1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/ash/power/ml/smart_dim/download_worker.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/task/task_traits.h"
#include "chrome/browser/ash/power/ml/smart_dim/metrics.h"
#include "chrome/browser/ash/power/ml/smart_dim/ml_agent_util.h"
#include "chromeos/services/machine_learning/public/cpp/service_connection.h"
#include "components/assist_ranker/proto/example_preprocessor.pb.h"
#include "content/public/browser/browser_task_traits.h"
#include "content/public/browser/browser_thread.h"
#include "ui/base/resource/resource_bundle.h"
namespace ash {
namespace power {
namespace ml {
namespace {
using chromeos::machine_learning::mojom::FlatBufferModelSpec;
} // namespace
DownloadWorker::DownloadWorker() : SmartDimWorker(), metrics_model_name_("") {}
DownloadWorker::~DownloadWorker() = default;
const assist_ranker::ExamplePreprocessorConfig*
DownloadWorker::GetPreprocessorConfig() {
return preprocessor_config_.get();
}
const mojo::Remote<chromeos::machine_learning::mojom::GraphExecutor>&
DownloadWorker::GetExecutor() {
return executor_;
}
void DownloadWorker::LoadModelCallback(
chromeos::machine_learning::mojom::LoadModelResult result) {
if (result != chromeos::machine_learning::mojom::LoadModelResult::OK) {
LogLoadComponentEvent(LoadComponentEvent::kLoadModelError);
DVLOG(1) << "Failed to load Smart Dim flatbuffer model.";
}
}
void DownloadWorker::CreateGraphExecutorCallback(
chromeos::machine_learning::mojom::CreateGraphExecutorResult result) {
if (result !=
chromeos::machine_learning::mojom::CreateGraphExecutorResult::OK) {
LogLoadComponentEvent(LoadComponentEvent::kCreateGraphExecutorError);
DVLOG(1) << "Failed to create a Smart Dim graph executor.";
} else {
LogLoadComponentEvent(LoadComponentEvent::kSuccess);
}
}
bool DownloadWorker::IsReady() {
return preprocessor_config_ && model_ && executor_ &&
expected_feature_size_ > 0 && metrics_model_name_ != "";
}
void DownloadWorker::InitializeFromComponent(
const ComponentFileContents& contents) {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
auto [metadata_json, preprocessor_proto, model_flatbuffer] = contents;
preprocessor_config_ =
std::make_unique<assist_ranker::ExamplePreprocessorConfig>();
if (!preprocessor_config_->ParseFromString(preprocessor_proto)) {
LogLoadComponentEvent(LoadComponentEvent::kLoadPreprocessorError);
DVLOG(1) << "Failed to load preprocessor_config.";
preprocessor_config_.reset();
return;
}
// Meta data contains necessary info to construct FlatBufferModelSpec, and
// other optional info.
data_decoder::DataDecoder::ParseJsonIsolated(
std::move(metadata_json),
base::BindOnce(&DownloadWorker::OnJsonParsed, base::Unretained(this),
std::move(model_flatbuffer)));
}
void DownloadWorker::SetOnReadyForTest(base::OnceClosure on_ready) {
on_ready_for_test_ = std::move(on_ready);
}
void DownloadWorker::OnJsonParsed(
const std::string& model_flatbuffer,
const data_decoder::DataDecoder::ValueOrError result) {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
if (!result.has_value() || !result->is_dict() ||
!ParseMetaInfoFromJsonObject(*result, &metrics_model_name_,
&dim_threshold_, &expected_feature_size_,
&inputs_, &outputs_)) {
LogLoadComponentEvent(LoadComponentEvent::kLoadMetadataError);
DVLOG(1) << "Failed to parse meta info from metadata_json.";
return;
}
content::GetUIThreadTaskRunner({base::TaskPriority::BEST_EFFORT})
->PostTask(
FROM_HERE,
base::BindOnce(&DownloadWorker::LoadModelAndCreateGraphExecutor,
base::Unretained(this), std::move(model_flatbuffer)));
}
void DownloadWorker::LoadModelAndCreateGraphExecutor(
const std::string& model_flatbuffer) {
DCHECK_CURRENTLY_ON(content::BrowserThread::UI);
DCHECK(!model_.is_bound() && !executor_.is_bound());
chromeos::machine_learning::ServiceConnection::GetInstance()
->GetMachineLearningService()
.LoadFlatBufferModel(
FlatBufferModelSpec::New(std::move(model_flatbuffer), inputs_,
outputs_, metrics_model_name_),
model_.BindNewPipeAndPassReceiver(),
base::BindOnce(&DownloadWorker::LoadModelCallback,
base::Unretained(this)));
model_->CreateGraphExecutor(
chromeos::machine_learning::mojom::GraphExecutorOptions::New(),
executor_.BindNewPipeAndPassReceiver(),
base::BindOnce(&DownloadWorker::CreateGraphExecutorCallback,
base::Unretained(this)));
executor_.set_disconnect_handler(base::BindOnce(
&DownloadWorker::OnConnectionError, base::Unretained(this)));
if (on_ready_for_test_) {
std::move(on_ready_for_test_).Run();
}
}
} // namespace ml
} // namespace power
} // namespace ash
|