File: suggestions_service_client.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (214 lines) | stat: -rw-r--r-- 7,547 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// Copyright 2021 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "chrome/browser/ash/input_method/suggestions_service_client.h"

#include <optional>

#include "ash/constants/ash_features.h"
#include "base/functional/bind.h"
#include "base/metrics/field_trial_params.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "chrome/browser/ash/input_method/suggestion_enums.h"
#include "chromeos/services/machine_learning/public/cpp/service_connection.h"

namespace ash {
namespace input_method {
namespace {

using ::chromeos::machine_learning::mojom::MultiWordExperimentGroup;
using ::chromeos::machine_learning::mojom::NextWordCompletionCandidate;
using ::chromeos::machine_learning::mojom::TextSuggesterQuery;
using ::chromeos::machine_learning::mojom::TextSuggesterResultPtr;
using ::chromeos::machine_learning::mojom::TextSuggesterSpec;
using ::chromeos::machine_learning::mojom::TextSuggestionCandidatePtr;
using ime::AssistiveSuggestion;
using ime::AssistiveSuggestionMode;
using ime::AssistiveSuggestionType;

constexpr size_t kMaxNumberCharsSent = 100;

MultiWordExperimentGroup GetExperimentGroup(const std::string& finch_trial) {
  if (finch_trial == "gboard") {
    return MultiWordExperimentGroup::kGboard;
  }
  if (finch_trial == "gboard_relaxed_a") {
    return MultiWordExperimentGroup::kGboardRelaxedA;
  }
  if (finch_trial == "gboard_relaxed_b") {
    return MultiWordExperimentGroup::kGboardRelaxedB;
  }
  if (finch_trial == "gboard_relaxed_c") {
    return MultiWordExperimentGroup::kGboardRelaxedC;
  }
  if (finch_trial == "gboard_d") {
    return MultiWordExperimentGroup::kGboardD;
  }
  if (finch_trial == "gboard_e") {
    return MultiWordExperimentGroup::kGboardE;
  }
  if (finch_trial == "gboard_f") {
    return MultiWordExperimentGroup::kGboardF;
  }
  return MultiWordExperimentGroup::kGboardE;
}

chromeos::machine_learning::mojom::TextSuggestionMode ToTextSuggestionModeMojom(
    AssistiveSuggestionMode suggestion_mode) {
  switch (suggestion_mode) {
    case AssistiveSuggestionMode::kCompletion:
      return chromeos::machine_learning::mojom::TextSuggestionMode::kCompletion;
    case AssistiveSuggestionMode::kPrediction:
      return chromeos::machine_learning::mojom::TextSuggestionMode::kPrediction;
  }
}

std::optional<AssistiveSuggestion> ToAssistiveSuggestion(
    const TextSuggestionCandidatePtr& candidate,
    const AssistiveSuggestionMode& suggestion_mode) {
  if (!candidate->is_multi_word()) {
    // TODO(crbug/1146266): Handle emoji suggestions
    return std::nullopt;
  }

  return AssistiveSuggestion{.mode = suggestion_mode,
                             .type = AssistiveSuggestionType::kMultiWord,
                             .text = candidate->get_multi_word()->text};
}

std::string TrimText(const std::string& text) {
  size_t text_length = text.length();
  return text_length > kMaxNumberCharsSent
             ? text.substr(text_length - kMaxNumberCharsSent)
             : text;
}

MultiWordSuggestionType ToSuggestionType(
    const ime::AssistiveSuggestionMode& suggestion_mode) {
  switch (suggestion_mode) {
    case ime::AssistiveSuggestionMode::kCompletion:
      return MultiWordSuggestionType::kCompletion;
    case ime::AssistiveSuggestionMode::kPrediction:
      return MultiWordSuggestionType::kPrediction;
    default:
      return MultiWordSuggestionType::kUnknown;
  }
}

void RecordRequestLatency(base::TimeDelta delta) {
  base::UmaHistogramTimes(
      "InputMethod.Assistive.CandidateGenerationTime.MultiWord", delta);
}

void RecordPrecedingTextLength(size_t text_length) {
  base::UmaHistogramCounts1000(
      "InputMethod.Assistive.MultiWord.PrecedingTextLength", text_length);
}

