File: cpu_data_collector.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (522 lines) | stat: -rw-r--r-- 21,669 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "chrome/browser/ash/power/cpu_data_collector.h"

#include <stddef.h>

#include <string_view>
#include <vector>

#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/system/sys_info.h"
#include "base/task/thread_pool.h"
#include "chrome/browser/ash/power/power_data_collector.h"
#include "content/public/browser/browser_thread.h"

namespace ash {

namespace {
// The sampling of CPU idle or CPU freq data should not take more than this
// limit.
constexpr int kSamplingDurationLimitMs = 500;

// The CPU data is sampled every |kCpuDataSamplePeriodSec| seconds.
constexpr int kCpuDataSamplePeriodSec = 30;

// The value in the file /sys/devices/system/cpu/cpu<n>/online which indicates
// that CPU-n is online.
constexpr int kCpuOnlineStatus = 1;

// The base of the path to the files and directories which contain CPU data in
// the sysfs.
constexpr char kCpuDataPathBase[] = "/sys/devices/system/cpu";

// Suffix of the path to the file listing the range of possible CPUs on the
// system.
constexpr char kPossibleCpuPathSuffix[] = "/possible";

// Format of the suffix of the path to the file which contains information
// about a particular CPU being online or offline.
constexpr char kCpuOnlinePathSuffixFormat[] = "/cpu%d/online";

// Format of the suffix of the path to the file which contains freq state
// information of a CPU.
constexpr char kCpuFreqTimeInStatePathSuffixFormat[] =
    "/cpu%d/cpufreq/stats/time_in_state";

// Format of the suffix of the path to the folder which contains time in state
// file. If the folder does not exist, current platform does not produce
// discrete CPU frequency data.
constexpr char kCpuFreqStatsPathSuffixFormat[] = "/cpu%d/cpufreq/stats";

// The path to the file which contains cpu freq state information of a CPU
// in 3.14.0 or newer kernels.
constexpr char kCpuFreqAllTimeInStatePath[] =
    "/sys/devices/system/cpu/cpufreq/all_time_in_state";

// Format of the suffix of the path to the directory which contains information
// about an idle state of a CPU on the system.
constexpr char kCpuIdleStateDirPathSuffixFormat[] = "/cpu%d/cpuidle/state%d";

// Format of the suffix of the path to the file which contains the name of an
// idle state of a CPU.
constexpr char kCpuIdleStateNamePathSuffixFormat[] =
    "/cpu%d/cpuidle/state%d/name";

// Format of the suffix of the path which contains information about time spent
// in an idle state on a CPU.
constexpr char kCpuIdleStateTimePathSuffixFormat[] =
    "/cpu%d/cpuidle/state%d/time";

// Returns the index at which |str| is in |vector|. If |str| is not present in
// |vector|, then it is added to it before its index is returned.
size_t EnsureInVector(const std::string& str,
                      std::vector<std::string>* vector) {
  for (size_t i = 0; i < vector->size(); ++i) {
    if (str == (*vector)[i])
      return i;
  }

  // If this is reached, then it means |str| is not present in vector.  Add it.
  vector->push_back(str);
  return vector->size() - 1;
}

// Returns true if the |i|-th CPU is online; false otherwise.
bool CpuIsOnline(const int i) {
  const std::string cpu_online_file =
      kCpuDataPathBase + base::StringPrintf(kCpuOnlinePathSuffixFormat, i);
  if (!base::PathExists(base::FilePath(cpu_online_file))) {
    // If the 'online' status file is missing, then it means that the CPU is
    // not hot-pluggable and hence is always online.
    return true;
  }

  int online;
  std::string cpu_online_string;
  if (base::ReadFileToString(base::FilePath(cpu_online_file),
                             &cpu_online_string)) {
    base::TrimWhitespaceASCII(cpu_online_string, base::TRIM_ALL,
                              &cpu_online_string);
    if (base::StringToInt(cpu_online_string, &online))
      return online == kCpuOnlineStatus;
  }

  LOG(ERROR) << "Bad format or error reading " << cpu_online_file << ". "
             << "Assuming offline.";
  return false;
}

