bitmap_backed| specifies whether the image has pixel data which can
// directly be used for the upload. This will be the case for non-lazy images
// used at the original scale. In these cases, we don't internally cache any
// cpu component for the image.
// However, if the image will be scaled or color converts on the cpu, we
// consider it a lazy image and cache the scaled result in discardable memory.
const bool is_bitmap_backed = !draw_image.paint_image().IsLazyGenerated() &&
upload_scale_mip_level == 0 &&
!cache_color_conversion_on_cpu;
// Figure out if we will do hardware accelerated decoding. The criteria is as
// follows:
//
// - The caller allows hardware decodes.
// - We are using the transfer cache (OOP-R).
// - The image does not require downscaling for uploading (see TODO below).
// - The image does not have a gainmap.
// - The image is supported according to the profiles advertised by the GPU
// service.
//
// TODO(crbug.com/40623374): currently, we don't support scaling with hardware
// decode acceleration. Note that it's still okay for the image to be
// downscaled by Skia using the GPU.
const ImageHeaderMetadata* image_metadata =
draw_image.paint_image().GetImageHeaderMetadata();
bool can_do_hardware_accelerated_decode = false;
bool do_hardware_accelerated_decode = false;
if (allow_hardware_decode && mode == DecodedDataMode::kTransferCache &&
upload_scale_mip_level == 0 && !has_gainmap &&
context_->ContextSupport()->CanDecodeWithHardwareAcceleration(
image_metadata)) {
DCHECK(image_metadata);
DCHECK_EQ(image_metadata->image_size.width(),
draw_image.paint_image().width());
DCHECK_EQ(image_metadata->image_size.height(),
draw_image.paint_image().height());
can_do_hardware_accelerated_decode = true;
const bool is_jpeg = (image_metadata->image_type == ImageType::kJPEG);
const bool is_webp = (image_metadata->image_type == ImageType::kWEBP);
if ((is_jpeg && allow_accelerated_jpeg_decodes_) ||
(is_webp && allow_accelerated_webp_decodes_)) {
do_hardware_accelerated_decode = true;
DCHECK(!is_bitmap_backed);
}
// Override the estimated size if we are doing hardware decode.
if (do_hardware_accelerated_decode) {
image_info[kAuxImageIndexDefault].size =
EstimateHardwareDecodedDataSize(image_metadata);
}
}
// Determine if we will do YUVA decoding for the image and the gainmap, and
// update `image_info` to reflect that.
if (!do_hardware_accelerated_decode && mode != DecodedDataMode::kCpu &&
!image_larger_than_max_texture) {
auto yuva_info = GetYUVADecodeInfo(draw_image, AuxImage::kDefault,
sk_image_info.dimensions(),
yuva_supported_data_types_);
if (yuva_info.has_value()) {
image_info[kAuxImageIndexDefault] = ImageInfo(yuva_info.value());
}
if (has_gainmap) {
auto gainmap_yuva_info = GetYUVADecodeInfo(
draw_image, AuxImage::kGainmap, gainmap_sk_image_info.dimensions(),
yuva_supported_data_types_);
if (gainmap_yuva_info.has_value()) {
image_info[kAuxImageIndexGainmap] =
ImageInfo(gainmap_yuva_info.value());
}
}
}
return base::WrapRefCounted(new ImageData(
draw_image.paint_image().stable_id(), mode,
draw_image.target_color_space(),
CalculateDesiredFilterQuality(draw_image), upload_scale_mip_level,
needs_mips, is_bitmap_backed, can_do_hardware_accelerated_decode,
do_hardware_accelerated_decode, speculative_decode, image_info));
}
void GpuImageDecodeCache::WillAddCacheEntry(const DrawImage& draw_image) {
// Remove any old entries for this image. We keep at-most 2 ContentIds for a
// PaintImage (pending and active tree).
