1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/ash/power/auto_screen_brightness/monotone_cubic_spline.h"
#include <cmath>
#include "base/logging.h"
#include "base/metrics/histogram_functions.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
namespace ash {
namespace power {
namespace auto_screen_brightness {
namespace {
constexpr double kTol = 1e-10;
// Entries should not be renumbered and numeric values should never be reused.
enum class InvalidCurveReason {
kTooFewPoints = 0,
kUnequalXY = 1,
kKnotsNotIncreasing = 2,
kControlsDecreasing = 3,
kMaxValue = kControlsDecreasing
};
void LogError(InvalidCurveReason reason) {
base::UmaHistogramEnumeration("AutoScreenBrightness.InvalidCurveReason",
reason);
}
bool IsIncreasing(const std::vector<double>& data, bool is_strict) {
DCHECK_GT(data.size(), 1u);
for (size_t i = 1; i < data.size(); ++i) {
if (data[i] < data[i - 1] || (data[i] <= data[i - 1] && is_strict))
return false;
}
return true;
}
bool IsDataValid(const std::vector<double>& xs, const std::vector<double>& ys) {
const size_t num_points = xs.size();
if (num_points < 2) {
LogError(InvalidCurveReason::kTooFewPoints);
return false;
}
if (num_points != ys.size()) {
LogError(InvalidCurveReason::kUnequalXY);
return false;
}
if (!IsIncreasing(xs, true /* is_strict */)) {
LogError(InvalidCurveReason::kKnotsNotIncreasing);
return false;
}
if (!IsIncreasing(ys, false /* is_strict */)) {
LogError(InvalidCurveReason::kControlsDecreasing);
return false;
}
return true;
}
// Computes the tangents at every control point as the average of the secants,
// while ensuring monotonicity is preserved.
std::vector<double> ComputeTangents(const std::vector<double>& xs,
const std::vector<double>& ys,
size_t num_points) {
// Calculate the slopes of the secant lines between successive points.
std::vector<double> ds;
std::vector<double> ms;
for (size_t i = 0; i < num_points - 1; ++i) {
const double slope = (ys[i + 1] - ys[i]) / (xs[i + 1] - xs[i]);
DCHECK_GE(slope, 0);
ds.push_back(slope);
}
// Initialize the tangents at every point as the average of the secants, and
// use one-sided differences for endpoints.
ms.push_back(ds[0]);
for (size_t i = 1; i < num_points - 1; ++i) {
ms.push_back(0.5 * (ds[i - 1] + ds[i]));
}
ms.push_back(ds[num_points - 2]);
// Refine tangents to ensure spline monotonicity.
for (size_t i = 0; i < num_points - 1; ++i) {
if (ds[i] < kTol) {
// Successive points are equal, spline needs to be flat.
ms[i] = 0;
ms[i + 1] = 0;
} else {
const double a = ms[i] / ds[i];
const double b = ms[i + 1] / ds[i];
DCHECK_GE(a, 0.0);
DCHECK_GE(b, 0.0);
const double r = std::hypot(a, b);
if (r > 3.0) {
const double t = 3.0 / r;
ms[i] *= t;
ms[i + 1] *= t;
}
}
}
return ms;
}
} // namespace
MonotoneCubicSpline::MonotoneCubicSpline(const MonotoneCubicSpline& spline) =
default;
MonotoneCubicSpline& MonotoneCubicSpline::operator=(
const MonotoneCubicSpline& spline) = default;
MonotoneCubicSpline::~MonotoneCubicSpline() = default;
std::optional<MonotoneCubicSpline> MonotoneCubicSpline::FromString(
const std::string& data) {
std::vector<double> xs;
std::vector<double> ys;
if (data.empty())
return std::nullopt;
base::StringPairs key_value_pairs;
if (!base::SplitStringIntoKeyValuePairs(data, ',', '\n', &key_value_pairs)) {
LOG(ERROR) << "Ill-formatted spline";
return std::nullopt;
}
for (base::StringPairs::iterator it = key_value_pairs.begin();
it != key_value_pairs.end(); ++it) {
double x;
if (!base::StringToDouble(it->first, &x)) {
LOG(ERROR) << "Ill-formatted xs";
return std::nullopt;
}
double y;
if (!base::StringToDouble(it->second, &y)) {
LOG(ERROR) << "Ill-formatted ys";
return std::nullopt;
}
xs.push_back(x);
ys.push_back(y);
}
if (!IsDataValid(xs, ys))
return std::nullopt;
return MonotoneCubicSpline(xs, ys);
}
std::optional<MonotoneCubicSpline>
MonotoneCubicSpline::CreateMonotoneCubicSpline(const std::vector<double>& xs,
const std::vector<double>& ys) {
if (!IsDataValid(xs, ys))
return std::nullopt;
return MonotoneCubicSpline(xs, ys);
}
bool MonotoneCubicSpline::operator==(const MonotoneCubicSpline& spline) const {
if (xs_.size() != spline.xs_.size()) {
return false;
}
for (size_t i = 0; i < xs_.size(); ++i) {
if (std::abs(xs_[i] - spline.xs_[i]) >= kTol ||
std::abs(ys_[i] - spline.ys_[i]) >= kTol) {
return false;
}
}
return true;
}
double MonotoneCubicSpline::Interpolate(double x) const {
DCHECK_GT(num_points_, 1u);
if (x <= xs_[0])
return ys_[0];
if (x >= xs_.back())
return ys_.back();
// Get |x_lower| and |x_upper| so that |x_lower| <= |x| <= |x_upper|.
// Size of |xs_| is small, so linear search for upper & lower
// bounds will be ok.
size_t i = 1;
while (i < num_points_) {
const double curr = xs_[i];
if (curr == x) {
// Return exact value if |x| is a control point.
return ys_[i];
}
if (curr > x) {
break;
}
++i;
}
DCHECK_LT(i, num_points_);
const double x_upper = xs_[i];
const double x_lower = xs_[i - 1];
DCHECK_GE(x, x_lower);
DCHECK_LE(x, x_upper);
const double h = x_upper - x_lower;
const double t = (x - x_lower) / h;
return (ys_[i - 1] * (2 * t + 1) + h * ms_[i - 1] * t) * (t - 1) * (t - 1) +
(ys_[i] * (-2 * t + 3) + h * ms_[i] * (t - 1)) * t * t;
}
std::vector<double> MonotoneCubicSpline::GetControlPointsX() const {
return xs_;
}
std::vector<double> MonotoneCubicSpline::GetControlPointsY() const {
return ys_;
}
std::string MonotoneCubicSpline::ToString() const {
std::vector<std::string> rows;
for (size_t i = 0; i < num_points_; ++i) {
rows.push_back(base::JoinString(
{base::NumberToString(xs_[i]), base::NumberToString(ys_[i])}, ","));
}
return base::JoinString(rows, "\n");
}
MonotoneCubicSpline::MonotoneCubicSpline(const std::vector<double>& xs,
const std::vector<double>& ys)
: xs_(xs),
ys_(ys),
num_points_(xs.size()),
ms_(ComputeTangents(xs, ys, num_points_)) {}
} // namespace auto_screen_brightness
} // namespace power
} // namespace ash
|