// Samples the CPU idle state information from sysfs. |cpu_count| is the
// number of possible CPUs on the system. Sample at index i in |idle_samples|
// corresponds to the idle state information of the i-th CPU.
void SampleCpuIdleData(
    int cpu_count,
    std::vector<std::string>* cpu_idle_state_names,
    std::vector<CpuDataCollector::StateOccupancySample>* idle_samples) {
  base::Time start_time = base::Time::Now();
  for (int cpu = 0; cpu < cpu_count; ++cpu) {
    CpuDataCollector::StateOccupancySample idle_sample;
    idle_sample.time = base::Time::Now();
    idle_sample.time_in_state.reserve(cpu_idle_state_names->size());

    if (!CpuIsOnline(cpu)) {
      idle_sample.cpu_online = false;
    } else {
      idle_sample.cpu_online = true;

      for (int state_count = 0; ; ++state_count) {
        std::string idle_state_dir =
            kCpuDataPathBase +
            base::StringPrintf(kCpuIdleStateDirPathSuffixFormat, cpu,
                               state_count);
        // This insures us from the unlikely case wherein the 'cpuidle_stats'
        // kernel module is not loaded. This could happen on a VM.
        if (!base::DirectoryExists(base::FilePath(idle_state_dir)))
          break;

        const std::string name_file_path =
            kCpuDataPathBase +
            base::StringPrintf(kCpuIdleStateNamePathSuffixFormat, cpu,
                               state_count);
        DCHECK(base::PathExists(base::FilePath(name_file_path)));

        const std::string time_file_path =
            kCpuDataPathBase +
            base::StringPrintf(kCpuIdleStateTimePathSuffixFormat, cpu,
                               state_count);
        DCHECK(base::PathExists(base::FilePath(time_file_path)));

        std::string state_name, occupancy_time_string;
        int64_t occupancy_time_usec;
        if (!base::ReadFileToString(base::FilePath(name_file_path),
                                    &state_name) ||
            !base::ReadFileToString(base::FilePath(time_file_path),
                                    &occupancy_time_string)) {
          // If an error occurs reading/parsing single state data, drop all the
          // samples as an incomplete sample can mislead consumers of this
          // sample.
          LOG(ERROR) << "Error reading idle state from "
                     << idle_state_dir << ". Dropping sample.";
          idle_samples->clear();
          return;
        }

        base::TrimWhitespaceASCII(state_name, base::TRIM_ALL, &state_name);
        base::TrimWhitespaceASCII(occupancy_time_string, base::TRIM_ALL,
                                  &occupancy_time_string);
        if (base::StringToInt64(occupancy_time_string, &occupancy_time_usec)) {
          size_t index = EnsureInVector(state_name, cpu_idle_state_names);
          if (index >= idle_sample.time_in_state.size())
            idle_sample.time_in_state.resize(index + 1);
          idle_sample.time_in_state[index] =
              base::Microseconds(occupancy_time_usec);
        } else {
          LOG(ERROR) << "Bad format in " << time_file_path << ". "
                     << "Dropping sample.";
          idle_samples->clear();
          return;
        }
      }
    }

    idle_samples->push_back(idle_sample);
  }

  // If there was an interruption in sampling (like system suspended),
  // discard the samples!
  int64_t delay =
      base::TimeDelta(base::Time::Now() - start_time).InMilliseconds();
  if (delay > kSamplingDurationLimitMs) {
    idle_samples->clear();
    LOG(WARNING) << "Dropped an idle state sample due to excessive time delay: "
                 << delay << "milliseconds.";
  }
}

// Samples the CPU freq state information from sysfs. |cpu_count| is the
// number of possible CPUs on the system. Sample at index i in |freq_samples|
// corresponds to the freq state information of the i-th CPU.
void SampleCpuFreqData(
    int cpu_count,
    std::vector<std::string>* cpu_freq_state_names,
    std::vector<CpuDataCollector::StateOccupancySample>* freq_samples) {
  base::Time start_time = base::Time::Now();
  int online_cpu_count = 0;
  for (int cpu = 0; cpu < cpu_count; ++cpu) {
    CpuDataCollector::StateOccupancySample freq_sample;
    freq_sample.time_in_state.reserve(cpu_freq_state_names->size());
    freq_sample.time = base::Time::Now();
    freq_sample.cpu_online = CpuIsOnline(cpu);
    online_cpu_count += (freq_sample.cpu_online ? 1 : 0);
    freq_samples->push_back(freq_sample);
  }