auto& cache_entries =
paint_image_entries_[draw_image.paint_image().stable_id()];
cache_entries.count++;
auto& cached_content_ids = cache_entries.content_ids;
const PaintImage::ContentId new_content_id =
draw_image.frame_key().content_id();
if (cached_content_ids[0] == new_content_id ||
cached_content_ids[1] == new_content_id) {
return;
}
if (cached_content_ids[0] == PaintImage::kInvalidContentId) {
cached_content_ids[0] = new_content_id;
return;
}
if (cached_content_ids[1] == PaintImage::kInvalidContentId) {
cached_content_ids[1] = new_content_id;
return;
}
const PaintImage::ContentId content_id_to_remove =
std::min(cached_content_ids[0], cached_content_ids[1]);
const PaintImage::ContentId content_id_to_keep =
std::max(cached_content_ids[0], cached_content_ids[1]);
DCHECK_NE(content_id_to_remove, content_id_to_keep);
for (auto it = persistent_cache_.begin(); it != persistent_cache_.end();) {
if (it->first.content_id() != content_id_to_remove) {
++it;
} else {
it = RemoveFromPersistentCache(it);
}
}
// Removing entries from the persistent cache should not erase the tracking
// for the current paint_image, since we have 2 different content ids for it
// and only one of them was erased above.
DCHECK_NE(paint_image_entries_.count(draw_image.paint_image().stable_id()),
0u);
cached_content_ids[0] = content_id_to_keep;
cached_content_ids[1] = new_content_id;
}
void GpuImageDecodeCache::DeleteImage(ImageData* image_data) {
if (image_data->HasUploadedData()) {
DCHECK(!image_data->upload.is_locked());
if (image_data->mode == DecodedDataMode::kGpu) {
if (image_data->info.yuva.has_value()) {
images_pending_deletion_.push_back(image_data->upload.y_image());
images_pending_deletion_.push_back(image_data->upload.u_image());
images_pending_deletion_.push_back(image_data->upload.v_image());
yuv_images_pending_deletion_.push_back(image_data->upload.image());
} else {
images_pending_deletion_.push_back(image_data->upload.image());
}
}
if (image_data->mode == DecodedDataMode::kTransferCache)
ids_pending_deletion_.push_back(*image_data->upload.transfer_cache_id());
}
image_data->upload.Reset();
}
void GpuImageDecodeCache::UnlockImage(ImageData* image_data) {
DCHECK(image_data->HasUploadedData());
if (image_data->mode == DecodedDataMode::kGpu) {
if (image_data->info.yuva.has_value()) {
images_pending_unlock_.push_back(image_data->upload.y_image().get());
images_pending_unlock_.push_back(image_data->upload.u_image().get());
images_pending_unlock_.push_back(image_data->upload.v_image().get());
yuv_images_pending_unlock_.push_back(image_data->upload.image());
} else {
images_pending_unlock_.push_back(image_data->upload.image().get());
}
} else {
DCHECK(image_data->mode == DecodedDataMode::kTransferCache);
ids_pending_unlock_.push_back(*image_data->upload.transfer_cache_id());
}
image_data->upload.OnUnlock();
// If we were holding onto an unmipped image for deferring deletion, do it now
// it is guaranteed to have no-refs.
auto unmipped_image = image_data->upload.take_unmipped_image();
if (unmipped_image) {
if (image_data->info.yuva.has_value()) {
auto unmipped_y_image = image_data->upload.take_unmipped_y_image();
auto unmipped_u_image = image_data->upload.take_unmipped_u_image();
auto unmipped_v_image = image_data->upload.take_unmipped_v_image();
DCHECK(unmipped_y_image);
DCHECK(unmipped_u_image);
DCHECK(unmipped_v_image);
images_pending_deletion_.push_back(std::move(unmipped_y_image));
images_pending_deletion_.push_back(std::move(unmipped_u_image));
images_pending_deletion_.push_back(std::move(unmipped_v_image));
yuv_images_pending_deletion_.push_back(std::move(unmipped_image));
} else {
images_pending_deletion_.push_back(std::move(unmipped_image));
}
}
}
// YUV images are handled slightly differently because they are not themselves
// registered with the discardable memory system. We cannot use
// GlIdFromSkImage on these YUV SkImages to flush pending operations because
// doing so will flatten it to RGB.
void GpuImageDecodeCache::FlushYUVImages(
std::vector<sk_sp<SkImage>>* yuv_images) {
CheckContextLockAcquiredIfNecessary();
GrDirectContext* ctx = context_->GrContext();
for (auto& image : *yuv_images) {
ctx->flushAndSubmit(image);
}
yuv_images->clear();
}
// We always run pending operations in the following order:
// > Lock
// > Flush YUV images that will be unlocked
// > Unlock
// > Flush YUV images that will be deleted
// > Delete
// This ensures that:
// a) We never fully unlock an image that's pending lock (lock before unlock)
// b) We never delete an image that has pending locks/unlocks.
