1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/ash/power/auto_screen_brightness/gaussian_trainer.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include "ash/constants/ash_features.h"
#include "base/logging.h"
#include "base/metrics/field_trial_params.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "chrome/browser/ash/power/auto_screen_brightness/utils.h"
namespace ash {
namespace power {
namespace auto_screen_brightness {
namespace {
// These values are persisted to logs. Entries should not be renumbered and
// numeric values should never be reused.
// Logs whether a new brightness exceeded the reasonable distance from the old
// brightness. A reasonable distance is defined by the params
// |brightness_step_size| and |model_brightness_step_size|.
enum class BoundedBrightnessChange {
// User's chosen new brightness is within their [lower_bound, upper_bound].
kUserWithinBounds = 0,
// Target brightness has a reasonable distance model's predicted brightness.
kModelWithinBounds = 1,
// User's chosen new brightness is below their lower bound.
kUserLower = 2,
// User's chosen new brightness is above their upper bound.
kUserUpper = 3,
// Target brightness is below model's predicted brightness and exceeded the
// bound.
kModelLower = 4,
// Target brightness is above model's predicted brightness and exceeded the
// bound.
kModelUpper = 5,
kMaxValue = kModelUpper
};
// Returns a |BoundedBrightnessChange| to be logged to UMA.
// |is_lower_bound_exceeded| is nullopt if the new brightness is within the
// bounds.
BoundedBrightnessChange GetBoundedBrightnessChange(
std::optional<bool> is_lower_bound_exceeded,
bool is_user) {
if (!is_lower_bound_exceeded.has_value()) {
if (is_user) {
return BoundedBrightnessChange::kUserWithinBounds;
}
return BoundedBrightnessChange::kModelWithinBounds;
}
if (*is_lower_bound_exceeded) {
if (is_user) {
return BoundedBrightnessChange::kUserLower;
}
return BoundedBrightnessChange::kModelLower;
}
if (is_user) {
return BoundedBrightnessChange::kUserUpper;
}
return BoundedBrightnessChange::kModelUpper;
}
constexpr double kTol = 1e-10;
// Calculates lower bound from |reference_brightness| using the min of
// 1. Division by a scaling factor and
// 2. Subtraction of an offset.
double BrightnessLowerBound(double reference_brightness,
double scale,
double offset) {
DCHECK_GT(scale, 0.0);
DCHECK_GE(offset, 0.0);
return std::clamp(reference_brightness / scale, 0.0,
std::max(reference_brightness - offset, 0.0));
}
// Calculates upper bound from |reference_brightness| using the max of
// 1. Multiplication by a scaling factor and
// 2. Addition of an offset.
// The upper bound is also capped at 100.0.
double BrightnessUpperBound(double reference_brightness,
double scale,
double offset) {
DCHECK_GT(scale, 0.0);
DCHECK_GE(offset, 0.0);
return std::clamp(reference_brightness * scale,
std::min(reference_brightness + offset, 100.0), 100.0);
}
// Returns whether |brightness| is an outlier from a |reference_brightness|.
bool IsBrightnessOutlier(double brightness,
double reference_brightness,
const GaussianTrainer::Params& params) {
DCHECK_GE(reference_brightness, 0.0);
DCHECK_LE(reference_brightness, 100.0);
return brightness < BrightnessLowerBound(reference_brightness,
params.brightness_bound_scale,
params.brightness_bound_offset) ||
brightness > BrightnessUpperBound(reference_brightness,
params.brightness_bound_scale,
params.brightness_bound_offset);
}
// User's selected |brightness_new| may not be the value that the user needs for
// various reasons, e.g. they could overshoot. Hence this function calculates
// the bounded brightness change based on a heuristic magnitude. The new
// brightness is bounded within a factor of 1+|brightness_step_size| from
// |brightness_old|.
double BoundedBrightnessAdjustment(double brightness_old,
double brightness_new,
double brightness_step_size,
bool is_user) {
const double lower_bound = brightness_old / (1.0 + brightness_step_size);
const double upper_bound = brightness_old * (1.0 + brightness_step_size);
const bool exceeded_upper = brightness_new > upper_bound;
const bool exceeded_lower = brightness_new < lower_bound;
const BoundedBrightnessChange change = GetBoundedBrightnessChange(
exceeded_lower || exceeded_upper ? std::optional<bool>(exceeded_lower)
: std::nullopt,
is_user);
UMA_HISTOGRAM_ENUMERATION(
"AutoScreenBrightness.ModelTraining.BrightnessChange", change);
return std::clamp(brightness_new, lower_bound, upper_bound) - brightness_old;
}
// Calculates recommended brightness change, given old brightness, user's
// selected new brghtness and model's predicted brightness.
