1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/ash/child_accounts/parent_access_code/authenticator.h"
#include <utility>
#include <vector>
#include "base/logging.h"
#include "base/numerics/byte_conversions.h"
#include "base/strings/stringprintf.h"
#include "crypto/hash.h"
#include "crypto/hmac.h"
namespace ash {
namespace parent_access {
namespace {
// Value ranges for access code config data.
constexpr base::TimeDelta kMinCodeValidity = base::Seconds(60);
constexpr base::TimeDelta kMaxCodeValidity = base::Minutes(60);
constexpr base::TimeDelta kMinClockDriftTolerance = base::Minutes(0);
constexpr base::TimeDelta kMaxClockDriftTolerance = base::Minutes(30);
// Dictionary keys used to serialize access code config data.
constexpr char kSharedSecretDictKey[] = "shared_secret";
constexpr char kCodeValidityDictKey[] = "access_code_ttl";
constexpr char kClockDriftDictKey[] = "clock_drift_tolerance";
} // namespace
// static
std::optional<AccessCodeConfig> AccessCodeConfig::FromDictionary(
const base::Value::Dict& dict) {
const std::string* secret = dict.FindString(kSharedSecretDictKey);
if (!secret || secret->empty())
return std::nullopt;
std::optional<int> validity = dict.FindInt(kCodeValidityDictKey);
if (!(validity.has_value() && *validity >= kMinCodeValidity.InSeconds() &&
*validity <= kMaxCodeValidity.InSeconds())) {
return std::nullopt;
}
std::optional<int> clock_drift = dict.FindInt(kClockDriftDictKey);
if (!(clock_drift.has_value() &&
*clock_drift >= kMinClockDriftTolerance.InSeconds() &&
*clock_drift <= kMaxClockDriftTolerance.InSeconds())) {
return std::nullopt;
}
return AccessCodeConfig(*secret, base::Seconds(*validity),
base::Seconds(*clock_drift));
}
AccessCodeConfig::AccessCodeConfig(const std::string& shared_secret,
base::TimeDelta code_validity,
base::TimeDelta clock_drift_tolerance)
: shared_secret_(shared_secret),
code_validity_(code_validity),
clock_drift_tolerance_(clock_drift_tolerance) {
DCHECK(!shared_secret_.empty());
DCHECK(code_validity_ >= kMinCodeValidity);
DCHECK(code_validity_ <= kMaxCodeValidity);
DCHECK(clock_drift_tolerance_ >= kMinClockDriftTolerance);
DCHECK(clock_drift_tolerance_ <= kMaxClockDriftTolerance);
}
AccessCodeConfig::AccessCodeConfig(AccessCodeConfig&&) = default;
AccessCodeConfig& AccessCodeConfig::operator=(AccessCodeConfig&&) = default;
AccessCodeConfig::~AccessCodeConfig() = default;
base::Value::Dict AccessCodeConfig::ToDictionary() const {
base::Value::Dict config;
config.Set(kSharedSecretDictKey, base::Value(shared_secret_));
config.Set(kCodeValidityDictKey,
base::Value(static_cast<int>(code_validity_.InSeconds())));
config.Set(kClockDriftDictKey,
base::Value(static_cast<int>(clock_drift_tolerance_.InSeconds())));
return config;
}
AccessCode::AccessCode(const std::string& code,
base::Time valid_from,
base::Time valid_to)
: code_(code), valid_from_(valid_from), valid_to_(valid_to) {
DCHECK_EQ(6u, code_.length());
DCHECK_GT(valid_to_, valid_from_);
}
AccessCode::AccessCode(const AccessCode&) = default;
AccessCode& AccessCode::operator=(const AccessCode&) = default;
AccessCode::~AccessCode() = default;
std::ostream& operator<<(std::ostream& out, const AccessCode& code) {
return out << code.code() << " [" << code.valid_from() << " - "
<< code.valid_to() << "]";
}
// static
constexpr base::TimeDelta Authenticator::kAccessCodeGranularity;
Authenticator::Authenticator(AccessCodeConfig config)
: config_(std::move(config)) {}
Authenticator::~Authenticator() = default;
std::optional<AccessCode> Authenticator::Generate(base::Time timestamp) const {
DCHECK_LE(base::Time::UnixEpoch(), timestamp);
// We find the beginning of the interval for the given timestamp and adjust by
// the granularity.
const int64_t interval = timestamp.InMillisecondsSinceUnixEpoch() /
config_.code_validity().InMilliseconds();
const int64_t interval_beginning_timestamp =
interval * config_.code_validity().InMilliseconds();
const int64_t adjusted_timestamp =
interval_beginning_timestamp / kAccessCodeGranularity.InMilliseconds();
std::array<uint8_t, sizeof(uint64_t)> big_endian_timestamp =
base::U64ToBigEndian(
// NOTE: This will convert negative numbers to large positive ones.
static_cast<uint64_t>(adjusted_timestamp));
auto digest = crypto::hmac::SignSha1(
base::as_byte_span(config_.shared_secret()), big_endian_timestamp);
// Read 4 bytes in Big-endian order starting from |offset|.
const size_t offset = digest.back() & 0xf;
int32_t result =
base::U32FromBigEndian(base::span(digest).subspan(offset).first<4>());
// Clear sign bit.
result &= 0x7fffffff;
const base::Time valid_from =
base::Time::FromMillisecondsSinceUnixEpoch(interval_beginning_timestamp);
return AccessCode(base::StringPrintf("%06d", result % 1000000), valid_from,
valid_from + config_.code_validity());
}
std::optional<AccessCode> Authenticator::Validate(const std::string& code,
base::Time timestamp) const {
DCHECK_LE(base::Time::UnixEpoch(), timestamp);
base::Time valid_from = timestamp - config_.clock_drift_tolerance();
if (valid_from < base::Time::UnixEpoch())
valid_from = base::Time::UnixEpoch();
return ValidateInRange(code, valid_from,
timestamp + config_.clock_drift_tolerance());
}
std::optional<AccessCode> Authenticator::ValidateInRange(
const std::string& code,
base::Time valid_from,
base::Time valid_to) const {
DCHECK_LE(base::Time::UnixEpoch(), valid_from);
DCHECK_GE(valid_to, valid_from);
const int64_t start_interval = valid_from.InMillisecondsSinceUnixEpoch() /
kAccessCodeGranularity.InMilliseconds();
const int64_t end_interval = valid_to.InMillisecondsSinceUnixEpoch() /
kAccessCodeGranularity.InMilliseconds();
for (int i = start_interval; i <= end_interval; ++i) {
const base::Time generation_timestamp =
base::Time::FromMillisecondsSinceUnixEpoch(
i * kAccessCodeGranularity.InMilliseconds());
std::optional<AccessCode> pac = Generate(generation_timestamp);
if (pac.has_value() && pac->code() == code)
return pac;
}
return std::nullopt;
}
} // namespace parent_access
} // namespace ash
|