// c) We never unlock or delete the underlying texture planes for a YUV
// image before all operations referencing it have completed.
//
// As this can be run at-raster, to unlock/delete an image that was just used,
// we need to call GlIdFromSkImage, which flushes pending IO on the image,
// rather than just using a cached GL ID.
// YUV images are handled slightly differently because they are backed by
// texture images but are not themselves registered with the discardable memory
// system. We wait to delete the pointer to a YUV image until we have a context
// lock and its textures have been deleted.
void GpuImageDecodeCache::RunPendingContextThreadOperations() {
CheckContextLockAcquiredIfNecessary();
for (SkImage* image : images_pending_complete_lock_) {
context_->ContextSupport()->CompleteLockDiscardableTexureOnContextThread(
GlIdFromSkImage(image));
}
images_pending_complete_lock_.clear();
FlushYUVImages(&yuv_images_pending_unlock_);
for (SkImage* image : images_pending_unlock_) {
context_->RasterInterface()->UnlockDiscardableTextureCHROMIUM(
GlIdFromSkImage(image));
}
images_pending_unlock_.clear();
for (auto id : ids_pending_unlock_) {
context_->ContextSupport()->UnlockTransferCacheEntries({std::make_pair(
static_cast<uint32_t>(TransferCacheEntryType::kImage), id)});
}
ids_pending_unlock_.clear();
FlushYUVImages(&yuv_images_pending_deletion_);
for (auto& image : images_pending_deletion_) {
uint32_t texture_id = GlIdFromSkImage(image.get());
if (context_->RasterInterface()->LockDiscardableTextureCHROMIUM(
texture_id)) {
context_->RasterInterface()->DeleteGpuRasterTexture(texture_id);
}
}
images_pending_deletion_.clear();
for (auto id : ids_pending_deletion_) {
if (context_->ContextSupport()->ThreadsafeLockTransferCacheEntry(
static_cast<uint32_t>(TransferCacheEntryType::kImage), id)) {
context_->ContextSupport()->DeleteTransferCacheEntry(
static_cast<uint32_t>(TransferCacheEntryType::kImage), id);
}
}
ids_pending_deletion_.clear();
}
std::tuple<SkImageInfo, int> GpuImageDecodeCache::CreateImageInfoForDrawImage(
const DrawImage& draw_image,
AuxImage aux_image) const {
const int upload_scale_mip_level =
CalculateUploadScaleMipLevel(draw_image, aux_image);
gfx::Size mip_size =
CalculateSizeForMipLevel(draw_image, aux_image, upload_scale_mip_level);
// Decide the SkColorType for the buffer for the PaintImage to draw or
// decode into. Default to using the cache's color type.
SkColorType color_type = color_type_;
// The PaintImage will identify that its content is high bit depth by setting
// its SkColorType to kRGBA_F16_SkColorType. Always decode high bit depth WCG
// and HDR content as high bit depth, to avoid quantization artifacts.
// https://crbug.com/1363056: See effects of tone mapping applied to dithered
// low bit depth images.
// https://crbug.com/1266456: Do not attempt to decode non high bit depth
// images as high bit depth or they might not appear.
// https://crbug.com/1076568: See historical discussions.
const auto image_color_type =
draw_image.paint_image().GetSkImageInfo(aux_image).colorType();
if (image_color_type == kRGBA_F16_SkColorType &&
draw_image.paint_image().GetContentColorUsage() !=
gfx::ContentColorUsage::kSRGB) {
color_type = kRGBA_F16_SkColorType;
}
return {SkImageInfo::Make(mip_size.width(), mip_size.height(), color_type,
kPremul_SkAlphaType),
upload_scale_mip_level};
}
bool GpuImageDecodeCache::TryLockImage(HaveContextLock have_context_lock,
const DrawImage& draw_image,
ImageData* data) {
DCHECK(data->HasUploadedData());
if (data->upload.is_locked())
return true;
if (data->mode == DecodedDataMode::kTransferCache) {
DCHECK(use_transfer_cache_);
DCHECK(data->upload.transfer_cache_id());
if (context_->ContextSupport()->ThreadsafeLockTransferCacheEntry(
static_cast<uint32_t>(TransferCacheEntryType::kImage),
*data->upload.transfer_cache_id())) {
data->upload.OnLock();
return true;
}
} else if (have_context_lock == HaveContextLock::kYes) {
auto* ri = context_->RasterInterface();
// If |have_context_lock|, we can immediately lock the image and send
// the lock command to the GPU process.