  if (base::PathExists(base::FilePath(kCpuFreqAllTimeInStatePath))) {
    if (!CpuDataCollector::ReadCpuFreqAllTimeInState(
            online_cpu_count, base::FilePath(kCpuFreqAllTimeInStatePath),
            cpu_freq_state_names, freq_samples)) {
      freq_samples->clear();
      return;
    }
  } else {
    for (int cpu = 0; cpu < cpu_count; ++cpu) {
      if ((*freq_samples)[cpu].cpu_online) {
        const base::FilePath time_in_state_path(
            kCpuDataPathBase +
            base::StringPrintf(kCpuFreqTimeInStatePathSuffixFormat, cpu));
        if (base::PathExists(time_in_state_path)) {
          if (!CpuDataCollector::ReadCpuFreqTimeInState(
                  time_in_state_path, cpu_freq_state_names,
                  &(*freq_samples)[cpu])) {
            freq_samples->clear();
            return;
          }
        } else {
          freq_samples->clear();
          const base::FilePath cpu_freq_stats_path(
              kCpuDataPathBase +
              base::StringPrintf(kCpuFreqStatsPathSuffixFormat, cpu));
          if (!base::PathExists(cpu_freq_stats_path)) {
            // If the path to 'stats' folder for a single CPU is missing, then
            // current platform does not produce discrete CPU frequency data.
            // This could happen when intel_pstate driver is used for cpufreq
            // governor. Error message should not printed in this case.
            return;
          }
          // If the path to the 'time_in_state' for a single CPU is missing,
          // then 'time_in_state' for all CPUs is missing. This could happen
          // on a VM where the 'cpufreq_stats' kernel module is not loaded.
          LOG_IF(ERROR, base::SysInfo::IsRunningOnChromeOS())
              << "CPU freq stats not available in sysfs.";
          return;
        }
      }
    }
  }
  // If there was an interruption in sampling (like system suspended),
  // discard the samples!
  int64_t delay =
      base::TimeDelta(base::Time::Now() - start_time).InMilliseconds();
  if (delay > kSamplingDurationLimitMs) {
    freq_samples->clear();
    LOG(WARNING) << "Dropped a freq state sample due to excessive time delay: "
                 << delay << "milliseconds.";
  }
}

// Samples CPU idle and CPU freq data from sysfs. This function should run on
// the blocking pool as reading from sysfs is a blocking task. Elements at
// index i in |idle_samples| and |freq_samples| correspond to the idle and
// freq samples of CPU i. This also function reads the number of CPUs from
// sysfs if *|cpu_count| < 0.
void SampleCpuStateAsync(
    int* cpu_count,
    std::vector<std::string>* cpu_idle_state_names,
    std::vector<CpuDataCollector::StateOccupancySample>* idle_samples,
    std::vector<std::string>* cpu_freq_state_names,
    std::vector<CpuDataCollector::StateOccupancySample>* freq_samples) {
  DCHECK(!content::BrowserThread::CurrentlyOn(content::BrowserThread::UI));

  if (*cpu_count < 0) {
    // Set |cpu_count_| to 1. If it is something else, it will get corrected
    // later. A system will at least have one CPU. Hence, a value of 1 here
    // will serve as a default value in case of errors.
    *cpu_count = 1;
    const std::string possible_cpu_path = base::StringPrintf(
        "%s%s", kCpuDataPathBase, kPossibleCpuPathSuffix);
    if (!base::PathExists(base::FilePath(possible_cpu_path))) {
      LOG(ERROR) << "File listing possible CPUs missing. "
                 << "Defaulting CPU count to 1.";
    } else {
      std::string possible_string;
      if (base::ReadFileToString(base::FilePath(possible_cpu_path),
                                 &possible_string)) {
        int max_cpu;
        // The possible CPUs are listed in the format "0-N". Hence, N is present
        // in the substring starting at offset 2.
        base::TrimWhitespaceASCII(possible_string, base::TRIM_ALL,
                                  &possible_string);
        if (possible_string.find("-") != std::string::npos &&
            possible_string.length() > 2 &&
            base::StringToInt(possible_string.substr(2), &max_cpu)) {
          *cpu_count = max_cpu + 1;
        } else {
          LOG(ERROR) << "Unknown format in the file listing possible CPUs. "
                     << "Defaulting CPU count to 1.";
        }
      } else {
        LOG(ERROR) << "Error reading the file listing possible CPUs. "
                   << "Defaulting CPU count to 1.";
      }
    }
  }

  // Initialize the deques in the data vectors.
  SampleCpuIdleData(*cpu_count, cpu_idle_state_names, idle_samples);
  SampleCpuFreqData(*cpu_count, cpu_freq_state_names, freq_samples);
}

