File: ml_agent.cc

package info (click to toggle)
chromium 139.0.7258.127-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 6,122,068 kB
  • sloc: cpp: 35,100,771; ansic: 7,163,530; javascript: 4,103,002; python: 1,436,920; asm: 946,517; xml: 746,709; pascal: 187,653; perl: 88,691; sh: 88,436; objc: 79,953; sql: 51,488; cs: 44,583; fortran: 24,137; makefile: 22,147; tcl: 15,277; php: 13,980; yacc: 8,984; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (355 lines) | stat: -rw-r--r-- 12,885 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "chrome/browser/ash/power/ml/smart_dim/ml_agent.h"

#include <cstddef>
#include <memory>

#include "ash/constants/ash_features.h"
#include "base/containers/flat_map.h"
#include "base/metrics/field_trial_params.h"
#include "base/no_destructor.h"
#include "chrome/browser/ash/power/ml/smart_dim/metrics.h"
#include "chrome/browser/ash/power/ml/smart_dim/ml_agent_util.h"
#include "chrome/browser/ash/power/ml/user_activity_ukm_logger_helpers.h"
#include "chromeos/services/machine_learning/public/mojom/graph_executor.mojom.h"
#include "chromeos/services/machine_learning/public/mojom/model.mojom.h"
#include "chromeos/services/machine_learning/public/mojom/tensor.mojom.h"
#include "components/assist_ranker/example_preprocessing.h"
#include "components/assist_ranker/proto/example_preprocessor.pb.h"
#include "components/assist_ranker/proto/ranker_example.pb.h"

namespace ash {
namespace power {
namespace ml {

namespace {

using chromeos::machine_learning::mojom::ExecuteResult;
using chromeos::machine_learning::mojom::FloatList;
using chromeos::machine_learning::mojom::Int64List;
using chromeos::machine_learning::mojom::Tensor;
using chromeos::machine_learning::mojom::TensorPtr;
using chromeos::machine_learning::mojom::ValueList;

int ScoreToProbability(float score) {
  const float sigmoid = 1.0f / (1.0f + exp(-score));
  const int prob = floor(sigmoid * 100);
  return prob;
}

// Callback for completed ML Service calls to Execute() on a model's
// GraphExecutor.
void ExecuteCallback(const double threshold,
                     DimDecisionCallback decision_callback,
                     ExecuteResult result,
                     std::optional<std::vector<TensorPtr>> outputs) {
  UserActivityEvent::ModelPrediction prediction;

  if (result != ExecuteResult::OK) {
    DVLOG(1) << "Smart Dim inference execution failed.";
    prediction.set_response(UserActivityEvent::ModelPrediction::MODEL_ERROR);
    LogPowerMLSmartDimModelResult(SmartDimModelResult::kOtherError);
  } else {
    float inactivity_score =
        (outputs.value())[0]->data->get_float_list()->value[0];

    prediction.set_decision_threshold(ScoreToProbability(threshold));
    prediction.set_inactivity_score(ScoreToProbability(inactivity_score));
    prediction.set_response(inactivity_score >= threshold
                                ? UserActivityEvent::ModelPrediction::DIM
                                : UserActivityEvent::ModelPrediction::NO_DIM);

    LogPowerMLSmartDimModelResult(SmartDimModelResult::kSuccess);
  }

  std::move(decision_callback).Run(std::make_optional(prediction));
}

// Populates |example| using |features|. Returns true if no error occurred.
bool PopulateRankerExample(const UserActivityEvent::Features& features,
                           assist_ranker::RankerExample* example) {
  CHECK(example);

  // Some features are bucketized before being logged to UKM. Hence training
  // examples use bucketized values. We need to bucketize them here to ensure
  // consistency.
  // It's ok if a feature is missing from |features|, and we will not return
  // false. But if a feature exists in |features|, then we expect it to have
  // a bucketized version in |buckets|. If its bucketized version is missing
  // from |buckets| then we return false.
  const std::map<std::string, int> buckets =
      UserActivityUkmLoggerBucketizer::BucketizeUserActivityEventFeatures(
          features);

  auto& ranker_example_features = *example->mutable_features();

  if (features.has_battery_percent()) {
    const auto it = buckets.find(kBatteryPercent);
    if (it == buckets.end())
      return false;
    ranker_example_features[kBatteryPercent].set_int32_value(it->second);
  }

  if (features.has_device_management()) {
    ranker_example_features["DeviceManagement"].set_int32_value(
        features.device_management());
  }

  if (features.has_device_mode()) {
    ranker_example_features["DeviceMode"].set_int32_value(
        features.device_mode());
  }