// TODO(crbug.com/40606304): Add Chrome GL extension to upload texture
// array.
if (data->info.yuva.has_value() &&
ri->LockDiscardableTextureCHROMIUM(data->upload.gl_y_id()) &&
ri->LockDiscardableTextureCHROMIUM(data->upload.gl_u_id()) &&
ri->LockDiscardableTextureCHROMIUM(data->upload.gl_v_id())) {
DCHECK(!use_transfer_cache_);
DCHECK(data->mode == DecodedDataMode::kGpu);
data->upload.OnLock();
return true;
} else if (!data->info.yuva.has_value() &&
ri->LockDiscardableTextureCHROMIUM(data->upload.gl_id())) {
DCHECK(!use_transfer_cache_);
DCHECK(data->mode == DecodedDataMode::kGpu);
data->upload.OnLock();
return true;
}
} else {
// If !|have_context_lock|, we use
// ThreadsafeShallowLockDiscardableTexture. This takes a reference to the
// image, ensuring that it can't be deleted by the service, but delays
// sending a lock command over the command buffer. This command must be
// sent before the image is used, but is now guaranteed to succeed. We
// will send this command via
// CompleteLockDiscardableTextureOnContextThread in
// UploadImageIfNecessary, which is guaranteed to run before the texture
// is used.
auto* context_support = context_->ContextSupport();
if (data->info.yuva.has_value() &&
context_support->ThreadSafeShallowLockDiscardableTexture(
data->upload.gl_y_id()) &&
context_support->ThreadSafeShallowLockDiscardableTexture(
data->upload.gl_u_id()) &&
context_support->ThreadSafeShallowLockDiscardableTexture(
data->upload.gl_v_id())) {
DCHECK(!use_transfer_cache_);
DCHECK(data->mode == DecodedDataMode::kGpu);
data->upload.OnLock();
images_pending_complete_lock_.push_back(data->upload.y_image().get());
images_pending_complete_lock_.push_back(data->upload.u_image().get());
images_pending_complete_lock_.push_back(data->upload.v_image().get());
return true;
} else if (!data->info.yuva.has_value() &&
context_support->ThreadSafeShallowLockDiscardableTexture(
data->upload.gl_id())) {
DCHECK(!use_transfer_cache_);
DCHECK(data->mode == DecodedDataMode::kGpu);
data->upload.OnLock();
images_pending_complete_lock_.push_back(data->upload.image().get());
return true;
}
}
// Couldn't lock, abandon the image.
DeleteImage(data);
return false;
}
// Tries to find an ImageData that can be used to draw the provided
// |draw_image|. First looks for an exact entry in our |in_use_cache_|. If one
// cannot be found, it looks for a compatible entry in our |persistent_cache_|.