}  // namespace

bool CpuDataCollector::ReadCpuFreqTimeInState(
    const base::FilePath& path,
    std::vector<std::string>* cpu_freq_state_names,
    CpuDataCollector::StateOccupancySample* freq_sample) {
  std::string time_in_state_string;
  // Note time as close to reading the file as possible. This is
  // not possible for idle state samples as the information for
  // each state there is recorded in different files.
  if (!base::ReadFileToString(path, &time_in_state_string)) {
    LOG(ERROR) << "Error reading " << path.value() << "; Dropping sample.";
    return false;
  }
  // Remove trailing newlines.
  base::TrimWhitespaceASCII(time_in_state_string,
                            base::TrimPositions::TRIM_TRAILING,
                            &time_in_state_string);

  std::vector<std::string_view> lines = base::SplitStringPiece(
      time_in_state_string, "\n", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
  for (size_t line_num = 0; line_num < lines.size(); ++line_num) {
    int freq_in_khz;
    int64_t occupancy_time_centisecond;

    // Occupancy of each state is in the format "<state> <time>"
    std::vector<std::string_view> pair = base::SplitStringPiece(
        lines[line_num], " ", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
    if (pair.size() != 2 || !base::StringToInt(pair[0], &freq_in_khz) ||
        !base::StringToInt64(pair[1], &occupancy_time_centisecond)) {
      LOG(ERROR) << "Bad format at \"" << lines[line_num] << "\" in "
                 << path.value() << ". Dropping sample.";
      return false;
    }

    const std::string state_name = base::NumberToString(freq_in_khz / 1000);
    size_t index = EnsureInVector(state_name, cpu_freq_state_names);
    if (index >= freq_sample->time_in_state.size())
      freq_sample->time_in_state.resize(index + 1);
    freq_sample->time_in_state[index] =
        base::Milliseconds(occupancy_time_centisecond * 10);
  }
  return true;
}

bool CpuDataCollector::ReadCpuFreqAllTimeInState(
    int online_cpu_count,
    const base::FilePath& path,
    std::vector<std::string>* cpu_freq_state_names,
    std::vector<CpuDataCollector::StateOccupancySample>* freq_samples) {
  std::string all_time_in_state_string;
  // Note time as close to reading the file as possible. This is
  // not possible for idle state samples as the information for
  // each state there is recorded in different files.
  if (!base::ReadFileToString(path, &all_time_in_state_string)) {
    LOG(ERROR) << "Error reading " << path.value() << "; Dropping sample.";
    return false;
  }
  // Remove trailing newlines.
  base::TrimWhitespaceASCII(all_time_in_state_string,
                            base::TrimPositions::TRIM_TRAILING,
                            &all_time_in_state_string);

  std::vector<std::string_view> lines =
      base::SplitStringPiece(all_time_in_state_string, "\n",
                             base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
  // The first line is descriptions in the format "freq\t\tcpu0\t\tcpu1...".
  // Skip the first line, which contains column names.
  for (size_t line_num = 1; line_num < lines.size(); ++line_num) {
    // Occupancy of each state is in the format "<state>\t\t<time>\t\t<time>
    // ..."
    std::vector<std::string_view> array =
        base::SplitStringPiece(lines[line_num], "\t", base::TRIM_WHITESPACE,
                               base::SPLIT_WANT_NONEMPTY);
    int freq_in_khz;
    if (array.size() != static_cast<size_t>(online_cpu_count) + 1 ||
        !base::StringToInt(array[0], &freq_in_khz)) {
      LOG(ERROR) << "Bad format at \"" << lines[line_num] << "\" in "
                 << path.value() << ". Dropping sample.";
      return false;
    }

    const std::string state_name = base::NumberToString(freq_in_khz / 1000);
    size_t index = EnsureInVector(state_name, cpu_freq_state_names);
    for (int cpu = 0; cpu < online_cpu_count; ++cpu) {
      // array.size() is previously checked to be equal to online_cpu_count+1.
      // cpu ranges from [0,online_cpu_count), so cpu+1 never exceeds
      // online_cpu_count and is safe.
      if (array[cpu + 1] == "N/A") {
        continue;
      }
      if (index >= (*freq_samples)[cpu].time_in_state.size())
        (*freq_samples)[cpu].time_in_state.resize(index + 1);
      int64_t occupancy_time_centisecond;
      if (!base::StringToInt64(array[cpu + 1], &occupancy_time_centisecond)) {
        LOG(ERROR) << "Bad format at \"" << lines[line_num] << "\" in "
                   << path.value() << ". Dropping sample.";
        return false;
      }
      (*freq_samples)[cpu].time_in_state[index] =
          base::Milliseconds(occupancy_time_centisecond * 10);
    }
  }
  return true;
}

