File: authenticator.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (181 lines) | stat: -rw-r--r-- 6,774 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "chrome/browser/ash/child_accounts/parent_access_code/authenticator.h"

#include <utility>
#include <vector>

#include "base/logging.h"
#include "base/numerics/byte_conversions.h"
#include "base/strings/stringprintf.h"
#include "crypto/hash.h"
#include "crypto/hmac.h"

namespace ash {
namespace parent_access {

namespace {

// Value ranges for access code config data.
constexpr base::TimeDelta kMinCodeValidity = base::Seconds(60);
constexpr base::TimeDelta kMaxCodeValidity = base::Minutes(60);
constexpr base::TimeDelta kMinClockDriftTolerance = base::Minutes(0);
constexpr base::TimeDelta kMaxClockDriftTolerance = base::Minutes(30);

// Dictionary keys used to serialize access code config data.
constexpr char kSharedSecretDictKey[] = "shared_secret";
constexpr char kCodeValidityDictKey[] = "access_code_ttl";
constexpr char kClockDriftDictKey[] = "clock_drift_tolerance";

}  // namespace

// static
std::optional<AccessCodeConfig> AccessCodeConfig::FromDictionary(
    const base::Value::Dict& dict) {
  const std::string* secret = dict.FindString(kSharedSecretDictKey);
  if (!secret || secret->empty())
    return std::nullopt;

  std::optional<int> validity = dict.FindInt(kCodeValidityDictKey);
  if (!(validity.has_value() && *validity >= kMinCodeValidity.InSeconds() &&
        *validity <= kMaxCodeValidity.InSeconds())) {
    return std::nullopt;
  }

  std::optional<int> clock_drift = dict.FindInt(kClockDriftDictKey);
  if (!(clock_drift.has_value() &&
        *clock_drift >= kMinClockDriftTolerance.InSeconds() &&
        *clock_drift <= kMaxClockDriftTolerance.InSeconds())) {
    return std::nullopt;
  }

  return AccessCodeConfig(*secret, base::Seconds(*validity),
                          base::Seconds(*clock_drift));
}

AccessCodeConfig::AccessCodeConfig(const std::string& shared_secret,
                                   base::TimeDelta code_validity,
                                   base::TimeDelta clock_drift_tolerance)
    : shared_secret_(shared_secret),
      code_validity_(code_validity),
      clock_drift_tolerance_(clock_drift_tolerance) {
  DCHECK(!shared_secret_.empty());
  DCHECK(code_validity_ >= kMinCodeValidity);
  DCHECK(code_validity_ <= kMaxCodeValidity);
  DCHECK(clock_drift_tolerance_ >= kMinClockDriftTolerance);
  DCHECK(clock_drift_tolerance_ <= kMaxClockDriftTolerance);
}

AccessCodeConfig::AccessCodeConfig(AccessCodeConfig&&) = default;

AccessCodeConfig& AccessCodeConfig::operator=(AccessCodeConfig&&) = default;

AccessCodeConfig::~AccessCodeConfig() = default;

base::Value::Dict AccessCodeConfig::ToDictionary() const {
  base::Value::Dict config;
  config.Set(kSharedSecretDictKey, base::Value(shared_secret_));
  config.Set(kCodeValidityDictKey,
             base::Value(static_cast<int>(code_validity_.InSeconds())));
  config.Set(kClockDriftDictKey,
             base::Value(static_cast<int>(clock_drift_tolerance_.InSeconds())));
  return config;
}

AccessCode::AccessCode(const std::string& code,
                       base::Time valid_from,
                       base::Time valid_to)
    : code_(code), valid_from_(valid_from), valid_to_(valid_to) {
  DCHECK_EQ(6u, code_.length());
  DCHECK_GT(valid_to_, valid_from_);
}

AccessCode::AccessCode(const AccessCode&) = default;

AccessCode& AccessCode::operator=(const AccessCode&) = default;

AccessCode::~AccessCode() = default;

std::ostream& operator<<(std::ostream& out, const AccessCode& code) {
  return out << code.code() << " [" << code.valid_from() << " - "
             << code.valid_to() << "]";
}

// static
constexpr base::TimeDelta Authenticator::kAccessCodeGranularity;

Authenticator::Authenticator(AccessCodeConfig config)
    : config_(std::move(config)) {}

Authenticator::~Authenticator() = default;

std::optional<AccessCode> Authenticator::Generate(base::Time timestamp) const {
  DCHECK_LE(base::Time::UnixEpoch(), timestamp);

  // We find the beginning of the interval for the given timestamp and adjust by
  // the granularity.
  const int64_t interval = timestamp.InMillisecondsSinceUnixEpoch() /
                           config_.code_validity().InMilliseconds();
  const int64_t interval_beginning_timestamp =
      interval * config_.code_validity().InMilliseconds();
  const int64_t adjusted_timestamp =
      interval_beginning_timestamp / kAccessCodeGranularity.InMilliseconds();

  std::array<uint8_t, sizeof(uint64_t)> big_endian_timestamp =
      base::U64ToBigEndian(
          // NOTE: This will convert negative numbers to large positive ones.
          static_cast<uint64_t>(adjusted_timestamp));

  auto digest = crypto::hmac::SignSha1(
      base::as_byte_span(config_.shared_secret()), big_endian_timestamp);

  // Read 4 bytes in Big-endian order starting from |offset|.
  const size_t offset = digest.back() & 0xf;
  int32_t result =
      base::U32FromBigEndian(base::span(digest).subspan(offset).first<4>());
  // Clear sign bit.
  result &= 0x7fffffff;

  const base::Time valid_from =
      base::Time::FromMillisecondsSinceUnixEpoch(interval_beginning_timestamp);
  return AccessCode(base::StringPrintf("%06d", result % 1000000), valid_from,
                    valid_from + config_.code_validity());
}

std::optional<AccessCode> Authenticator::Validate(const std::string& code,
                                                  base::Time timestamp) const {
  DCHECK_LE(base::Time::UnixEpoch(), timestamp);

  base::Time valid_from = timestamp - config_.clock_drift_tolerance();
  if (valid_from < base::Time::UnixEpoch())
    valid_from = base::Time::UnixEpoch();
  return ValidateInRange(code, valid_from,
                         timestamp + config_.clock_drift_tolerance());
}

std::optional<AccessCode> Authenticator::ValidateInRange(
    const std::string& code,
    base::Time valid_from,
    base::Time valid_to) const {
  DCHECK_LE(base::Time::UnixEpoch(), valid_from);
  DCHECK_GE(valid_to, valid_from);

  const int64_t start_interval = valid_from.InMillisecondsSinceUnixEpoch() /
                                 kAccessCodeGranularity.InMilliseconds();
  const int64_t end_interval = valid_to.InMillisecondsSinceUnixEpoch() /
                               kAccessCodeGranularity.InMilliseconds();
  for (int i = start_interval; i <= end_interval; ++i) {
    const base::Time generation_timestamp =
        base::Time::FromMillisecondsSinceUnixEpoch(
            i * kAccessCodeGranularity.InMilliseconds());
    std::optional<AccessCode> pac = Generate(generation_timestamp);
    if (pac.has_value() && pac->code() == code)
      return pac;
  }
  return std::nullopt;
}

}  // namespace parent_access
}  // namespace ash