GpuImageDecodeCache::ImageData* GpuImageDecodeCache::GetImageDataForDrawImage(
const DrawImage& draw_image,
const InUseCacheKey& key,
bool record_speculative_decode_stats) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"GpuImageDecodeCache::GetImageDataForDrawImage");
DCHECK(UseCacheForDrawImage(draw_image));
auto found_in_use = in_use_cache_.find(key);
if (found_in_use != in_use_cache_.end()) {
scoped_refptr<ImageData>& image_data = found_in_use->second.image_data;
if (image_data->IsSpeculativeDecode() && record_speculative_decode_stats) {
if (!image_data->SpeculativeDecodeHasMatched()) {
TRACE_EVENT_INSTANT2(TRACE_DISABLED_BY_DEFAULT("loading"),
"SpeculativeImageDecodeInUseMatch",
TRACE_EVENT_SCOPE_THREAD, "image_id",
image_data->paint_image_id, "raster_mip_level",
key.mip_level());
}
image_data->RecordSpeculativeDecodeMatch(
image_data->upload_scale_mip_level);
}
return image_data.get();
}
auto found_persistent = persistent_cache_.Get(draw_image.frame_key());
if (found_persistent != persistent_cache_.end()) {
scoped_refptr<ImageData>& image_data = found_persistent->second;
bool first_match = !image_data->SpeculativeDecodeHasMatched();
if (image_data->IsSpeculativeDecode() && record_speculative_decode_stats) {
image_data->RecordSpeculativeDecodeMatch(key.mip_level());
}
if (IsCompatible(image_data.get(), draw_image)) {
image_data->last_use = base::TimeTicks::Now();
if (image_data->IsSpeculativeDecode() &&
record_speculative_decode_stats) {
if (first_match) {
TRACE_EVENT_INSTANT2(TRACE_DISABLED_BY_DEFAULT("loading"),
"SpeculativeImageDecodeCompatibleMatch",
TRACE_EVENT_SCOPE_THREAD, "image_id",
image_data->paint_image_id, "raster_mip_level",
key.mip_level());
}
}
return image_data.get();
} else {
if (image_data->IsSpeculativeDecode() &&
record_speculative_decode_stats) {
TRACE_EVENT_INSTANT2(TRACE_DISABLED_BY_DEFAULT("loading"),
"SpeculativeImageDecodeIncompatibleMatch",
TRACE_EVENT_SCOPE_THREAD, "image_id",
image_data->paint_image_id, "raster_mip_level",
key.mip_level());
}
RemoveFromPersistentCache(found_persistent);
}
}
return nullptr;
}
// Determines if we can draw the provided |draw_image| using the provided
// |image_data|. This is true if the |image_data| is not scaled, or if it
// is scaled at an equal or larger scale and equal or larger quality to
// the provided |draw_image|.
bool GpuImageDecodeCache::IsCompatible(const ImageData* image_data,
const DrawImage& draw_image) const {
const bool is_scaled = image_data->upload_scale_mip_level != 0;
const bool scale_is_compatible =
CalculateUploadScaleMipLevel(draw_image, AuxImage::kDefault) >=
image_data->upload_scale_mip_level;
auto desired_quality = CalculateDesiredFilterQuality(draw_image);
bool quality_is_compatible = desired_quality <= image_data->quality;
if (base::FeatureList::IsEnabled(
features::kPreserveDiscardableImageMapQuality)) {
// Nearest neighbor is used for `image-rendering: pixelated` which is not
// compatible with higher qualities.
if (desired_quality == PaintFlags::FilterQuality::kNone &&
image_data->quality != PaintFlags::FilterQuality::kNone) {
quality_is_compatible = false;
}
}
if (is_scaled && (!scale_is_compatible || !quality_is_compatible)) {
return false;
}
// This is overly pessimistic. If the image is tone mapped or decoded to
// YUV, then the target color space is ignored anyway.
const bool color_is_compatible =
image_data->target_color_space == draw_image.target_color_space();
if (!color_is_compatible)
return false;
return true;
}
size_t GpuImageDecodeCache::GetDrawImageSizeForTesting(const DrawImage& image) {
base::AutoLock lock(lock_);
scoped_refptr<ImageData> data = CreateImageData(
image, false /* allow_hardware_decode */, false /* speculative_decode */);
return data->GetTotalSize();
}
void GpuImageDecodeCache::SetImageDecodingFailedForTesting(
const DrawImage& image) {
base::AutoLock lock(lock_);
auto found = persistent_cache_.Peek(image.frame_key());
CHECK(found != persistent_cache_.end());
ImageData* image_data = found->second.get();
image_data->decode.decode_failure = true;
}
bool GpuImageDecodeCache::DiscardableIsLockedForTesting(
const DrawImage& image) {
base::AutoLock lock(lock_);
auto found = persistent_cache_.Peek(image.frame_key());
CHECK(found != persistent_cache_.end());
ImageData* image_data = found->second.get();
return image_data->decode.is_locked();
}
bool GpuImageDecodeCache::IsInInUseCacheForTesting(
const DrawImage& image) const {
base::AutoLock locker(lock_);
auto found = in_use_cache_.find(InUseCacheKeyFromDrawImage(image));
return found != in_use_cache_.end();
}
bool GpuImageDecodeCache::IsInPersistentCacheForTesting(
const DrawImage& image) const {
base::AutoLock locker(lock_);
auto found = persistent_cache_.Peek(image.frame_key());
return found != persistent_cache_.end();
}
sk_sp<SkImage> GpuImageDecodeCache::GetSWImageDecodeForTesting(
const DrawImage& image) {
base::AutoLock lock(lock_);
auto found = persistent_cache_.Peek(image.frame_key());
CHECK(found != persistent_cache_.end());
ImageData* image_data = found->second.get();
DCHECK(!image_data->info.yuva.has_value());
return image_data->decode.ImageForTesting();
}
// Used for in-process-raster YUV decoding tests, where we often need the
// SkImages for each underlying plane because asserting or requesting fields for
// the YUV SkImage may flatten it to RGB or not be possible to request.