void RecordRequestCandidates(
    const ime::AssistiveSuggestionMode& suggestion_mode) {
  base::UmaHistogramEnumeration(
      "InputMethod.Assistive.MultiWord.RequestCandidates",
      ToSuggestionType(suggestion_mode));
}

void RecordEmptyCandidate(const ime::AssistiveSuggestionMode& suggestion_mode) {
  UMA_HISTOGRAM_ENUMERATION("InputMethod.Assistive.MultiWord.EmptyCandidate",
                            ToSuggestionType(suggestion_mode));
}

void RecordCandidatesGenerated(AssistiveSuggestionMode suggestion_mode) {
  base::UmaHistogramEnumeration(
      "InputMethod.Assistive.MultiWord.CandidatesGenerated",
      ToSuggestionType(suggestion_mode));
}

}  // namespace

SuggestionsServiceClient::SuggestionsServiceClient() {
  std::string field_trial = base::GetFieldTrialParamValueByFeature(
      features::kAssistMultiWord, "group");
  auto spec = TextSuggesterSpec::New(GetExperimentGroup(field_trial));

  chromeos::machine_learning::ServiceConnection::GetInstance()
      ->GetMachineLearningService()
      .LoadTextSuggester(
          text_suggester_.BindNewPipeAndPassReceiver(), std::move(spec),
          base::BindOnce(&SuggestionsServiceClient::OnTextSuggesterLoaded,
                         weak_ptr_factory_.GetWeakPtr()));
}

SuggestionsServiceClient::~SuggestionsServiceClient() = default;

void SuggestionsServiceClient::OnTextSuggesterLoaded(
    chromeos::machine_learning::mojom::LoadModelResult result) {
  text_suggester_loaded_ =
      result == chromeos::machine_learning::mojom::LoadModelResult::OK;
}

void SuggestionsServiceClient::RequestSuggestions(
    const std::string& preceding_text,
    const ime::AssistiveSuggestionMode& suggestion_mode,
    const std::vector<ime::DecoderCompletionCandidate>& completion_candidates,
    RequestSuggestionsCallback callback) {
  if (!IsAvailable()) {
    std::move(callback).Run({});
    return;
  }

  RecordPrecedingTextLength(preceding_text.size());
  RecordRequestCandidates(suggestion_mode);

  auto query = TextSuggesterQuery::New();
  query->text = TrimText(preceding_text);
  query->suggestion_mode = ToTextSuggestionModeMojom(suggestion_mode);

  for (const auto& candidate : completion_candidates) {
    auto next_word_candidate = NextWordCompletionCandidate::New();
    next_word_candidate->text = candidate.text;
    next_word_candidate->normalized_score = candidate.score;
    if (next_word_candidate->text.empty()) {
      RecordEmptyCandidate(suggestion_mode);
    }
    query->next_word_candidates.push_back(std::move(next_word_candidate));
  }

  text_suggester_->Suggest(
      std::move(query),
      base::BindOnce(&SuggestionsServiceClient::OnSuggestionsReturned,
                     base::Unretained(this), base::TimeTicks::Now(),
                     std::move(callback), suggestion_mode));
}

void SuggestionsServiceClient::OnSuggestionsReturned(
    base::TimeTicks time_request_was_made,
    RequestSuggestionsCallback callback,
    AssistiveSuggestionMode suggestion_mode_requested,
    chromeos::machine_learning::mojom::TextSuggesterResultPtr result) {
  std::vector<AssistiveSuggestion> suggestions;

  if (result->candidates.size() > 0) {
    RecordCandidatesGenerated(suggestion_mode_requested);
  }

  for (const auto& candidate : result->candidates) {
    auto suggestion =
        ToAssistiveSuggestion(std::move(candidate), suggestion_mode_requested);
    if (suggestion) {
      // Drop any unknown suggestions
      suggestions.push_back(suggestion.value());
    }
  }

  RecordRequestLatency(base::TimeTicks::Now() - time_request_was_made);
  std::move(callback).Run(suggestions);
}

bool SuggestionsServiceClient::IsAvailable() {
  return text_suggester_loaded_;
}

}  // namespace input_method
}  // namespace ash