  if (features.has_device_type()) {
    ranker_example_features["DeviceType"].set_int32_value(
        features.device_type());
  }

  if (features.has_key_events_in_last_hour()) {
    const auto it = buckets.find(kKeyEventsInLastHour);
    if (it == buckets.end())
      return false;
    ranker_example_features[kKeyEventsInLastHour].set_int32_value(it->second);
  }

  if (features.has_last_activity_day()) {
    ranker_example_features["LastActivityDay"].set_int32_value(
        features.last_activity_day());
  }

  if (features.has_last_activity_time_sec()) {
    const auto it = buckets.find(kLastActivityTime);
    if (it == buckets.end())
      return false;
    ranker_example_features[kLastActivityTime].set_int32_value(it->second);
  }

  if (features.has_last_user_activity_time_sec()) {
    const auto it = buckets.find(kLastUserActivityTime);
    if (it == buckets.end())
      return false;
    ranker_example_features[kLastUserActivityTime].set_int32_value(it->second);
  }

  if (features.has_mouse_events_in_last_hour()) {
    const auto it = buckets.find(kMouseEventsInLastHour);
    if (it == buckets.end())
      return false;
    ranker_example_features[kMouseEventsInLastHour].set_int32_value(it->second);
  }

  if (features.has_on_battery()) {
    // This is an int value in the model.
    ranker_example_features["OnBattery"].set_int32_value(features.on_battery());
  }

  ranker_example_features["PreviousNegativeActionsCount"].set_int32_value(
      features.previous_negative_actions_count());
  ranker_example_features["PreviousPositiveActionsCount"].set_int32_value(
      features.previous_positive_actions_count());

  ranker_example_features["RecentTimeActive"].set_int32_value(
      features.recent_time_active_sec());

  if (features.has_video_playing_time_sec()) {
    const auto it = buckets.find(kRecentVideoPlayingTime);
    if (it == buckets.end())
      return false;
    ranker_example_features[kRecentVideoPlayingTime].set_int32_value(
        it->second);
  }

  if (features.has_on_to_dim_sec()) {
    ranker_example_features["ScreenDimDelay"].set_int32_value(
        features.on_to_dim_sec());
  }

  if (features.has_dim_to_screen_off_sec()) {
    ranker_example_features["ScreenDimToOffDelay"].set_int32_value(
        features.dim_to_screen_off_sec());
  }

  if (features.has_time_since_last_key_sec()) {
    ranker_example_features["TimeSinceLastKey"].set_int32_value(
        features.time_since_last_key_sec());
  }

  if (features.has_time_since_last_mouse_sec()) {
    ranker_example_features["TimeSinceLastMouse"].set_int32_value(
        features.time_since_last_mouse_sec());
  }

  if (features.has_time_since_video_ended_sec()) {
    const auto it = buckets.find(kTimeSinceLastVideoEnded);
    if (it == buckets.end())
      return false;
    ranker_example_features[kTimeSinceLastVideoEnded].set_int32_value(
        it->second);
  }

  if (features.has_engagement_score()) {
    ranker_example_features["SiteEngagementScore"].set_int32_value(
        features.engagement_score());
  }

  if (features.has_has_form_entry()) {
    ranker_example_features["HasFormEntry"].set_bool_value(
        features.has_form_entry());
  }

  if (features.has_tab_domain()) {
    ranker_example_features["TabDomain"].set_string_value(
        features.tab_domain());
    ranker_example_features["HasTabs"].set_bool_value(true);
  } else {
    ranker_example_features["HasTabs"].set_bool_value(false);
  }

  return true;
}

// Vectorize the features proto to feature vector with preprocessor.
SmartDimModelResult PreprocessInput(
    const assist_ranker::ExamplePreprocessorConfig& preprocessor_config,
    const UserActivityEvent::Features& features,
    std::vector<float>* vectorized_features) {
  DCHECK(vectorized_features);

  assist_ranker::RankerExample ranker_example;
  if (!PopulateRankerExample(features, &ranker_example)) {
    return SmartDimModelResult::kOtherError;
  }

  int preprocessor_result = assist_ranker::ExamplePreprocessor::Process(
      preprocessor_config, &ranker_example, true);
  // kNoFeatureIndexFound can occur normally (e.g., when the domain name
  // isn't known to the model or a rarely seen enum value is used).
  if (preprocessor_result != assist_ranker::ExamplePreprocessor::kSuccess &&
      preprocessor_result !=
          assist_ranker::ExamplePreprocessor::kNoFeatureIndexFound) {
    return SmartDimModelResult::kPreprocessorOtherError;
  }
  const auto& extracted_features =
      ranker_example.features()
          .at(assist_ranker::ExamplePreprocessor::kVectorizedFeatureDefaultName)
          .float_list()
          .float_value();
  vectorized_features->assign(extracted_features.begin(),
                              extracted_features.end());

  return SmartDimModelResult::kSuccess;
}

}  // namespace

SmartDimMlAgent::SmartDimMlAgent() = default;