sk_sp<SkImage> GpuImageDecodeCache::GetUploadedPlaneForTesting(
const DrawImage& draw_image,
YUVIndex index) {
base::AutoLock lock(lock_);
ImageData* image_data = GetImageDataForDrawImage(
draw_image, InUseCacheKeyFromDrawImage(draw_image));
if (!image_data->info.yuva.has_value()) {
return nullptr;
}
switch (index) {
case YUVIndex::kY:
return image_data->upload.y_image();
case YUVIndex::kU:
return image_data->upload.u_image();
case YUVIndex::kV:
return image_data->upload.v_image();
default:
return nullptr;
}
}
size_t GpuImageDecodeCache::GetDarkModeImageCacheSizeForTesting(
const DrawImage& draw_image) {
base::AutoLock lock(lock_);
ImageData* image_data = GetImageDataForDrawImage(
draw_image, InUseCacheKeyFromDrawImage(draw_image));
return image_data ? image_data->decode.dark_mode_color_filter_cache.size()
: 0u;
}
bool GpuImageDecodeCache::NeedsDarkModeFilterForTesting(
const DrawImage& draw_image) {
base::AutoLock lock(lock_);
ImageData* image_data = GetImageDataForDrawImage(
draw_image, InUseCacheKeyFromDrawImage(draw_image));
return NeedsDarkModeFilter(draw_image, image_data);
}
void GpuImageDecodeCache::TouchCacheEntryForTesting(
const DrawImage& draw_image) {
base::AutoLock locker(lock_);
ImageData* image_data = GetImageDataForDrawImage(
draw_image, InUseCacheKeyFromDrawImage(draw_image));
image_data->last_use = base::TimeTicks::Now();
}
void GpuImageDecodeCache::OnMemoryPressure(
base::MemoryPressureListener::MemoryPressureLevel level) {
if (!ImageDecodeCacheUtils::ShouldEvictCaches(level))
return;
base::AutoLock lock(lock_);
base::AutoReset<bool> reset(&aggressively_freeing_resources_, true);
ReduceCacheUsageLocked();
}
bool GpuImageDecodeCache::AcquireContextLockForTesting() {
if (!context_->GetLock()) {
return false;
}
return context_->GetLock()->Try();
}
void GpuImageDecodeCache::ReleaseContextLockForTesting()
NO_THREAD_SAFETY_ANALYSIS {
if (!context_->GetLock()) {
return;
}
context_->GetLock()->Release();
}
bool GpuImageDecodeCache::SupportsColorSpaceConversion() const {
switch (color_type_) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
case kRGBA_F16_SkColorType:
return true;
default:
return false;
}
}
sk_sp<SkColorSpace> GpuImageDecodeCache::ColorSpaceForImageDecode(
const DrawImage& image,
DecodedDataMode mode) const {
if (!SupportsColorSpaceConversion())
return nullptr;
// For kGpu or kTransferCache images color conversion is handled during
// upload, so keep the original colorspace here.