double ModelPredictionAdjustment(double brightness_old,
double brightness_new,
double model_brightness,
const GaussianTrainer::Params& params) {
DCHECK_GE(brightness_old, 0.0);
DCHECK_LE(brightness_old, 100.0);
DCHECK_GE(brightness_new, 0.0);
DCHECK_LE(brightness_new, 100.0);
DCHECK_GE(model_brightness, 0.0);
DCHECK_LE(model_brightness, 100.0);
const double bounded_user_adjustment = BoundedBrightnessAdjustment(
brightness_old, brightness_new, params.brightness_step_size,
true /* is_user */);
DCHECK_GE(bounded_user_adjustment, -100.0);
DCHECK_LE(bounded_user_adjustment, 100.0);
const double target_brightness = brightness_old + bounded_user_adjustment;
DCHECK_GE(target_brightness, 0.0);
DCHECK_LE(target_brightness, 100.0);
// Check if model prediction and user adjustment are consistent.
const bool is_consistent =
(model_brightness >= target_brightness && bounded_user_adjustment >= 0) ||
(model_brightness <= target_brightness && bounded_user_adjustment <= 0);
UMA_HISTOGRAM_BOOLEAN(
"AutoScreenBrightness.ModelTraining.ModelUserConsistent", is_consistent);
// If model's prediction is consistent with user's selection, then no
// brightness change will be necessary.
if (is_consistent) {
return 0.0;
}
// Model prediction is incorrect, calculate the change we need to make by
// treating |model_brightness| as the old brightness and |target_brightness|
// as the new brightness.
return BoundedBrightnessAdjustment(model_brightness, target_brightness,
params.model_brightness_step_size,
false /* is_user */);
}
double Gaussian(double x, double sigma) {
double xs = x / sigma;
return std::exp(-xs * xs);
}
void LogModelCurveError(double error, bool model_updated) {
DCHECK_GE(error, 0.0);
const std::string histogram_name =
std::string("AutoScreenBrightness.ModelTraining.Inaccuracy.") +
(model_updated ? "Update" : "NoUpdate");
base::UmaHistogramPercentageObsoleteDoNotUse(histogram_name,
std::round(error));
}
} // namespace
TrainingResult::TrainingResult() = default;
TrainingResult::TrainingResult(
const std::optional<MonotoneCubicSpline>& new_curve,
double error)
: new_curve(new_curve), error(error) {}
TrainingResult::TrainingResult(const TrainingResult& result) = default;
TrainingResult::~TrainingResult() = default;
GaussianTrainer::Params::Params() = default;
GaussianTrainer::GaussianTrainer() {
params_.brightness_bound_scale = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "brightness_bound_scale",
params_.brightness_bound_scale);
if (params_.brightness_bound_scale <= 0.0) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
params_.brightness_bound_offset = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "brightness_bound_offset",
params_.brightness_bound_offset);
if (params_.brightness_bound_offset < 0.0) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
params_.brightness_step_size = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "brightness_step_size",
params_.brightness_step_size);
if (params_.brightness_step_size <= 0.0) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
params_.model_brightness_step_size = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "model_brightness_step_size",
params_.model_brightness_step_size);
if (params_.model_brightness_step_size <= 0.0) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
params_.sigma = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "sigma", params_.sigma);
if (params_.sigma <= 0.0) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
params_.low_log_lux_threshold = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "low_log_lux_threshold",
params_.low_log_lux_threshold);
params_.high_log_lux_threshold = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "high_log_lux_threshold",
params_.high_log_lux_threshold);
if (params_.low_log_lux_threshold >= params_.high_log_lux_threshold) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
params_.min_grad_low_lux = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "min_grad_low_lux",
params_.min_grad_low_lux);
params_.min_grad_high_lux = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "min_grad_high_lux",
params_.min_grad_high_lux);
params_.min_grad = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "min_grad", params_.min_grad);
params_.max_grad = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "max_grad", params_.max_grad);
if (params_.min_grad_low_lux < 0.0 || params_.min_grad_low_lux >= 1.0) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
if (params_.min_grad_high_lux < 0.0 || params_.min_grad_high_lux >= 1.0) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
if (params_.min_grad < 0.0 || params_.min_grad >= 1.0) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
if (params_.min_grad < params_.min_grad_low_lux) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
if (params_.min_grad < params_.min_grad_high_lux) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
if (params_.max_grad < 1.0) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
params_.min_brightness = GetFieldTrialParamByFeatureAsDouble(
features::kAutoScreenBrightness, "min_brightness",
params_.min_brightness);
if (params_.min_brightness < 0.0) {
valid_params_ = false;
LogParameterError(ParameterError::kModelError);
return;
}
}
GaussianTrainer::~GaussianTrainer() = default;
bool GaussianTrainer::HasValidConfiguration() const {
return valid_params_;
}
bool GaussianTrainer::SetInitialCurves(
const MonotoneCubicSpline& global_curve,
const MonotoneCubicSpline& current_curve) {
DCHECK(valid_params_);
// This function could be called again if the caller wants to reset the
// curves.