SmartDimMlAgent::~SmartDimMlAgent() = default;

SmartDimMlAgent* SmartDimMlAgent::GetInstance() {
  static base::NoDestructor<SmartDimMlAgent> smart_dim_ml_agent;
  return smart_dim_ml_agent.get();
}

bool SmartDimMlAgent::IsDownloadWorkerReady() {
  return download_worker_.IsReady();
}

void SmartDimMlAgent::OnComponentReady(const ComponentFileContents& contents) {
  download_worker_.InitializeFromComponent(std::move(contents));
}

void SmartDimMlAgent::RequestDimDecision(
    const UserActivityEvent::Features& features,
    DimDecisionCallback callback) {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  cancelable_dim_decision_callback_.Reset(std::move(callback));

  auto* worker = GetWorker();

  UserActivityEvent::ModelPrediction prediction;
  prediction.set_response(UserActivityEvent::ModelPrediction::MODEL_ERROR);

  DCHECK(worker->GetPreprocessorConfig());
  std::vector<float> vectorized_features;
  auto preprocess_result = PreprocessInput(*(worker->GetPreprocessorConfig()),
                                           features, &vectorized_features);
  if (preprocess_result != SmartDimModelResult::kSuccess) {
    LogPowerMLSmartDimModelResult(preprocess_result);
    cancelable_dim_decision_callback_.callback().Run(prediction);
    return;
  }

  if (vectorized_features.size() != worker->expected_feature_size()) {
    DVLOG(1) << "Smart Dim vectorized features not of correct size.";
    LogPowerMLSmartDimModelResult(
        SmartDimModelResult::kMismatchedFeatureSizeError);
    cancelable_dim_decision_callback_.callback().Run(prediction);
    return;
  }

  DCHECK(worker->GetExecutor());
  // Prepare the input tensor.
  base::flat_map<std::string, TensorPtr> inputs;
  auto tensor = Tensor::New();
  tensor->shape = Int64List::New();
  tensor->shape->value = std::vector<int64_t>(
      {1, static_cast<int64_t>(vectorized_features.size())});
  tensor->data = ValueList::NewFloatList(FloatList::New(std::vector<double>(
      std::begin(vectorized_features), std::end(vectorized_features))));
  inputs.emplace(std::string(kSmartDimInputNodeName), std::move(tensor));

  std::vector<std::string> outputs({std::string(kSmartDimOutputNodeName)});

  // Gets dim_threshold from finch experiment parameter, also logs status to
  // UMA.
  const double dim_threshold = base::GetFieldTrialParamByFeatureAsDouble(
      features::kUserActivityPrediction, "dim_threshold",
      worker->dim_threshold());
  if (std::abs(dim_threshold - worker->dim_threshold()) < 1e-10)
    LogPowerMLSmartDimParameterResult(
        SmartDimParameterResult::kUseDefaultValue);
  else
    LogPowerMLSmartDimParameterResult(SmartDimParameterResult::kSuccess);

  worker->GetExecutor()->Execute(
      std::move(inputs), std::move(outputs),
      base::BindOnce(&ExecuteCallback, dim_threshold,
                     cancelable_dim_decision_callback_.callback()));
}

void SmartDimMlAgent::CancelPreviousRequest() {
  DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
  auto decision_callback{cancelable_dim_decision_callback_.callback()};
  // If the callback has not already been run, invoke it with an empty model
  // prediction.
  if (!decision_callback.is_null()) {
    std::move(decision_callback)
        .Run(std::optional<UserActivityEvent::ModelPrediction>());
  }
  cancelable_dim_decision_callback_.Cancel();
}

void SmartDimMlAgent::ResetForTesting() {
  builtin_worker_.Reset();
  download_worker_.Reset();
}

SmartDimWorker* SmartDimMlAgent::GetWorker() {
  if (download_worker_.IsReady()) {
    // When download_worker_ is ready, builtin_worker_ is not useful any more,
    // we can release it to save memory.
    builtin_worker_.Reset();
    LogWorkerType(WorkerType::kDownloadWorker);
    return &download_worker_;
  }
  LogWorkerType(WorkerType::kBuiltinWorker);
  return &builtin_worker_;
}

}  // namespace ml
}  // namespace power
}  // namespace ash