return sk_ref_sp(image.paint_image().color_space());
}
void GpuImageDecodeCache::CheckContextLockAcquiredIfNecessary() {
if (!context_->GetLock())
return;
context_->GetLock()->AssertAcquired();
}
sk_sp<SkImage> GpuImageDecodeCache::CreateImageFromYUVATexturesInternal(
const SkImage* uploaded_y_image,
const SkImage* uploaded_u_image,
const SkImage* uploaded_v_image,
const int image_width,
const int image_height,
const SkYUVAInfo::PlaneConfig yuva_plane_config,
const SkYUVAInfo::Subsampling yuva_subsampling,
const SkYUVColorSpace yuv_color_space,
sk_sp<SkColorSpace> target_color_space,
sk_sp<SkColorSpace> decoded_color_space) const {
DCHECK(uploaded_y_image);
DCHECK(uploaded_u_image);
DCHECK(uploaded_v_image);
SkYUVAInfo yuva_info({image_width, image_height}, yuva_plane_config,
yuva_subsampling, yuv_color_space);
GrBackendTexture yuv_textures[3]{};
CHECK(SkImages::GetBackendTextureFromImage(uploaded_y_image, &yuv_textures[0],
false));
CHECK(SkImages::GetBackendTextureFromImage(uploaded_u_image, &yuv_textures[1],
false));
CHECK(SkImages::GetBackendTextureFromImage(uploaded_v_image, &yuv_textures[2],
false));
GrYUVABackendTextures yuva_backend_textures(yuva_info, yuv_textures,
kTopLeft_GrSurfaceOrigin);
DCHECK(yuva_backend_textures.isValid());
if (target_color_space && SkColorSpace::Equals(target_color_space.get(),
decoded_color_space.get())) {
target_color_space = nullptr;
}
sk_sp<SkImage> yuva_image = SkImages::TextureFromYUVATextures(
context_->GrContext(), yuva_backend_textures,
std::move(decoded_color_space));
if (target_color_space && yuva_image) {
return yuva_image->makeColorSpace(context_->GrContext(),
target_color_space);
}
return yuva_image;
}
void GpuImageDecodeCache::UpdateMipsIfNeeded(const DrawImage& draw_image,
ImageData* image_data) {
CheckContextLockAcquiredIfNecessary();
// If we already have mips, nothing to do.
if (image_data->needs_mips)
return;
bool needs_mips = ShouldGenerateMips(draw_image, AuxImage::kDefault,
image_data->upload_scale_mip_level);
if (!needs_mips)
return;
image_data->needs_mips = true;
// If we have no uploaded image, nothing to do other than update needs_mips.
// Mips will be generated during later upload.
if (!image_data->HasUploadedData() ||
image_data->mode != DecodedDataMode::kGpu)
return;
if (image_data->info.yuva.has_value()) {
// Need to generate mips. Take a reference on the planes we're about to
// delete, delaying deletion.
// TODO(crbug.com/40604431): Change after alpha support.
sk_sp<SkImage> previous_y_image = image_data->upload.y_image();
sk_sp<SkImage> previous_u_image = image_data->upload.u_image();
sk_sp<SkImage> previous_v_image = image_data->upload.v_image();
// Generate a new image from the previous, adding mips.
sk_sp<SkImage> image_y_with_mips = SkImages::TextureFromImage(
context_->GrContext(), previous_y_image, skgpu::Mipmapped::kYes);
sk_sp<SkImage> image_u_with_mips = SkImages::TextureFromImage(
context_->GrContext(), previous_u_image, skgpu::Mipmapped::kYes);
sk_sp<SkImage> image_v_with_mips = SkImages::TextureFromImage(
context_->GrContext(), previous_v_image, skgpu::Mipmapped::kYes);
// Handle lost context.
if (!image_y_with_mips || !image_u_with_mips || !image_v_with_mips) {
DLOG(WARNING) << "TODO(crbug.com/41329554): Context was lost. Early out.";
return;
}
// No need to do anything if mipping this image results in the same
// textures. Deleting it below will result in lifetime issues.
// We expect that if one plane mips the same, the others should as well.
if (GlIdFromSkImage(image_y_with_mips.get()) ==
image_data->upload.gl_y_id() &&
GlIdFromSkImage(image_u_with_mips.get()) ==
image_data->upload.gl_u_id() &&
GlIdFromSkImage(image_v_with_mips.get()) ==
image_data->upload.gl_v_id())
return;
// Skia owns our new image planes, take ownership.