global_curve_.emplace(global_curve);
current_curve_.emplace(current_curve);
ambient_log_lux_ = current_curve_->GetControlPointsX();
brightness_ = current_curve_->GetControlPointsY();
const size_t num_points = ambient_log_lux_.size();
// Global curve and personal curve should have the same ambient log lux.
const std::vector<double> global_log_lux = global_curve_->GetControlPointsX();
DCHECK_EQ(global_log_lux.size(), num_points);
for (size_t i = 0; i < num_points; ++i) {
DCHECK_LE(std::abs(global_log_lux[i] - ambient_log_lux_[i]), kTol);
}
// Calculate |min_ratios_| and |max_ratios_| from global curve.
min_ratios_.resize(num_points - 1);
max_ratios_.resize(num_points - 1);
const std::vector<double> global_brightness =
global_curve_->GetControlPointsY();
// TODO(jiameng): may revise to allow 0 as a control point.
DCHECK_GT(global_brightness[0], 0);
for (size_t i = 0; i < num_points - 1; ++i) {
double min_grad = params_.min_grad;
if (global_log_lux[i] < params_.low_log_lux_threshold) {
min_grad = params_.min_grad_low_lux;
} else if (global_log_lux[i] > params_.high_log_lux_threshold) {
min_grad = params_.min_grad_high_lux;
}
const double ratio = global_brightness[i + 1] / global_brightness[i];
DCHECK_GE(ratio, 1);
min_ratios_[i] = std::pow(ratio, min_grad);
max_ratios_[i] = std::pow(ratio, params_.max_grad);
}
if (!IsInitialPersonalCurveValid()) {
// Use global curve instead if personal curve isn't valid.
current_curve_.emplace(global_curve);
brightness_ = current_curve_->GetControlPointsY();
return false;
}
return true;
}
MonotoneCubicSpline GaussianTrainer::GetGlobalCurve() const {
DCHECK(valid_params_);
DCHECK(global_curve_);
return *global_curve_;
}
MonotoneCubicSpline GaussianTrainer::GetCurrentCurve() const {
DCHECK(valid_params_);
DCHECK(current_curve_);
return *current_curve_;
}
TrainingResult GaussianTrainer::Train(
const std::vector<TrainingDataPoint>& data) {
DCHECK(global_curve_);
DCHECK(current_curve_);
DCHECK(!data.empty());
for (const auto& data_point : data) {
AdjustCurveWithSingleDataPoint(data_point);
}
if (!need_to_update_curve_) {
const double error = CalculateCurveError(data);
LogModelCurveError(error, false /* model_updated */);
return TrainingResult(std::nullopt, error);
}
need_to_update_curve_ = false;
const auto new_curve = MonotoneCubicSpline::CreateMonotoneCubicSpline(
ambient_log_lux_, brightness_);
if (!new_curve) {
return TrainingResult(std::nullopt, 0 /* error */);
}
current_curve_ = new_curve;
const double error = CalculateCurveError(data);
LogModelCurveError(error, true /* model_updated */);
return TrainingResult(current_curve_, error);
}
bool GaussianTrainer::IsInitialPersonalCurveValid() const {
// |global_curve_| is valid by construction.