// Set |cpu_count_| to -1 and let SampleCpuStateAsync discover the
// correct number of CPUs.
CpuDataCollector::CpuDataCollector() : cpu_count_(-1) {}

CpuDataCollector::~CpuDataCollector() = default;

void CpuDataCollector::Start() {
  timer_.Start(FROM_HERE, base::Seconds(kCpuDataSamplePeriodSec), this,
               &CpuDataCollector::PostSampleCpuState);
}

void CpuDataCollector::PostSampleCpuState() {
  int* cpu_count = new int(cpu_count_);
  std::vector<std::string>* cpu_idle_state_names =
      new std::vector<std::string>(cpu_idle_state_names_);
  std::vector<StateOccupancySample>* idle_samples =
      new std::vector<StateOccupancySample>;
  std::vector<std::string>* cpu_freq_state_names =
      new std::vector<std::string>(cpu_freq_state_names_);
  std::vector<StateOccupancySample>* freq_samples =
      new std::vector<StateOccupancySample>;

  base::ThreadPool::PostTaskAndReply(
      FROM_HERE, {base::MayBlock(), base::TaskPriority::BEST_EFFORT},
      base::BindOnce(&SampleCpuStateAsync, base::Unretained(cpu_count),
                     base::Unretained(cpu_idle_state_names),
                     base::Unretained(idle_samples),
                     base::Unretained(cpu_freq_state_names),
                     base::Unretained(freq_samples)),
      base::BindOnce(
          &CpuDataCollector::SaveCpuStateSamplesOnUIThread,
          weak_ptr_factory_.GetWeakPtr(), base::Owned(cpu_count),
          base::Owned(cpu_idle_state_names), base::Owned(idle_samples),
          base::Owned(cpu_freq_state_names), base::Owned(freq_samples)));
}

void CpuDataCollector::SaveCpuStateSamplesOnUIThread(
    const int* cpu_count,
    const std::vector<std::string>* cpu_idle_state_names,
    const std::vector<CpuDataCollector::StateOccupancySample>* idle_samples,
    const std::vector<std::string>* cpu_freq_state_names,
    const std::vector<CpuDataCollector::StateOccupancySample>* freq_samples) {
  DCHECK_CURRENTLY_ON(content::BrowserThread::UI);

  cpu_count_ = *cpu_count;

  // |idle_samples| or |freq_samples| could be empty sometimes (for example, if
  // sampling was interrupted due to system suspension). Iff they are not empty,
  // they will have one sample each for each of the CPUs.

  if (!idle_samples->empty()) {
    // When committing the first sample, resize the data vector to the number of
    // CPUs on the system. This number should be the same as the number of
    // samples in |idle_samples|.
    if (cpu_idle_state_data_.empty()) {
      cpu_idle_state_data_.resize(idle_samples->size());
    } else {
      DCHECK_EQ(idle_samples->size(), cpu_idle_state_data_.size());
    }
    for (size_t i = 0; i < cpu_idle_state_data_.size(); ++i)
      AddSample(&cpu_idle_state_data_[i], (*idle_samples)[i]);

    cpu_idle_state_names_ = *cpu_idle_state_names;
  }

  if (!freq_samples->empty()) {
    // As with idle samples, resize the data vector before committing the first
    // sample.
    if (cpu_freq_state_data_.empty()) {
      cpu_freq_state_data_.resize(freq_samples->size());
    } else {
      DCHECK_EQ(freq_samples->size(), cpu_freq_state_data_.size());
    }
    for (size_t i = 0; i < cpu_freq_state_data_.size(); ++i)
      AddSample(&cpu_freq_state_data_[i], (*freq_samples)[i]);

    cpu_freq_state_names_ = *cpu_freq_state_names;
  }
}

CpuDataCollector::StateOccupancySample::StateOccupancySample()
    : cpu_online(false) {
}

CpuDataCollector::StateOccupancySample::StateOccupancySample(
    const StateOccupancySample& other) = default;

CpuDataCollector::StateOccupancySample::~StateOccupancySample() = default;

}  // namespace ash