sk_sp<SkImage> image_y_with_mips_owned = TakeOwnershipOfSkImageBacking(
context_->GrContext(), std::move(image_y_with_mips));
sk_sp<SkImage> image_u_with_mips_owned = TakeOwnershipOfSkImageBacking(
context_->GrContext(), std::move(image_u_with_mips));
sk_sp<SkImage> image_v_with_mips_owned = TakeOwnershipOfSkImageBacking(
context_->GrContext(), std::move(image_v_with_mips));
// Handle lost context
if (!image_y_with_mips_owned || !image_u_with_mips_owned ||
!image_v_with_mips_owned) {
DLOG(WARNING) << "TODO(crbug.com/41329554): Context was lost. Early out.";
return;
}
int width = image_y_with_mips_owned->width();
int height = image_y_with_mips_owned->height();
sk_sp<SkColorSpace> color_space =
SupportsColorSpaceConversion() &&
draw_image.target_color_space().IsValid()
? draw_image.target_color_space().ToSkColorSpace()
: nullptr;
sk_sp<SkColorSpace> upload_color_space =
ColorSpaceForImageDecode(draw_image, image_data->mode);
sk_sp<SkImage> yuv_image_with_mips_owned =
CreateImageFromYUVATexturesInternal(
image_y_with_mips_owned.get(), image_u_with_mips_owned.get(),
image_v_with_mips_owned.get(), width, height,
image_data->info.yuva->yuvaInfo().planeConfig(),
image_data->info.yuva->yuvaInfo().subsampling(),
image_data->info.yuva->yuvaInfo().yuvColorSpace(), color_space,
upload_color_space);
// In case of lost context
if (!yuv_image_with_mips_owned) {
DLOG(WARNING) << "TODO(crbug.com/41329554): Context was lost. Early out.";
return;
}
// The previous images might be in the in-use cache, potentially held
// externally. We must defer deleting them until the entry is unlocked.
image_data->upload.set_unmipped_image(image_data->upload.image());
image_data->upload.set_unmipped_yuv_images(image_data->upload.y_image(),
image_data->upload.u_image(),
image_data->upload.v_image());
// Set the new image on the cache.
image_data->upload.Reset();
image_data->upload.SetImage(std::move(yuv_image_with_mips_owned));
image_data->upload.SetYuvImage(std::move(image_y_with_mips_owned),
std::move(image_u_with_mips_owned),
std::move(image_v_with_mips_owned));
context_->RasterInterface()->InitializeDiscardableTextureCHROMIUM(
image_data->upload.gl_y_id());
context_->RasterInterface()->InitializeDiscardableTextureCHROMIUM(
image_data->upload.gl_u_id());
context_->RasterInterface()->InitializeDiscardableTextureCHROMIUM(
image_data->upload.gl_v_id());
return; // End YUV mip mapping.
}
// Begin RGBX mip mapping.
// Need to generate mips. Take a reference on the image we're about to
// delete, delaying deletion.
sk_sp<SkImage> previous_image = image_data->upload.image();
// Generate a new image from the previous, adding mips.
sk_sp<SkImage> image_with_mips = SkImages::TextureFromImage(
context_->GrContext(), previous_image, skgpu::Mipmapped::kYes);
// Handle lost context.
if (!image_with_mips) {
DLOG(WARNING) << "TODO(crbug.com/41329554): Context was lost. Early out.";
return;
}
// No need to do anything if mipping this image results in the same texture.
// Deleting it below will result in lifetime issues.
if (GlIdFromSkImage(image_with_mips.get()) == image_data->upload.gl_id())
return;
// Skia owns our new image, take ownership.
sk_sp<SkImage> image_with_mips_owned = TakeOwnershipOfSkImageBacking(
context_->GrContext(), std::move(image_with_mips));
// Handle lost context
if (!image_with_mips_owned) {
DLOG(WARNING) << "TODO(crbug.com/41329554): Context was lost. Early out.";
return;
}
// The previous image might be in the in-use cache, potentially held
// externally. We must defer deleting it until the entry is unlocked.
image_data->upload.set_unmipped_image(image_data->upload.image());
// Set the new image on the cache.
image_data->upload.Reset();
image_data->upload.SetImage(std::move(image_with_mips_owned));
context_->RasterInterface()->InitializeDiscardableTextureCHROMIUM(
image_data->upload.gl_id());
}
// static
scoped_refptr<TileTask> GpuImageDecodeCache::GetTaskFromMapForClientId(
const ClientId client_id,
const ImageTaskMap& task_map) {
auto task_it = std::ranges::find_if(
task_map,
[client_id](
const std::pair<ClientId, scoped_refptr<TileTask>> task_item) {
return client_id == task_item.first;
});
if (task_it != task_map.end())
return task_it->second;
return nullptr;
}
base::TimeDelta GpuImageDecodeCache::get_purge_interval() {
return base::Seconds(30);
}
base::TimeDelta GpuImageDecodeCache::get_max_purge_age() {
return base::Seconds(30);
}
} // namespace cc
|