if (*global_curve_ == *current_curve_)
return true;
for (size_t i = 0; i < brightness_.size() - 1; ++i) {
const double ratio = brightness_[i + 1] / brightness_[i];
if (ratio < min_ratios_[i] || ratio > max_ratios_[i])
return false;
}
return true;
}
void GaussianTrainer::AdjustCurveWithSingleDataPoint(
const TrainingDataPoint& data) {
const double brightness_global =
global_curve_->Interpolate(data.ambient_log_lux);
// Check if this |data| is an outlier and should be ignored. It's an outlier
// if its original/old brightness is too far off from the brightness as
// predicted by the global curve. This assumes the global curve is reasonably
// accurate.
const bool is_brightness_outlier =
IsBrightnessOutlier(data.brightness_old, brightness_global, params_);
UMA_HISTOGRAM_BOOLEAN("AutoScreenBrightness.ModelTraining.BrightnessOutlier",
is_brightness_outlier);
if (is_brightness_outlier) {
return;
}
// Calculate how much adjustment we need to make to the current personal
// curve at |data.ambient_log_lux|.
const double model_brightness =
current_curve_->Interpolate(data.ambient_log_lux);
const double brightness_adjustment = ModelPredictionAdjustment(
data.brightness_old, data.brightness_new, model_brightness, params_);
if (std::abs(brightness_adjustment) <= kTol)
return;
need_to_update_curve_ = true;
// Index of the log-lux in |ambient_log_lux_| that's closest to
// |data.ambient_log_lux|.
size_t center_index = 0;
double min_dist = std::numeric_limits<double>::max();
for (size_t i = 0; i < ambient_log_lux_.size(); ++i) {
// Adjust brightness of each control point in the current brightness curve.
const double dist = std::abs(data.ambient_log_lux - ambient_log_lux_[i]);
brightness_[i] += brightness_adjustment * Gaussian(dist, params_.sigma);
if (dist < min_dist) {
center_index = i;
min_dist = dist;
}
}
EnforceMonotonicity(center_index);
}
void GaussianTrainer::EnforceMonotonicity(size_t center_index) {
DCHECK_LT(center_index, ambient_log_lux_.size());
brightness_[center_index] =
std::clamp(brightness_[center_index], params_.min_brightness, 100.0);
// Updates control points to the left of |center_index| so that brightness
// values satisfy min/max ratio requirement.
for (size_t i = center_index; i > 0; --i) {
const double min_value = brightness_[i] / max_ratios_[i - 1];
const double max_value = brightness_[i] / min_ratios_[i - 1];
brightness_[i - 1] = std::clamp(brightness_[i - 1], min_value, max_value);
if (brightness_[i - 1] > 100.0) {
brightness_[i - 1] = 100.0;
}
}
// Updates control points to the right of |center_index| so that brightness
// values satisfy min/max ratio requirement.
for (size_t i = center_index; i < ambient_log_lux_.size() - 1; ++i) {
const double min_value = brightness_[i] * min_ratios_[i];
const double max_value = brightness_[i] * max_ratios_[i];
brightness_[i + 1] = std::clamp(brightness_[i + 1], min_value, max_value);
if (brightness_[i + 1] > 100.0) {
brightness_[i + 1] = 100.0;
}
}
#ifndef NDEBUG
// Check that final |brightness_| array is monotonic across whole range and
// each value is in [0, 100].
for (size_t i = 0; i < ambient_log_lux_.size() - 1; ++i) {
DCHECK_GE(brightness_[i], 0);
DCHECK_LE(brightness_[i], 100);
DCHECK_LE(brightness_[i], brightness_[i + 1]);
}
DCHECK_GE(brightness_.back(), 0);
DCHECK_LE(brightness_.back(), 100);
#endif
}
double GaussianTrainer::CalculateCurveError(
const std::vector<TrainingDataPoint>& data) const {
DCHECK(current_curve_);
double error = 0.0;
for (const auto& data_point : data) {
error += std::abs(data_point.brightness_new -
current_curve_->Interpolate(data_point.ambient_log_lux));
}
return error / data.size();
}
} // namespace auto_screen_brightness
} // namespace power
} // namespace ash
|